Suma y resta de polinomios

Este trabajo se encuentra en formato PDF. Para visualizarlo necesita    Adobe Reader (gratuito).

Resúmen

EL GRADO de un polinomio puede ser absoluto y con relación a una letra.
Grado absoluto de un polinomio es el grado de su término de mayor grado. Así, en el polinomio X4 – 5X3 + X2 – 3X el primer término es de cuarto grado; el segundo, de tercer grado; el tercero, de segundo grado, y el ultimo, de primer grado; luego, el grado absoluto del polinomio es el cuarto.
Grado de un polinomio con relación a una letra es el mayor exponente de dicha letra en el polinomio. Así, el polinomio a6 + a4x2 – a2x4 es de sexto grado con relación a la "a" y de cuarto grado con relación a la "x"p.
Se dice que un polinomio es completo con relación a una letra cuando contiene todos los exponentes sucesivos de dicha letra, desde el más alto al más bajo que tenga dicha letra en el polinomio. Así, el polinomio x5 + x4 – x3 + x2 -3x es completo respecto de la "x", porque contiene todos los exponentes sucesivos de la "x" desde el más alto "5", hasta el más bajo "1", o sea 5, 4, 3, 2, 1; el polinomio a4 – a3b + a2b2 – ab3 + b4 es completo respecto de "a" y "b".
Polinomio ordenado con respecto a una letra es un polinomio en el cual los exponentes de una letra escogida, van aumentando o disminuyendo. Así, el polinomio x4 – 4x3 + 2x2 – 5x + 8 está ordenado en orden descendente con relación a la letra "x"; el polinomio a4 – a3b + a2b2 – ab3 + b4 está ordenado en orden descendente respecto a la letra "a" y en orden ascendente respecto a la letra "b".

 


 Ver trabajo completo (PDF)

 

Enviado por José Luis Albornoz Salazar

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

   

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.