La adición

Enviado por Iñaki Andonegui

Este trabajo se encuentra en formato PDF. Para visualizarlo necesita    Adobe Reader (gratuito).

Resúmen

 

¿Qué es la adición (o suma)?: La primera respuesta que se nos ocurre es que, evidentemente, se trata de un objeto matemático. Y si le entramos con un poco más de precisión, es una operación aritmética. Como tal, y en el ámbito de una matemática formalizada, la adición puede entenderse como una aplicación de N x N en N.

N es el conjunto de los números naturales: 0, 1, 2, 3… N x N es el conjunto de todos los pares posibles de números naturales. Son elementos de este conjunto, por ejemplo, los pares (0 , 1), (15 , 26), (2 , 1), (0 , 0), (3 , 3), etc.

Según la cual, a cada par de números naturales se le hace corresponder otro número natural: su suma. Así, al par (0 , 1) se le hace corresponder el número 1 (0 + 1); al par (15 , 26), el número 41 (15 + 26), etc.

La anterior es una manera “formal” de decir las cosas, pero con esto no nos aclaramos mucho, ya que debemos precisar cómo es que se suma, es decir, cómo es que se llega a 41 partiendo de 15 y de 26. Para ello vamos a referirnos a dos conjuntos, A y B. Supongamos que A cuenta con 15 elementos y B con 26, y que no comparten ningún elemento en común. En términos formales se dice que el cardinal de A es 15, que el de B es 26, y que los conjuntos A y B son disjuntos. La suma de 15 más 26 expresa el cardinal de la unión de los conjuntos A y B. Es decir, si se reúnen los elementos de A y de B en un solo conjunto (el conjunto unión de A y B), éste contará con 41 elementos: 41 es la suma de 15 y 26.

 


 


 Ver trabajo completo (PDF)

 

Enviado por Iñaki Andonegui

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

   

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.