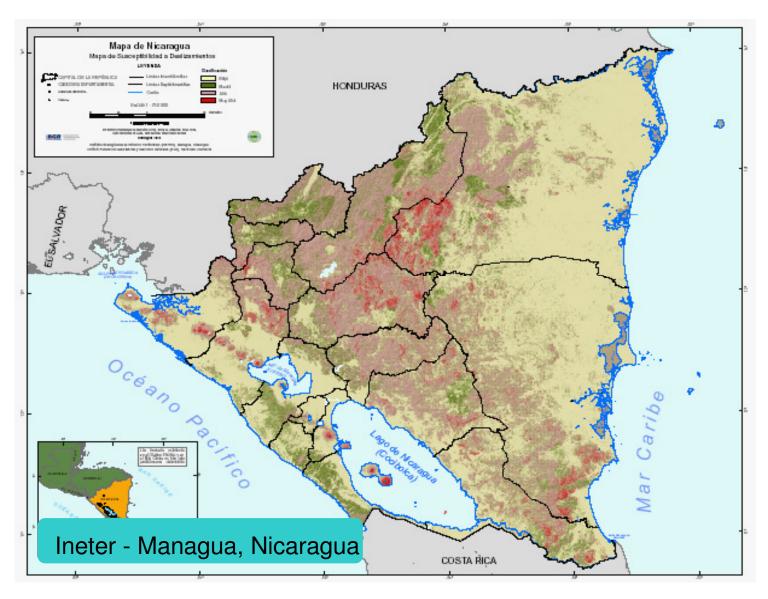


NICARAGUAN INSTITUTE OF TERRITORIAL STUDIES (INETER)

GENERAL DIRECCION OF GEOPHYSICS DIRECCIÓN OF APPLIED GEOLOGY

Methods for instrumental monitoring of landslides in Nicaragua

Presented by:


Doctor **Tupak Obando** Geologist Engineer

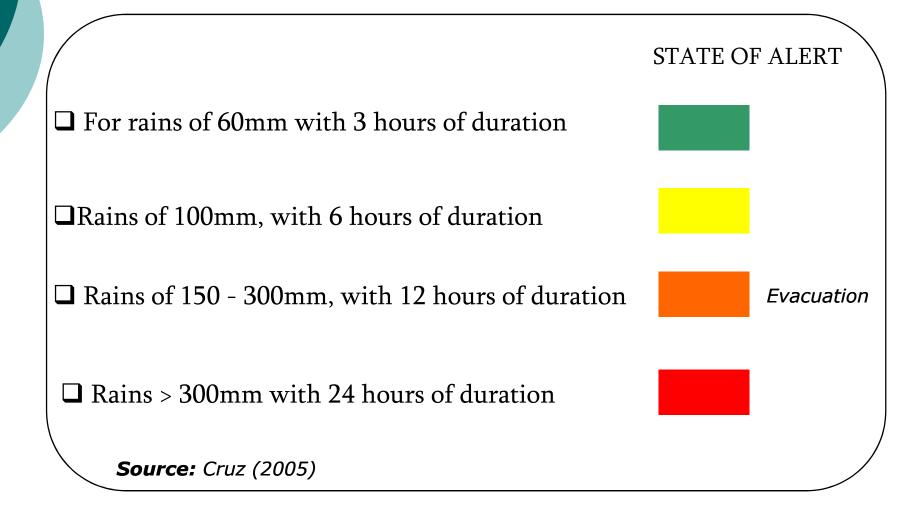
MANAGUA – November 2008

Email: tobando_geologic@yahoo.com

Susceptibility of Landslides in Nicaragua

		, Elle	(a)				
				Type Movements	Percent distribution (%)	Slope Angle (°)	Type materal
Desprendimiento tipo Vuelco	Desprendimiento tipo Desplome	Deslizamiento Traslacional en roca	Deslizamiento Traslacional en suelo	Rock Fall	4	30	andesita, basalt, ignimbrite, dacites, riolites, conglomerates, schist, granite
				Slides	24	20 - 45	Schists, Phyllites, basalt, ignimbrites, andesitas, dacites, conglomerates, granites, colluvial deposits and residual soil
Deslizamiento rotacional 1	Deslizamiento rotacional 2	Colada tipo Flujo de Lodo	Colada tipo Derrubio	Debris (earth and mud flow)	66	15 - 35	They envolved soil, colluvium and weathered rock (schists, phyllite, ignimbrites, conglomerates), pyroclastic material and ashes, block of lavas, and pyroclastic deposits
					urces: Devoli,2		
Flujo de Suelo	Flujo de Derrubios	Colada tipo Solifluxión	Colada tipo Reptación				

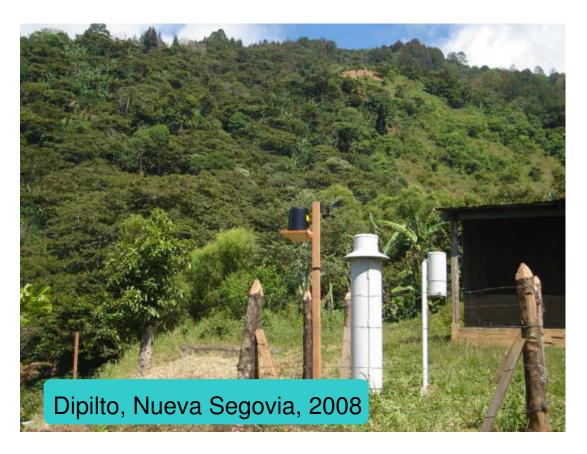
Source: Pobres x desastres (2,007)

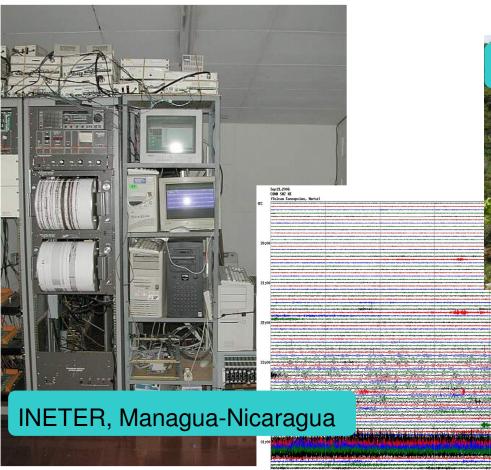

Purpose of landslides monitoring

To understand the past and current behavior of instability of lands, which allows to evaluate the hazard that these represent, and particularly, the possibility to preserve constructions.

To know parameters that determine the movement of land, for generating engineering works, and to control their final stabilizer effect.

To determine the evolution of soil movements to emit forecasts based on their future behavior. It can be defined by variations of amplitude of the movements which affect the mass of land or the buildings (cracks), so that they work as material test in juridical actions This step will lead, whether the declaration or not, of a State of Alert


Example: Cerro El Volcán (Dipilto) and communities La Tablazón, El Volcán, Las Nubes y Dipilto Viejo



a)METHODS:

Daily mensuring: It implies the definition of responsibleobservers of rain precipitation or specific landslides

Registrations of datas: This task is characterized by an organized registration. The information is distributed to the drawees of decision (communal representatives and local authorities) by radio communication net

□ Analysis and forecast of the information:

It is an essential task the definition of protocols that guarantee security and validity of the information without generating false alarms and rumors.

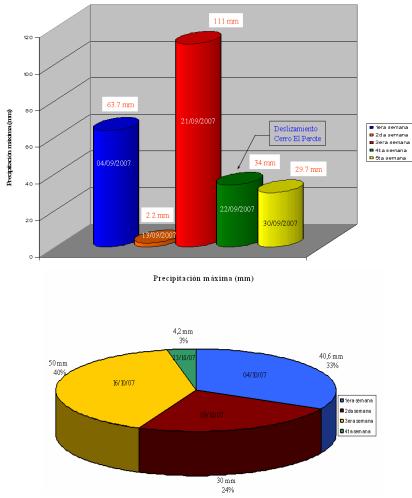
The analysis of the information allows to settle down preventive orientations for preserving human lives of people living in that place. To reach this, it is required a training process and to have open minds about the meaning of the alerts.

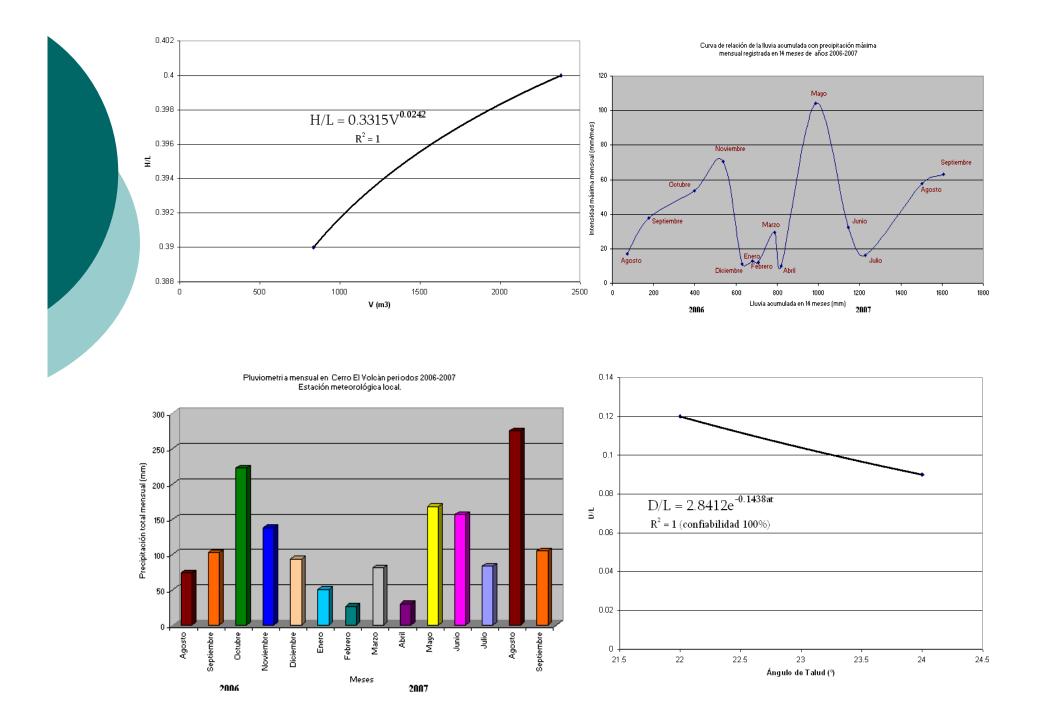
San José de Cusmapa (Madriz, Nicaragua) October 2008

B) PRINCIPAL INSTRUMENTS OF MENSURATION-SURVEILLANCE

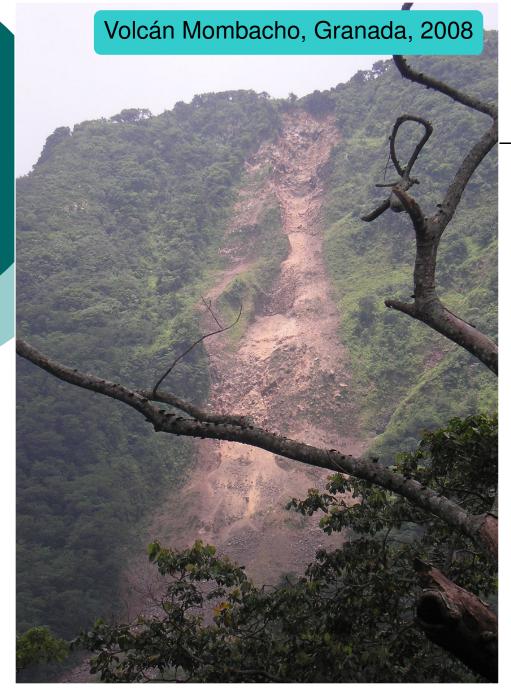
Radio-communication: A support equipment to transmit and transfer information between different places

Pluviometer: It measures the quantity of rain (in mm) in a specific place through a direct visual reading. The simple pluviometer (of a direct visual reading) has a recipient and a funnel. Data are taken every 12 hours of pluviometer readings.

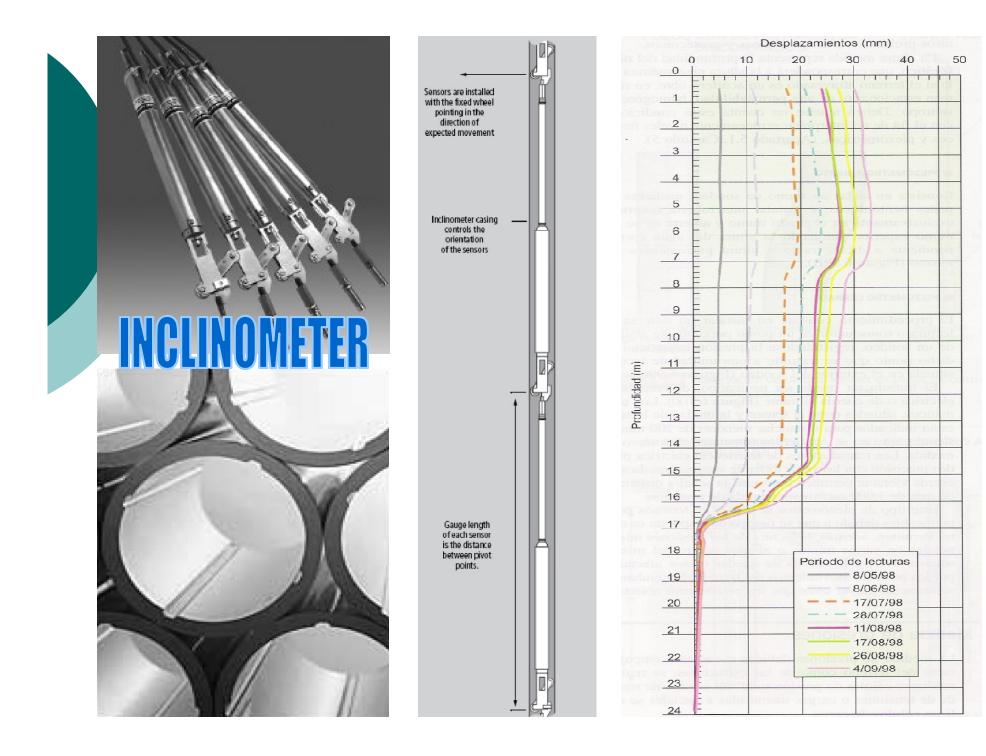



Dipilto, Nueva Segovia, 2008

□ Registration of meteorological variables:

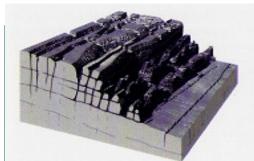

In this place, it's recorded in format digital data based on weather conditions, temperature, humidity, velocity and direction of wind, and the quantity of daily accumulated rain.

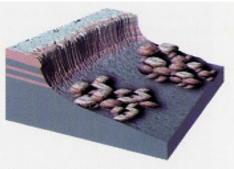
Centro de Salud de Murra, Madriz, 2008

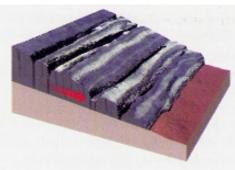

Proposition of Systems of Detection of Landslides

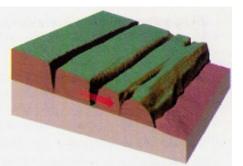
GEOTECNICAL INSTRUMENTAL TO: Locate rupture areas in depth **Quantify the movements against time** □ Calculate velocity and direction of displacement of landslides (that is, to locate the most instability area)

Predict the rupture of soil

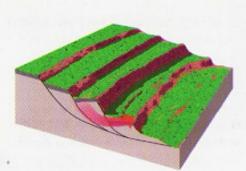

Equipo	Funciones/Características	Imagen
Inclinómetro vertical biaxial Sisgeo Accutilt RT- 20MS	Sonda inclinométrica biaxial, rango de medida 50° respecto la vertical. Resolución: ±0.02 mm por 500 mm. Dimensión del cuerpo central f 25.4 mm.	
Central inclinométrica Sisgeo C800U	Equipo de medición y adquisición de datos inclinométricos, modelo ACCULOG-X, con puerto de comunicación RS-232 con batería recargable.	
Inclinómetro horizontal uniaxial Roctest RT-20 HM	Sonda inclinométrica uniaxial, rango de medida 50° respecto la vertical. Resolución: ±0.02 mm por 500 mm., f 42 mm largo 790 mm y distancia entre rozamientos 500 mm.	
Central inclinométrica Roctest Acculog-X	Equipo de medición y adquisición de datos inclinométricos con lectura simultánea de los ejes A/B en gráficos LCD. Menú interactivo. Incrementos automáticos después de la validación de cada punto.	


Equipo	Funciones/Características	lmagen
Extensómetro de Cable Flexible Roctest WR-Flex	Medidor de asientos con rango de lectura 25, 50, 100, 150, 250 y 300 mm Precisión 0.1 a 0.5%F.S. con resolución 0.01 a 0.025 mm	
Central de Toma de Datos Automatizada Roctest SENSLOG 1000X	Datalogger para monitorización remota de hasta 225 canales. Ver ficha técnica adjunta.	
Extensómetro de Varillas Sisgeo	Medidor de asientos con rango de lectura 25, 50, 100, 150, 250 y 300 mm Precisión 0.1 a 0.5%F.S. con resolución 0.01 a 0.025 mm	
Automatic Read Out	Unidad de lectura portátil, registra los datos de posición, fecha y tiempo de lectura en formato transferible a PC	SOLEXPERISAS
EX	tensometer	ų į


Micrometer


Equipo	Funciones/Características	lmagen	
Sliding Micrometer Solexperts	Medidor de la distribución de deformaciones y de los desplazamientos axiales en suelo, roca o hormigón. Rango de medida de 10 mm (± 5 mm), exactitud ± 0.003 mm y precisión de 0.001 mm	Cable drum Prabe Comp Comp Comp Solesports Data Controller (SSIC)	
Read out sliding micrometer SDC acumulador y medida en los tres ejes (x, y, z)			

Thank you!



Desprendimiento tipo Vuelco

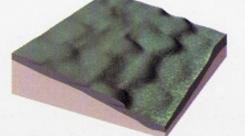
Desprendimiento tipo Desplome

Deslizamiento Traslacional en roca

Deslizamiento Traslacional en suelo

Deslizamiento rotacional 1

Deslizamiento rotacional 2


Colada tipo Flujo de Lodo

Colada tipo Derrubio

Roture Mechanism

Colada tipo Solifluxión

Colada tipo Reptación

Flujo de Suelo

Flujo de Derrubios