Agregar a favoritos      Ayuda      Português      Ingles     

Referencias de computación

Enviado por jrgaitan



Introducción

Algunas veces se ha preguntado, ¿cuál fue uno de los primeros procesadores de Intel, siempre han sido ha si de poderosos? O puede ser que alguna vez le halla surgido la duda de donde vienen las computadoras.

En éste trabajo se da un breve relato de la historia de las computadoras así también como las historias de los lenguajes de programación y de los microprocesadores.

A mi criterio a éste trabajo le puede llamar como una referencia rápida de los temas más comunes en el mundo de la informática y de las computadoras. Esta es una buena oportunidad para que usted de un vistazo rápido de lo que tratan las ciencias de la computación y sistemas. Insisto en que usted lea esta breve referencia de el mundo de las computadoras, y usted vera que la próxima vez que le hablen del tema usted se sentirá familiarizado con el mismo.

Historia de la Computación

Del Abaco a la tarjeta perforada

EL ABACO; quizá fue el primer dispositivo mecánico de contabilidad que existió. Se ha calculado que tuvo su origen hace al menos 5000 años y su efectividad ha soportado la prueba del tiempo.

LA PASCALINA; El inventor y pintor Leonardo Da Vinci (1452-1519) trazó las ideas para una sumadora mecánica. Siglo y medio después, el filósofo y matemático francés Blaise Pascal (1623-1662) por fin inventó y construyó la primera sumadora mecánica. Se le llamo Pascalina y funcionaba como maquinaria a base de engranes y ruedas. A pesar de que Pascal fue enaltecido por toda Europa debido a sus logros, la Pascalina, resultó un desconsolador fallo financiero, pues para esos momentos, resultaba más costosa que la labor humana para los cálculos aritméticos.

LA LOCURA DE BABBAGE, Charles Babbage (1793-1871), visionario inglés y catedrático de Cambridge, hubiera podido acelerar el desarrollo de las computadoras si él y su mente inventiva hubieran nacido 100 años después. Adelantó la situación del hardware computacional al inventar la "máquina de diferencias", capaz de calcular tablas matemáticas. En 1834, cuando trabajaba en los avances de la máquina de diferencias Babbage concibió la idea de una "máquina analítica". En esencia, ésta era una computadora de propósitos generales. Conforme con su diseño, la máquina analítica de Babbage podía suma r, substraer, multiplicar y dividir en secuencia automática a una velocidad de 60 sumas por minuto. El diseño requería miles de engranes y mecanismos que cubrirían el área de un campo de fútbol y necesitaría accionarse por una locomotora. Los escépticos le pusieron el sobrenombre de "la locura de Babbage". Charles Babbage trabajó en su máquina analítica hasta su muerte. Los trazos detallados de Babbage describían las características incorporadas ahora en la moderna computadora electrónica. Si Babbage hubiera vivido en la era de la tecnología electrónica y las partes de precisión, hubiera adelantado el nacimiento de la computadora electrónica por varías décadas. Irónicamente, su obra se olvidó a tal grado, que algunos pioneros en el desarrollo de la computadora electrónica ignoraron por completo sus conceptos sobre memoria, impresoras, tarjetas perforadas y control de programa secuencial.

LA PRIMERA TARJETA PERFORADA; El telar de tejido, inventado en 1801 por el Francés Joseph-Marie Jackard (1753-1834), usado todavía en la actualidad, se controla por medio de tarjetas perforadas. El telar de Jackard opera de la manera siguiente: las tarjetas se perforan estratégicamente y se acomodan en cierta secuencia para indicar un diseño de tejido en particular. Charles Babbage quiso aplicar el concepto de las tarjetas perforadas del telar de Jackard en su motor analítico. En 1843 Lady Ada Augusta Lovelace sugirió la idea de que las tarjetas perforadas pudieran adaptarse de manera que propiciaran que el motor de Babbage repitiera ciertas operaciones. Debido a esta sugerencia algunas personas consideran a Lady Lovelace la primera programadora.

Herman Hollerit (1860-1929) La oficina de censos estadounidense no terminó el censo de 1880 sino hasta 1888. La dirección de la oficina ya había llegado a la conclusión de que el censo de cada diez años tardaría mas que los mismo 10 años para terminarlo. La oficina de censos comisionó al estadístico Herman Hollerit para que aplicara su experiencia en tarjetas perforadas y llevara a cabo el censo de 1890. Con el procesamiento de las tarjetas perforadas y el tabulador de tarjetas perforadas de Hollerit, el censo se terminó en sólo 3 años y la oficina se ahorró alrededor de $5,000,000 de dólares. Así empezó el procesamiento automatizado de datos. Hollerit no tomó la idea de las tarjetas perforadas del invento de Jackard, sino de la "fotografía de perforación" Algunas líneas ferroviarias de la época expedían boletos con descripciones físicas del pasajero; los conductores hacían orificios en los boletos que describían el color de cabello, de ojos y la forma de nariz del pasajero. Eso le dio a Hollerit la idea para hacer la fotografía perforada de cada persona que se iba a tabular. Hollertih fundó la Tabulating Machine Company y vendió sus productos en todo el mundo. La demanda de sus máquinas se extendió incluso hasta Rusia. El primer censo llevado a cabo en Rusia en 1897, se registró con el Tabulador de Hollerith. En 1911, la Tabulating Machine Company, al unirse con otras Compañías, formó la Computing-Tabulating-Recording-Company.

LAS MAQUINAS ELECTROMECANICAS DE CONTABILIDAD (MEC) Los resultados de las máquinas tabuladoras tenían que llevarse al corriente por medios manuales, hasta que en 1919 la Computing-Tabulating-Recording-Company. Anunció la aparición de la impresora/listadora. Esta innovación revolucionó la manera en que las Compañías efectuaban sus operaciones. Para reflejar mejor el alcance de sus intereses comerciales, en 1924 la Compañía cambió el nombre por el de international Bussines Machines Corporation (IBM) Durante décadas, desde mediados de los cincuentas la tecnología de las tarjetas perforadas se perfeccionó con la implantación de más dispositivos con capacidades más complejas. Dado que cada tarjeta contenía en general un registro (Un nombre, dirección, etc.) el procesamiento de la tarjeta perforada se conoció también como procesamiento de registro unitario.

La familia de las máquinas electromecánicas de contabilidad (EAM) eloctromechanical accounting machine de dispositivos de tarjeta perforada comprende: la perforadora de tarjetas, el verificador, el reproductor, la perforación sumaria, el intérprete, el clasificador, el cotejador, el calculador y la máquina de contabilidad. El operador de un cuarto de máquinas en una instalación de tarjetas perforadas tenía un trabajo que demandaba mucho esfuerzo físico. Algunos cuartos de máquinas asemejaban la actividad de una fábrica; las tarjetas perforadas y las salidas impresas se cambiaban de un dispositivo a otro en carros manuales, el ruido que producía eran tan intenso como el de una planta ensambladora de automóviles.

Pioneros de la computación

ATANASOFF Y BERRY Una antigua patente de un dispositivo que mucha gente creyó que era la primera computadora digital electrónica, se invalidó en 1973 por orden de un tribunal federal, y oficialmente se le dio el crédito a John V. Atanasoff como el inventor de la computadora digital electrónica. El Dr. Atanasoff, catedrático de la Universidad Estatal de Iowa, desarrolló la primera computadora digital electrónica entre los años de 1937 a 1942. Llamó a su invento la computadora Atanasoff-Berry, ó solo ABC (Atanasoff Berry Computer). Un estudiante graduado, Clifford Berry, fue una útil ayuda en la construcción de la computadora ABC.

Algunos autores consideran que no hay una sola persona a la que se le pueda atribuir el haber inventado la computadora, sino que fue el esfuerzo de muchas personas. Sin embargo en el antiguo edificio de Física de la Universidad de Iowa aparece una placa con la siguiente leyenda: "La primera computadora digital electrónica de operación automática del mundo, fue construida en este edificio en 1939 por John Vincent Atanasoff, matemático y físico de la Facultad de la Universidad, quien concibió la idea, y por Clifford Edward Berry, estudiante graduado de física."

Mauchly y Eckert, después de varias conversaciones con el Dr. Atanasoff, leer apuntes que describían los principios de la computadora ABC y verla en persona, el Dr. John W. Mauchly colaboró con J.Presper Eckert, Jr. para desarrollar una máquina que calculara tablas de trayectoria para el ejército estadounidense. El producto final, una computadora electrónica completamente operacional a gran escala, se terminó en 1946 y se llamó ENIAC (Electronic Numerical Integrator And Computer), ó Integrador numérico y calculador electrónico. La ENIAC construida para aplicaciones de la Segunda Guerra mundial, se terminó en 30 meses por un equipo de científicos que trabajan bajo reloj.

La ENIAC, mil veces más veloz que sus predecesoras electromecánicas, irrumpió como un importante descubrimiento en la tecnología de la computación. Pesaba 30 toneladas y ocupaba un espacio de 450 mts cuadrados, llenaba un cuarto de 6 m x 12 m y contenía 18,000 bulbos, tenía que programarse manualmente conectándola a 3 tableros que contenían más de 6000 interruptores. Ingresar un nuevo programa era un proceso muy tedioso que requería días o incluso semanas. A diferencia de las computadoras actuales que operan con un sistema binario (0,1) la ENIAC operaba con uno decimal (0,1,2..9).

La ENIAC requería una gran cantidad de electricidad. La leyenda cuenta que la ENIAC, construida en la Universidad de Pensilvania, bajaba las luces de Filadelfia siempre que se activaba. La imponente escala y las numerosas aplicaciones generales de la ENIAC señalaron el comienzo de la primera generación de computadoras.

En 1945, John von Neumann, que había trabajado con Eckert y Mauchly en la Universidad de Pensilvania, publicó un artículo acerca del almacenamiento de programas. El concepto de programa almacenado permitió la lectura de un programa dentro de la memoria de la computadora, y después la ejecución de las instrucciones del mismo sin tener que volverlas a escribir. La primera computadora en usar el citado concepto fue la la llamada EDVAC (Eletronic Discrete-Variable Automatic Computer, es decir computadora automática electrónica de variable discreta), desarrollada por Von Neumann, Eckert y Mauchly.

Los programas almacenados dieron a las computadoras una flexibilidad y confiabilidad tremendas, haciéndolas más rápidas y menos sujetas a errores que los programas mecánicos. Una computadora con capacidad de programa almacenado podría ser utilizada para varias aplicaciones cargando y ejecutando el programa apropiado.

Hasta este punto, los programas y datos podría ser ingresados en la computadora sólo con la notación binaria, que es el único código que las computadoras "entienden". El siguiente desarrollo importante en el diseño de las computadoras fueron los programas intérpretes, que permitían a las personas comunicarse con las computadoras utilizando medios distintos a los números binarios.

En 1952 Grace Murray Hoper una oficial de la Marina de E.U., desarrolló el primer compilador, un programa que puede traducir enunciados parecidos al inglés en un código binario comprensible para la maquina llamado COBOL (Common Business-Oriented Languaje).

Generaciones de computadoras

Primera Generación de Computadoras

(de 1951 a 1958)

Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos. Eckert y Mauchly contribuyeron al desarrollo de computadoras de la 1era Generación formando una Cia. privada y construyendo UNIVAC I, que el Comité del censó utilizó para evaluar el de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos basándose en tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.

Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras. Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.

- Segunda Generación

(1959-1964)

Transistor

Compatibilidad limitada

El invento del transistor hizo posible una nueva generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguia siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computación. Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.

La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH (siglas).

Tercera Generación

(1964-1971)

circuitos integrados

Compatibilidad con equipo mayor

Multiprogramación

Minicomputadora

Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos. La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos.

Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

Por ejemplo la computadora podia estar calculando la nomina y aceptando pedidos al mismo tiempo.

Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las minicomputadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 70.

- La cuarta Generación

(1971 a la fecha)

- Microprocesador

- Chips de memoria.

- Microminiaturización

Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador de chips hizo posible la creación de las computadoras personales. (PC)

Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenan en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupara un cuarto completo.

Lenguajes de Programación

a.) Historia de los lenguajes; Los lenguajes de programación cierran el abismo entre las computadoras, que sólo trabajan con números binarios, y los humanos, que preferimos utilizar palabras y otros sistemas de numeración.

Mediante los programas se indica a la computadora qué tarea debe realizar y como efectuarla, pero para ello es preciso introducir estas ordenes en un lenguaje que el sistema pueda entender. En principio, el ordenador sólo entiende las instrucciones en código máquina, es decir, el especifico de la computadora. Sin embargo, a partir de éstos se elaboran los llamados lenguajes de alto y bajo nivel.

  1. Generaciones de los lenguajes

LENGUAJES DE BAJO NIVEL:

Utilizan códigos muy cercanos a los de la máquina, lo que hace posible la elaboración de programas muy potentes y rápidos, pero son de difícil aprendizaje.

LENGUAJES DE ALTO NIVEL:

Por el contrario, son de uso mucho más fácil, ya que en ellos un solo comando o instrucción puede equivaler a millares es código máquina. El programador escribe su programa en alguno de estos lenguajes mediante secuencias de instrucciones. Antes de ejecutar el programa la computadora lo traduce a código máquina de una sola vez (lenguajes compiladores) o interpretándolo instrucción por instrucción (lenguajes intérpretes). Ejemplos de lenguajes de alto nivel: Pascal, Cobol, Basic, Fortran, C++ Un Programa de computadora, es una colección de instrucciones que, al ser ejecutadas por el CPU de una máquina, llevan a cabo una tarea ó función específica. Este conjunto de instrucciones que forman los programas son almacenados en archivos denomina dos archivos ejecutables puesto que, al teclear su nombre (o hacer clic sobre el icono que los identifica) logras que la computadora los cargue y corra, o ejecute las instrucciones del archivo. El contenido de un archivo ejecutable no puede ser entendido por el usuario, ya que no está hecho para que la gente lo lea, sino para que la computadora sea quien lo lea.

Los archivos de programas ejecutables contienen el código máquina, que la CPU identifica como sus instrucciones. Son lo que conocemos como Programas Objeto. Dado que sería muy difícil que los programadores crearan programas directamente en código de máquina, usan lenguajes más fáciles de leer, escribir y entender para la gente.

El programador teclea instrucciones en un editor, que es un programa parecido a un simple procesador de palabras, estas instrucciones son almacenadas en archivos denominados programas fuentes (código fuente). Si los programadores necesitan hacer cambios al programa posteriormente vuelven a correr el editor y cargan el programa fuente para modificarlo.

El proceso de conversión de programas fuente a programas objeto se realiza mediante un programa denominado compilador. El compilador toma un programa fuente y lo traduce a programa objeto y almacena este último en otro archivo.

PROGRAMA FUENTE:

Es el programa escrito en alguno de los lenguajes y que no ha sido traducido al lenguaje de la maquina, es decir el programa que no está en código de máquina y que por lo tanto no puede ser ejecutable.

PROGRAMA OBJETO:

s aquel programa que se encuentra en lenguaje máquina y que ya es ejecutable por esta.

C.) Programación Orientada a Objetos: La programación orientada a objetos no es un concepto nuevo, sus inicios y técnicas de programación se iniciaron a principios de los 70. Se puede definir programación orientada a objetos (OOPS) como una técnica de programación que utiliza objetos como bloque esencial de construcción. La OOPS, es un tipo de programación más cercana al razonamiento humano. La OOPS surge como una solución a la programación de grandes programas, y para solventar el mantenimiento de dichas aplicaciones, ya que en la programación estructura el más mínimo cambio supone la modificación de muchas funciones relacionadas, en cambio con la OOPS solo es cuestión de añadir o modificar métodos de una clase o mejor, crear una nueva clase a partir de otra (Herencia). Dos lenguajes destacan sobre el resto para programar de esta forma, Smalltalk y C++.

Concepto de Objeto: Desde un punto de vista general un Objeto es una estructura de datos de mayor o menor complejidad con las funciones que procesan estos datos. Dicho de otra forma, sería Datos más un Código que procesa estos datos. A los datos se les denomina miembros dato y a las funciones miembro o miembro funciones. Los datos están ocultos y sólo se puede acceder a ellos mediante las funciones miembro.

Clases: Las Clases son como plantillas o modelos que describen como se construyen ciertos tipos de Objeto. Cada vez que se construye un Objeto de una Clase, se crea una instancia de esa Clase("instance"). Una Clase es una colección de Objetos similares y un Objeto es una instancia de una Clase. Se puede definir una Clase como un modelo que se utiliza para describir uno o más Objetos del mismo tipo.

Herencia: Una característica muy importante de los Objetos y las Clases es la Herencia, una propiedad que permite construir nuevos Objetos (Clases) a partir de unos ya existentes. Esto permite crear "Sub-Clases" denominadas Clases Derivadas que comparten las propiedades de la Clase de la cual derivan (Clase base). Las Clases derivadas heredan código y datos de la clase base, asimismo incorporan su propio código y datos especiales. Se puede decir que la herencia permite definir nuevas Clases a partir de las Clases ya existentes.

Polimorfismo: En un sentido literal, Polimorfismo significa la cualidad de tener más de una forma. En el contexto de POO, el Polimorfismo se refiere al hecho de que una simple operación puede tener diferente comportamiento en diferentes objetos. En otras palabras, diferentes objetos reaccionan al mismo mensaje de modo diferente. Los primeros lenguajes de POO fueron interpretados, de forma que el Polimorfismo se contemplaba en tiempo de ejecución. Por ejemplo, en C++, al ser un lenguaje compilado, el Polimorfismo se admite tanto en tiempo de ejecución como en tiempo de compilación

Decimos entonces que:

El tema de la Programación Orientada a Objetos (Object Oriented Programming O-O-P) sigue siendo para el que escribe un territorio inquietante, interesante y en gran medida desconocido, como parece ser también para la gran mayoría de los que estamos en el campo de la programación. Sin tratar de excluir a aquellos que han afrontado este desarrollo desde el punto de vista académico y formal (maestrías y doctorados) el tema se antoja difícil para los no iniciados. Con este breve artículo me dirigiré en particular a la gran base de programadores prácticos que andamos en búsqueda de mejores herramientas de desarrollo de programas, que faciliten el trabajo de nuestros usuarios y a la vez disminuyan la gran cantidad de considerandos que aparecen al empeñarnos en un proyecto de cómputo.

Como muchos de ustedes, me topé con el concepto de O-O-P como parte de esa búsqueda y al explorarlo apareció el gusanillo de la curiosidad. A lo largo de mi actividad como programador, y cuando se dio la necesidad, no tuve ningún problema en convertir mis habilidades de programación en FORTRAN de IBM 1130 al BASIC de la PDP, pues sólo era cuestión de aprender la sintaxis del lenguaje, ya que las estrategias de programación y los algoritmos eran iguales. Posteriormente, al manejar el PASCAL se requirió un importante esfuerzo en entender la filosofía de las estructuras, lo cual modificaba la manera de ver (conceptualizar) a los datos y a las partes constitutivas de un programa.

Posteriormente aparece el QuickBasic, que adopté inmediatamente por la familiaridad con el BASIC (ley del menor esfuerzo). Ofrecía estructuras de datos (tipos y registros complejos), además de estructuras de instrucciones en procedimientos y módulos; editor "inteligente" que revisa la sintaxis y ejecución de las instrucciones mientras se edita el programa, generación de ejecutable una vez terminado (.EXE), existencia de bibliotecas externas y enlace con módulos objeto generados en otro lenguaje. ¿Qué más podía yo pedir?

Pero la necesidad de estar en la ola de moda es más fuerte que el sentido común. Las aplicaciones en Windows siempre han despertado la envidia de los programadores, al hacer ver sus programas pálidos e insulsos por comparación. Solución: programar en Windows.

Originalmente programar en Windows representaba un largo y tedioso camino para dominar las complejas herramientas de desarrollo. Sólo recientemente han aparecido desarrolladores de aplicaciones para Windows que le permiten al programador pintar sus ventanas y realizar los enlaces entre los objetos con programación tradicional, evitando en gran medida involucrarse con los conceptos complicados de los objetos. Sin embargo no dejaron de inquietarme algunos conceptos marcados por O-O-P, según los cuales serán los pilares del futuro de la programación de componentes y de objetos distribuidos en redes, en donde la actual programación cliente/servidor pareciera por comparación el FORTRAN o el COBOL de ahora.

Pidiendo perdón de antemano a los puristas de las definiciones y conceptos de O-O-P, expondré el resultado de mis propias indagaciones sobre este campo, esperando que al paciente lector y posible programador le resulte menos complicado que a mí asimilar los elementos básicos de O-O-P.

Los principales conceptos que se manejan en la Programación Orientada a Objetos son: 1. encapsulado, 2. herencia y 3. Polimorfismo.

Según esto, la encapsulación es la creación de módulos autosuficientes que contienen los datos y las funciones que manipulan dichos datos. Se aplica la idea de la caja negra y un letrero de "prohibido mirar adentro". Los objetos se comunican entre sí intercambiando mensajes. De esta manera, para armar aplicaciones se utilizan los objetos cuyo funcionamiento está perfectamente definido a través de los mensajes que es capaz de recibir o mandar. Todo lo que un objeto puede hacer está representado por su interfase de mensajes. Para crear objetos, el programador puede recurrir a diversos lenguajes como el C++, el Smalltalk, el Visual Objects y otros. Si se desea solamente utilizar los objetos y enlazarlos en una aplicación por medio de la programación tradicional se puede recurrir al Visual Basic, al CA-Realizer, al Power Builder, etc.

El concepto de herencia me pareció sencillo de entender una vez que capté otro concepto de O-O-P: las clases. En O-O-P se acostumbra agrupar a los objetos en clases. Esto es muy común en la vida diaria. Todos nosotros tendemos a clasificar los objetos comunes por clases. Manejamos la clase mueble, la clase mascota, la clase alimento, etc. Obviamente en el campo de la programación esta clasificación es más estricta. ¿Cuál es el sentido de las clases? Fundamentalmente evitar definir los objetos desde cero y facilitar su rehuso. Si trabajamos con clases, al querer definir un nuevo objeto, partimos de alguna clase definida anteriormente, con lo que el objeto en cuestión hereda las características de los objetos de su clase. Imaginemos que creamos una clase "aves" y describimos las características de las aves (plumas, pico, nacen de huevo, etc.). Más adelante necesitamos una clase "pingüino". Como pertenece a "aves" no requerimos volver a declarar lo descrito sino marcamos que "pingüino" es una subclase de "aves" con lo que "pingüino" hereda todas sus características. A continuación sólo declaramos los detalles que determinan lo que distingue a "pingüino" de "aves". Asimismo podemos declarar "emperador" como una subclase de "pingüino", con lo que "emperador" heredará todas las características de las superclases "pingüino" y "aves" más las características que nosotros declaremos en particular para "emperador". En un programa (imaginario por supuesto) yo puedo utilizar estas clases (aves, pingüino y emperador). El hecho de colocar a un individuo en particular en estas clases es lo que se llama objeto y se dice que es una instancia de una clase. Así, si yo coloco a Fredy (un pingüino emperador) en mi programa, se dice que el objeto Fredy es una instancia de la clase emperador. Fredy aparecerá en mi programa con todas las características (herencia) de aves, de pingüino y de emperador.

Por otra parte, entender el concepto de Polimorfismo implicó un buen número de horas de indagación y búsqueda de ejemplos. Espero que éste resulte claro: supóngase que declaramos un objeto llamado Suma. Este objeto requiere dos parámetros (o datos) como mensaje para operar. En la programación tradicional tendríamos que definir el tipo de datos que le enviamos, como por ejemplo dos números enteros, dos números reales, etc. En O-O-P el tipo de dato se conoce hasta que se ejecuta el programa.

E.) COMPILADOR: Es un programa que traduce un lenguaje de alto nivel al lenguaje máquina. Un programa compilado indica que ha sido traducido y está listo para ser ejecutado. La ejecución de los programas compilados es más rápida que la de los interpretados, ya que el interprete debe traducir mientras está en la fase de ejecución (saca todos los errores). Un compilador es un programa que traduce el programa fuente (conjunto de instrucciones de un lenguaje de alto nivel, por ejemplo BASIC o Pascal) a programa objeto (instrucciones en lenguaje máquina que la computadora puede interpretar y ejecutar). Se requiere un compilador para cada lenguaje de programación. Un compilador efectúa la traducción, no ejecuta el programa. Una vez compilado el programa, el resultado en forma de programa objeto será directamente ejecutable. Presentan la ventaja considerable frente a los intérpretes de la velocidad de ejecución, por lo que su uso será mejor en aquellos programas probados en los que no se esperan cambios y que deban ejecutarse muchas veces. En caso de que se opte por un interpretador se debe considerar que el intérprete resida siempre en memoria.

INTERPRETE: Traductor de lenguajes de programación de alto nivel, los interpretes ejecutan un programa línea por línea. El programa siempre permanece en su forma original(programa fuente) y el interprete proporciona la traducción al momento de ejecutar cada una de la s instrucciones. Un intérprete es un programa que procesa los programas escritos en un lenguaje de alto nivel, sin embargo, está diseñado de modo que no existe independencia entre la etapa de traducción y la etapa de ejecución. Un intérprete traduce cada instrucción o sentencia del programa escrito a un lenguaje máquina e inmediatamente se ejecuta. Encuentran su mayor ventaja en la interacción con el usuario, al facilitar el desarrollo y puesta a punto de programas, ya que los errores son fáciles de detectar y sobre todo de corregir.

LENGUAJE MÁQUINA: Lenguaje original de la computadora, un programa debe estar escrito en el lenguaje de la máquina para poder ser ejecutado. Este es generado por software y no por el programador. El programador escribe en un lenguaje de programación, el cual es traducido al lenguaje de máquina mediante interpretes y compiladores.

E.) Case: (Computer-Aided Software Engineering o Computer- Aided Systems Engineering) Ingeniería de Software Asistida por Computadora o Ingeniería de Sistemas Asistida por computadora Software que se utiliza en una cualquiera o en todas las fases del desarrollo de un sistema de información, incluyendo análisis, diseño y programación. Por ejemplo, los diccionarios de datos y herramientas de diagramación ayudan en las fases de análisis y diseño, mientras que los generadores de aplicaciones aceleran la fase de programación.

Las herramientas CASE proporcionan métodos automáticos para diseñar y documentar las técnicas tradicionales de programación estructurada. La meta última de CASE es proveer un lenguaje para describir el sistema completo, que sea suficiente para generar todos los programas necesarios.

Sistemas Operativos

Un sistema Operativo (SO) es en sí mismo un programa de computadora. Sin embargo, es un programa muy especial, quizá el más complejo e importante en una computadora. El SO despierta a la computadora y hace que reconozca a la CPU, la memoria, el tecla do, el sistema de vídeo y las unidades de disco. Además, proporciona la facilidad para que los usuarios se comuniquen con la computadora y sirve de plataforma a partir de la cual se corran programas de aplicación.

Cuando enciendes una computadora, lo primero que ésta hace es llevar a cabo un autodiagnóstico llamado autoprueba de encendido (Power On Self Test, POST). Durante la POST, la computadora identifica su memoria, sus discos, su teclado, su sistema de vídeo y cualquier otro dispositivo conectado a ella. Lo siguiente que la computadora hace es buscar un SO para arrancar (boot).

Una vez que la computadora ha puesto en marcha su SO, mantiene al menos parte de éste en su memoria en todo momento. Mientras la computadora esté encendida, el SO tiene 4 tareas principales:

  1. Proporcionar ya sea una interfaz de línea de comando o una interfaz gráfica al usuario, para que este último se pueda comunicar con la computadora. Interfaz de línea de comando: tú introduces palabras y símbolos desde el teclado de la computadora, ejemplo, el MS-DOS. Interfaz gráfica del Usuario (GUI), seleccionas las acciones mediante el uso de un Mouse para pulsar sobre figuras llamadas iconos o seleccionar opciones de los menús.
  2. Administrar los dispositivos de hardware en la computadora · Cuando corren los programas, necesitan utilizar la memoria, el monitor, las unidades de disco, los puertos de Entrada/Salida (impresoras, módems, etc). El SO sirve de intermediario entre los programas y el hardware.
  1. Administrar y mantener los sistemas de archivo de disco · Los SO agrupan la información dentro de compartimientos lógicos para almacenarlos en el disco. Estos grupos de información son llamados archivos. Los archivos pueden contener instrucciones de programas o información creada por el usuario. El SO mantiene una lista de los archivos en un disco, y nos proporciona las herramientas necesarias para organizar y manipular estos archivos.
  1. Apoyar a otros programas. Otra de las funciones importantes del SO es proporcionar servicios a otros programas. Estos servicios son similares a aquellos que el SO proporciona directamente a los usuarios. Por ejemplo, listar los archivos, grabarlos a disco, eliminar archivos, revisar espacio disponible, etc. Cuando los programadores escriben programas de computadora, incluyen en sus programas instrucciones que solicitan los servicios del SO. Estas instrucciones son conocidas como "llamadas del sistema"

El Kernel y el Shell.

Las funciones centrales de un SO son controladas por el núcleo (kernel) mientras que la interfaz del usuario es controlada por el entorno (shell). Por ejemplo, la parte más importante del DOS es un programa con el nombre "COMMAND.COM" Este programa ti ene dos partes. El kernel, que se mantiene en memoria en todo momento, contiene el código máquina de bajo nivel para manejar la administración de hardware para otros programas que necesitan estos servicios, y para la segunda parte del COMMAND.COM el shell, el cual es el interprete de comandos.

Las funciones de bajo nivel del SO y las funciones de interpretación de comandos están separadas, de tal forma que puedes mantener el kernel DOS corriendo, pero utilizar una interfaz de usuario diferente. Esto es exactamente lo que sucede cuando carga s Microsoft Windows, el cual toma el lugar del shell, reemplazando la interfaz de línea de comandos con una interfaz gráfica del usuario. Existen muchos shells diferentes en el mercado, ejemplo: NDOS (Norton DOS), XTG, PCTOOLS, o inclusive el mismo SO MS-DOS a partir de la versión 5.0 incluyó un Shell llamado DOS SHELL.

A.) Categorías de Sistemas Operativos

A.1) MULTITAREA: El término multitarea se refiere a la capacidad del SO para correr mas de un programa al mismo tiempo. Existen dos esquemas que los programas de sistemas operativos utilizan para desarrollar SO multitarea, el primero requiere de la cooperación entre el SO y los programas de aplicación.

Los programas son escritos de tal manera que periódicamente inspeccionan con el SO para ver si cualquier otro programa necesita a la CPU, si este es el caso, entonces dejan el control del CPU al siguiente programa, a este método se le llama multitarea cooperativa y es el método utilizado por el SO de las computadoras de Machintosh y DOS corriendo Windows de Microsoft. El segundo método es el llamada multitarea con asignación de prioridades. Con este esquema el SO mantiene una lista de procesos (programas) que están corriendo. Cuando se inicia cada proceso en la lista el SO le asigna una prioridad. En cualquier momento el SO puede intervenir y modificar la prioridad de un proceso organizando en forma efectiva la lista de prioridad, el SO también mantiene el control de la cantidad de tiempo que utiliza con cualquier proceso antes de ir al siguiente. Con multitarea de asignación de prioridades el SO puede sustituir en cualquier momento el proceso que esta corriendo y reasignar el tiempo a una tarea de mas prioridad. Unix OS-2 y Windows NT emplean este tipo de multitarea.

A.2) MULTIUSUARIO: Un SO multiusuario permite a mas de un solo usuario accesar una computadora. Claro que, para llevarse esto a cabo, el SO también debe ser capaz de efectuar multitareas. Unix es el Sistema Operativo Multiusuario más utilizado. Debido a que Unix fue originalmente diseñado para correr en una minicomputadora, era multiusuario y multitarea desde su concepción.

Actualmente se producen versiones de Unix para PC tales como The Santa Cruz Corporation Microport, Esix, IBM,y Sunsoft. Apple también produce una versión de Unix para la Machintosh llamada: A/UX.Unix

Unix proporciona tres maneras de permitir a múltiples personas utilizar la misma PC al mismo tiempo.

1.) Mediante Módems.

  1. Mediante conexión de terminales a través de puertos seriales

3.) Mediante Redes.

A.3) MULTIPROCESO: Las computadoras que tienen mas de un CPU son llamadas multiproceso. Un sistema operativo multiproceso coordina las operaciones de la computadoras multiprocesadoras. Ya que cada CPU en una computadora de multiproceso puede estar ejecutando una instrucción, el otro procesador queda liberado para procesar otras instrucciones simultáneamente.

Al usar una computadora con capacidades de multiproceso incrementamos su velocidad de respuesta y procesos. Casi todas las computadoras que tienen capacidad de multiproceso ofrecen una gran ventaja.

Los primeros Sistemas Operativos Multiproceso realizaban lo que se conoce como:

  • Multiproceso asimétrico: Una CPU principal retiene el control global de la computadora, así como el de los otros procesadores. Esto fue un primer paso hacia el multiproceso pero no fue la dirección ideal a seguir ya que la CPU principal podía convertirse en un cuello de botella.
  • Multiproceso simétrico: En un sistema multiproceso simétrico, no existe una CPU controladora única. La barrera a vencer al implementar el multiproceso simétrico es que los SO tienen que ser rediseñados o diseñados desde el principio para trabajar en u n ambiente multiproceso. Las extensiones de Unix, que soportan multiproceso asimétrico ya están disponibles y las extensiones simétricas se están haciendo disponibles. Windows NT de Microsoft soporta multiproceso simétrico.

B.) Lista de los Sistemas Operativos más comunes.

B.1) MS-DOS: Es el más común y popular de todos los Sistemas Operativos para PC. La razón de su continua popularidad se debe al aplastante volumen de software disponible y a la base instalada de computadoras con procesador Intel.

Cuando Intel liberó el 80286, D OS se hizo tan popular y firme en el mercado que DOS y las aplicaciones DOS representaron la mayoría del mercado de software para PC. En aquel tiempo, la compatibilidad IBM, fue una necesidad para que los productos tuvieran éxito, y la "compatibilidad IBM" significaba computadoras que corrieran DOS tan bien como las computadoras IBM lo hacían.

B.2) OS/2: Después de la introducción del procesador Intel 80286, IBM y Microsoft reconocieron la necesidad de tomar ventaja de las capacidades multitarea de esta CPU. Se unieron para desarrollar el OS/2, un moderno SO multitarea para los microprocesadores Intel. < BR>Sin embargo, la sociedad no duró mucho. Las diferencias en opiniones técnicas y la percepción de IBM al ver a Windows como una amenaza para el OS/2 causó una desavenencia entre las Compañías que al final las llevó a la disolución de la sociedad.

IBM continuó el desarrollo y promoción del OS/2.

Es un sistema operativo de multitarea para un solo usuario que requiere un microprocesador Intel 286 o mejor. Además de la multitarea, la gran ventaja de la plataforma OS/2 es que permite manejar directamente hasta 16 MB de la RAM ( en comparación con 1 MB en el caso del MS-DOS ). Por otra parte, el OS/2 es un entorno muy complejo que requiere hasta 4 MB de la RAM. Los usuarios del OS/2 interactuan con el sistema mediante una interfaz gráfica para usuario llamada Administrador de presentaciones. A pesar de que el OS/2 rompe la barrera de 1 MB del MS-DOS, le llevo tiempo volverse popular. Los vendedores de software se muestran renuentes a destinar recursos a la creación de un software con base en el OS/2 para un mercado dominado por el MS-DOS. Los usuarios se rehusan a cambiar al OS/2 debido a la falta de software que funcione en la plata forma del OS/2 y a que muchos tendrían que mejorar la configuración de su PC para que opere con el OS/2.

B.3) UNIX: Unix es un SO multiusuario y multitarea, que corre en diferentes computadoras, desde supercomputadoras, Mainframes, Minicomputadoras, computadoras personales y estaciones de trabajo.

Es un sistema operativo que fue creado a principios de los setentas por los científicos en los laboratorios Bell. Fue específicamente diseñado para proveer una manera de manejar científica y especializadamente las aplicaciones computacionales. Este SO se adapto a los sistemas de computo personales así que esta aceptación reciente lo convierte en un sistema popular.

. Unix es más antiguo que todos los demás SO de PC y de muchas maneras sirvió como modelo para éstos. Aun cuando es un SO extremadamente sólido y capaz, la línea de comandos Unix, no es apta para cardiacos, debido a que ofrece demasiados comandos.

B.4) SISTEMA OPERATIVO DE MACINTOSH: La Macintosh es una máquina netamente gráfica. De hecho, no existe una interfaz de línea de comando equivalente para ésta. Su estrecha integración de SO, GUI y área de trabajo la hacen la favorita de la gente que no quiere saber nada de interfaces de línea de comando.

Las capacidades gráficas de la Macintosh hicieron de esa máquina la primera precursora en los campos gráficos computarizados como la autoedición por computadora.

La familia de microcomputadoras de Apple Macintosh y su sistema operativo define otra plataforma importante. Las PC de Macintosh, que se basan en la familia de microprocesadores de Motorola, usan la arquitectura de Bus de 32 bits. La plataforma para Macintosh incluye muchas capacidades sofisticadas que comprende la multitarea, una GUI, la memoria virtual y la capacidad para emular la plataforma MS-DOS. Las PC de Macintosh también tiene la capacidad integrada de compartir archivos y comunicarse con o tras PC de Macintosh en una red.

B.5) WINDOWS NT DE MICROSOFT: Con Windows NT, Microsoft ha expresado su dedicación a escribir software no sólo para PC de escritorio sino también para poderosas estaciones de trabajo y servidores de red y bases de datos. Microsoft Windows NT no es necesariamente un sustituto de DOS ni una nueva versión de éste; es, en conjunto, un nuevo SO diseñado desde sus bases para las máquinas más modernas y capaces disponibles.

Windows NT de Microsoft ofrece características interconstruidas que ningún otro SO para PC ofrece, con excepción de Unix.

Además de las características tradicionales de estricta seguridad de sistema, red interconstruida, servicios de comunicación y correo electrónico interconstruidos, herramientas de administración y desarrollo de sistema y una GUI, Windows NT puede correr directamente aplicaciones de Windows de Microsoft y de Unix.

Windows NT, al igual que el OS/2 ver 2.0 y algunas versiones de Unix, es un SO de 32 bits, que puede hacer completo uso de los procesadores de estas características.

Además de ser multitarea, está diseñado para tomar ventaja del multiproceso simétrico.

Bases de Datos

La DBMS (Data Base Management System) es la herramienta que las computadoras utilizan para realizar el procesamiento y almacenamiento ordenado de los datos. Una base de datos es un recipiente para colecciones relacionadas de datos. Cualquier conjunto de datos organizados para su almacenamiento en la memoria de un ordenador o computadora, diseñado para facilitar su mantenimiento y acceso de una forma estándar. Los datos suelen aparecer en forma de texto, números o gráficos. Desde su aparición en la década de 1950, se han hecho imprescindibles para las sociedades industriales. Hay cuatro modelos principales de bases de datos: el modelo jerárquico, el modelo en red, el modelo relacional (el más extendido hoy en día; los datos se almacenan en tablas a los que se accede mediante consultas escritas en SQL) y el modelo de bases de datos deductivas. Otra línea de investigación en este campo son las bases de datos orientadas a objeto, o de objetos persistentes. Por ejemplo, un a agenda puede ser una base de datos donde se almacenan los nombres, direcciones y números telefónicos de amigos y contactos de negocios. La Base de Datos de una Compañía puede contener información acerca de los consumidores, vendedores, empleados, venta s en inventario.

Ejemplos de Bases de Datos: Access, FoxPro, Approach.

  1. Base de datos relacional, en informática, tipo de base de datos o sistema de administración de bases de datos, que almacena información en tablas (filas y columnas de datos) y realiza búsquedas utilizando los datos de columnas especificadas de una tabla para encontrar datos adicionales en otra tabla. En una base de datos relacional, las filas representan registros (conjuntos de datos acerca de elementos separados) y las columnas representan campos (atributos particulares de un registro). Al realizar las búsquedas, una base de datos relacional hace coincidir la información de un campo de una tabla con información en el campo correspondiente de otra tabla y con ello produce una tercera tabla que combina los datos solicitados de ambas tablas. Por ejemplo, si una tabla contiene los campos NÚM-EMPLEADO, APELLIDO, NOMBRE y ANTIGÜEDAD y otra tabla contiene los campos DEPARTAMENTO, NÚM-EMPLEADO y SALARIO, una base de datos relacional hace coincidir el campo NÚM-EMPLEADO de las dos tablas para encontrar información, como por ejemplo los nombres de los empleados que ganan un cierto salario o los departamentos de todos los empleados contratados a partir de un día determinado. En otras palabras, una base de datos relacional utiliza los valores coincidentes de dos tablas para relacionar información de ambas. Por lo general, los productos de bases de datos para microcomputadoras o microordenadores son bases de datos relacionales.
  2. Cliente/servidor: En vez de construir sistemas informáticos como elementos monolíticos, existe el acuerdo general de construirlos como sistemas cliente/servidor. El cliente (un usuario de PC) solicita un servicio (como imprimir) que un servidor le proporciona (un procesador conectado a la LAN). Este enfoque común de la estructura de los sistemas informáticos se traduce en una separación de las funciones que anteriormente forman un todo. Los detalles de la realización van desde los planteamientos sencillos hasta la posibilidad real de manejar todos los ordenadores de modo uniforme.

Redes

Una Red es una manera de conectar varias computadoras entre sí, compartiendo sus recursos e información y estando conscientes una de otra. Cuando las PC´s comenzaron a entrar en el área de los negocios, el conectar dos PC´s no traía ventajas, pero esto desapareció cuando se empezó a crear los sistemas operativos y el Software multiusuario.

  1. Topología de redes: La topología de una red , es el patrón de interconexión entre nodos y servidor, existe tanto la topología lógica (la forma en que es regulado el flujo de los datos) ,como la topología física ( la distribución física del cableado de la red).

Las topologías físicas de red más comunes son:

  • Estrella.
  • Bus lineal
  • Anillo.

A.1) Topología de estrella: Red de comunicaciones en que la que todas las terminales están conectadas a un núcleo central, si una de las computadoras no funciona, ésto no afecta a las demás, siempre y cuando el "servidor" no esté caído.

A.2) Topología Bus lineal: Todas las computadoras están conectadas a un cable central, llamado el "bus" o "backbone". Las redes de bus lineal son de

las más fáciles de instalar y son relativamente baratas.

A.3) Topología de anillo: Todas las computadoras o nodos están conectados el uno con el otro, formando una cadena o círculo cerrado.

  1. Protocolos de intercambio, en informática, como en las relaciones humanas, señal mediante la cual se reconoce que puede tener lugar la comunicación o la transferencia de información. Los protocolos de intercambio se pueden controlar tanto con hardware como con software. Un protocolo de intercambio de hardware, como el existente entre un ordenador o computadora con una impresora o con un módem, es un intercambio de señales, a través de cables específicos, en el que cada dispositivo señala su disposición para enviar o recibir datos. Un protocolo de software, normalmente el que se intercambia durante las comunicaciones del tipo módem a módem, consiste en una determinada información transmitida entre los dispositivos de envío y de recepción. Un protocolo de intercambio de software establece un acuerdo entre los dispositivos sobre los protocolos que ambos utilizarán al comunicarse. Un protocolo de intercambio de hardware es por tanto similar a dos personas que físicamente estrechan sus manos, mientras que un protocolo de intercambio de software es más parecido a dos grupos que deciden conversar en un lenguaje particular.
  2. En el siguiente diagrama se muestran TCP/IP, junto con los modelos DOD y OSI.

  3. TCP/IP: (Transmission Control Protocol/Internet Protocol) Protocolo de control de transmisiones/protocolo Internet. Conjunto de protocolos de comunicaciones desarrollado por la Defense Advanced Research Projects Agency (DARPA - Agencia de proyectos de investigación avanzada de defensa) para intercomunicar sistemas diferentes. Se ejecuta en un gran número de computadoras VAX y basadas en UNIX, y es utilizado por muchos fabricantes de hardware, desde los de computadoras personales hasta los de macrocomputadoras. Es empleado por numerosas corporaciones y por casi todas las universidades y organizaciones federales de los Estados Unidos. El File Transfer Protocol (FTP - Protocolo detransferencia de archivos) y el Simple Mail Transfer Protocol (SMTP -Protocolo simple de transferencia de correspondencia) brindan capacidades de transferencia de archivos y de correo electrónico. El protocolo TELNET proporciona una capacidad de emulación de terminal que permite al usuario interactuar con cualquier otro tipo de computadora de la red. El protocolo TCP controla la transferencia de los datos, y el IP brinda el mecanismo para encaminarla.
  4. IPX: (Internet Packet EXchange) intercambio de paquetes entre redes Un protocolo de comunicaciones del NetWare de Novell que se utiliza para encaminar mensajes de un nodo a otro. Los programas de aplicación que manipulan sus propias comunicaciones cliente/servidor o de igual a igual en una red Novell pueden acceder directamente al IPX o al protocolo SPX de NetWare. El IPX no garantiza la entrega del mensaje como lo hace el SPX.
  5. NETBEUI: NetBEUI (NETBIOS Extended User Interface) Interfaz de usuario extendido de NetBIOS La realización del protocolo de transporte NetBIOS en LAN Manager y LAN Server. Se comunica con las tarjetas de interfaz de red (NICs) vía NDIS (Network Driver Interface Specification). El término fue originalmente usado para definir el protocolo NetBIOS después que éste fue mejorado para soportar la Token Ring Network.
  6. Tipos de Redes: Según el lugar y el espacio que ocupen, las redes, se pueden clasificar en dos tipos:

1.Redes LAN (Local Area Network) o Redes de área local

2.Redes WAN (Wide Area Network) o Redes de área amplia

1.- LAN - Redes de Área Local:

Es una red que se expande en un área relativamente pequeña. Éstas se encuentran comúnmente dentro de una edificación o un conjunto de edificaciones que estén contiguos. Así mismo, una LAN puede estar conectada con otras LANs a cualquier distancia por medio de línea telefónica y ondas de radio.

Pueden ser desde 2 computadoras, hasta cientos de ellas. Todas se conectan entre sí por varios medios y topología, a la computadora(s) que se encarga de llevar el control de la red es llamada "servidor" y a las computadoras que dependen del servidor, se les llama "nodos" o "estaciones de trabajo".

Los nodos de una red pueden ser PC´s que cuentan con su propio CPU, disco duro y software y tienen la capacidad de conectarse a la red en un momento dado; o pueden ser PC´s sin CPU o disco duro y son llamadas "terminales tontas", las cuales tienen que estar conectadas a la red para su funcionamiento.

Las LANs son capaces de transmitir datos a velocidades muy rápidas, algunas inclusive más rápido que por línea telefónica; pero las distancias son limitadas.

2. - WAN - Redes de Área Amplia:

Es una red comúnmente compuesta por varias LANs interconectadas y se encuentran en una amplia área geográfica. Estas LANs que componen la WAN se encuentran interconectadas por medio de líneas de teléfono, fibra óptica o por enlaces aéreos como satélites.

Entre las WANs mas grandes se encuentran: la ARPANET, que fue creada por la Secretaría de Defensa de los Estados Unidos y se convirtió en lo que es actualmente la WAN mundial: INTERNET, a la cual se conectan actualmente miles de redes universitarias, de gobierno, corporativas y de investigación.

G.) Componentes de una red:

De lo que se compone una red en forma básica es lo siguiente:

1.-Servidor (server):

El servidor es la máquina principal de la red, la que se encarga de administrar los recursos de la red y el flujo de la información. Muchos de los servidores son "dedicados" , es decir, están realizando tareas específicas, por ejemplo , un servidor de impresión solo para imprimir; un servidor de comunicaciones, sólo para controlar el flujo de los datos...etc. Para que una máquina sea un servidor, es necesario que sea una computadora de alto rendimiento en cuanto a velocidad y procesamiento, y gran capacidad en disco duro u otros medios de almacenamiento.

2.- Estación de trabajo (Workstation):

Es una computadora que se encuentra conectada físicamente al servidor por medio de algún tipo de cable. Muchas de las veces esta computadora ejecuta su propio sistema operativo y ya dentro, se añade al ambiente de la red.

3. - Sistema Operativo de Red:

Es el sistema (Software) que se encarga de administrar y controlar en forma general la red. Para ésto tiene que ser un Sistema Operativo Multiusuario, como por ejemplo: Unix, Netware de Novell, Windows NT, etc.

4. - Recursos a compartir:

Al hablar de los recursos a compartir, estamos hablando de todos aquellos dispositivos de Hardware que tienen un alto costo y que son de alta tecnología. En éstos casos los más comunes son las impresoras, en sus diferentes tipos: Láser, de color, plotters, etc.

5. - Hardware de Red

Son aquellos dispositivos que se utilizan para interconectar a los componentes de la red, serían básicamente las tarjetas de red (NIC-> Network Interface Cards) y el cableado entre servidores y estaciones de trabajo, así como los cables para conectar los periféricos.

  1. Routers y bridges: Los servicios en la mayoría de las LAN son muy potentes. La mayoría de las organizaciones no desean encontrarse con núcleos aislados de utilidades informáticas. Por lo general prefieren difundir dichos servicios por una zona más amplia, de manera que los grupos puedan trabajar independientemente de su ubicación. Los routers y los bridges son equipos especiales que permiten conectar dos o más LAN. El bridge es el equipo más elemental y sólo permite conectar varias LAN de un mismo tipo. El router es un elemento más inteligente y posibilita la interconexión de diferentes tipos de redes de ordenadores. Las grandes empresas disponen de redes corporativas de datos basadas en una serie de redes LAN y routers. Desde el punto de vista del usuario, este enfoque proporciona una red físicamente heterogénea con aspecto de un recurso homogéneo.
  2. Brouters: Un disco dispositivo de comunicaciones que realiza funciones de puente (bridge) y de encaminador (router). Como puente, las funciones del "brouter" son al nivel de enlace de datos (estrato 2), independientemente de protocolos más altos, pero como encaminador, administra líneas múltiples y encamina los mensajes como corresponde.
  3. Gateway: pasarela, puerta de acceso Una computadora que conecta dos tipos diferentes de redes de comunicaciones. Realiza la conversión de protocolos de una red a otra. Por ejemplo, una puerta de acceso podría conectar una red LAN de computadoras. Nótese la diferencia con bridge, el cual conecta redes similares.

H.) Transmisión de datos en las redes:

La transmisión de datos en las redes, puede ser por dos medios:

1. - Terrestres: Son limitados y transmiten la señal por un conductor físico.

2. - Aéreos: Son "ilimitados" en cierta forma y transmiten y reciben las señales electromagnéticas por microondas o rayo láser.

1.- Terrestres:

  1. Cable par trenzado: Es el que comúnmente se utiliza para los cables de teléfonos, consta de 2 filamentos de cobre, cubiertos cada uno por plástico aislante y entrelazados el uno con el otro, existen dos tipos de cable par trenzado: el "blindado", que se utiliza en conexiones de redes y estaciones de trabajo y el "no blindado", que se utiliza en las líneas telefónicas y protege muy poco o casi nada de las interferencias.
  2. Cable coaxial: Este tipo de cable es muy popular en las redes, debido a su poca susceptibilidad de interferencia y por su gran ancho de banda, los datos son transmitidos por dentro del cable en un ambiente completamente cerrado, una pantalla sólida, bajo una cubierta exterior. Existen varios tipos de cables coaxiales, cada uno para un propósito diferente.
  3. Fibra óptica: Es un filamento de vidrio sumamente delgado diseñado para la transmisión de la luz. Las fibras ópticas poseen enormes capacidades de transmisión, del orden de miles de millones de bits por segundo. Además de que los impulsos luminosos no son afectados por interferencias causadas por la radiación aleatoria del ambiente. Actualmente la fibra óptica está remplazando en grandes cantidades a los cables comunes de cobre.

Herramientas de Software para la

Automatización de Oficinas

Definición de Software:

El software es el conjunto de instrucciones que las computadoras emplean para manipular datos. Sin el software, la computadora sería un conjunto de medios sin utilizar. Al cargar los programas en una computadora, la máquina actuará como si recibiera una educación instantánea; de pronto "sabe" cómo pensar y cómo operar.

El Software es un conjunto de programas, documentos, procedimientos, y rutinas asociados con la operación de un sistema de computo. Distinguiéndose de los componentes físicos llamados hardware. Comúnmente a los programas de computación se les llama software; el software asegura que el programa o sistema cumpla por completo con sus objetivos, opera con eficiencia, esta adecuadamente documentado, y suficientemente sencillo de operar.

Es simplemente el conjunto de instrucciones individuales que se le proporciona al microprocesador para que pueda procesar los datos y generar los resultados esperados.

El hardware por si solo no puede hacer nada, pues es necesario que exista el software, que es el conjunto de instrucciones que hacen funcionar al hardware.

Clasificaciones del Software

El software se clasifica en 4 diferentes Categorías: Sistemas Operativos, Lenguajes de Programación, Software de uso general, Software de Aplicación. (Algunos autores consideran la 3era y 4 ta clasificación como una sola).

Lenguajes de Programación

Mediante los programas se indica a la computadora que tarea debe realizar y cómo efectuarla, pero para ello es preciso introducir estas órdenes en un lenguaje que el sistema pueda entender. En principio, el ordenador sólo entiende las instrucciones en código máquina, es decir, el específico de la computadora. Sin embargo, a partir de éstos se elaboran los llamados lenguajes de alto y bajo nivel.

Software de Uso General

El software para uso general ofrece la estructura para un gran número de aplicaciones empresariales, científicas y personales. El software de hoja de cálculo, de diseño asistido por computadoras (CAD), de procesamiento de texto, de manejo de Bases de Datos, pertenece a esta categoría. La mayoría de software para uso general se vende como paquete; es decir, con software y documentación orientada al usuario (manuales de referencia, plantillas de teclado y demás).

Software de aplicaciones

El software de aplicación esta diseñado y escrito para realizar tareas específicas personales, empresariales o científicas como el procesamiento de nóminas, la administración de los recursos humanos o el control de inventarios. Todas éstas aplicaciones procesan datos (recepción de materiales) y generan información (registros de nómina) para el usuario.

  1. Procesadores de Palabras: Son utilizados para escribir cartas, memorándums y otros documentos, El usuario teclea una serie de letras o párrafos, y son mostradas en la pantalla. El usuario puede fácilmente adherir, borrar y cambiar el texto hasta que el documento quede exactamente como se desea. Algunas características avanzadas que encontramos en la actualidad en los procesadores de texto son: corrector de ortografía, diccionario de sinónimos, presentación preliminar del texto antes de imprimir. Ejemplos de procesadores de texto: Word, AmiPro, Wordperfect.
  2. Hojas de Cálculo: Una Hoja de Cálculo es una herramienta para calcular y evaluar números. También ofrece capacidades para crear informes y presentaciones para comunicar lo que revelan los análisis; el usuario teclea los datos y las fórmulas que serán usadas para obtener los resultados; después el programa aplica las fórmulas a los datos y así obtiene los resultados; una de sus características mas importantes es la habilidad de preguntar (Condicionales)"what IF" "QUE PASARÍA SI?", cambiando los datos y rápidamente re- calculando los nuevos resultados. La mayoría de las Hojas de Cálculo cuentan también con la posibilidad de graficar estos resultados en diferentes estilos de gráficas (Barras, Líneas, Pastel, etc.). Ejemplos de Hojas de Cálculo: Excel, Lotus 123, Quatro.
  3. Paquetes de Presentación: Software que permite al usuario diseñar presentaciones para desplegarlas a través de la misma computadora o imprimir diapositivas y acetatos. Contienen opciones avanzadas para integrar efectos en cada cambio de diapositiva. Ejemplos: Presentation, Power Point.
  4. Shareware y Freeware:
  1. Shareware: Software distribuido de forma gratuita para ser probado. Si el usuario decide quedarse con el programa y seguir usándolo, debe pagar al desarrollador. Normalmente, el shareware es desarrollado por compañías relativamente pequeñas o inclusive por programadores individuales, y generalmente es barato.
  2. Freeware: Programas gratuitos que los desarrolladores ponen a disposición de otros usuarios sin ningún costo. En algunos casos el desarrollador no reclama derechos de autor y el programa se convierte en software del dominio público. En otros casos, el software tiene derechos de autor pero el desarrollador ha permitido a otra gente usarlos y copiarlo gratuitamente.
  1. Aplicación Vertical: Las aplicaciones verticales son programas que realizan todas las fases de una función crítica del negocio. Estos programas, que muchas veces corren en una combinación de Mainframes, minis y computadoras personales, se denominan algunas veces aplicaciones de misión crítica. Generalmente son desarrollados a la medida por cada compañía que los tiene y son usados por muchos individuos dentro de una Organización.

Sistemas de Información

Una aplicación comercial de la computadora. Está constituido por las bases de datos, los programas de aplicación, los procedimientos manuales y automatizados, y abarca los sistemas informáticos que llevan a cabo el procesamiento.

Las bases de datos almacenan los asuntos de los negocios (archivos maestros) y sus actividades (archivos de transacciones). Los programas de aplicación proveen la entrada de datos, la actualización, consulta y procesamiento de informes. Los procedimientos manuales documentan la forma en que se obtienen los datos para su introducción, y la forma en que se distribuyen las salidas del sistema. Los procedimientos automáticos instruyen a la computadora acerca de cómo ejecutar las actividades de procesamiento por lotes, en las cuales la salida de un programa es automáticamente transferida a la entrada de otro programa.

El procesamiento diario es el procesamiento interactivo y en tiempo real de las transacciones. Al final del día o de algún otro período, los programas de procesamiento por lotes actualizan los archivos maestros que no fueron actualizados desde el período anterior. Se imprimen los informes de las actividades de ciclo. El procedimiento periódico de un sistema de información es la actualización de los archivos maestros, en la cual se agrega, borra y modifica la información sobre clientes, empleados, proveedores y productos.

Cada sistema abarca a los que lo suceden:

Equipo de Computación

  1. Historia de las Computadoras Personales: Las microcomputadoras o Computadoras Personales (PC´s) tuvieron su origen con la creación de los microprocesadores. Un microprocesador es "una computadora en un chip", o sea un circuito integrado independiente. Las PC´s son computadoras para uso personal y relativamente son baratas y actualmente se encuentran en las oficinas, escuelas y hogares.

El término PC se deriva de que para el año de 1981, IBM®, sacó a la venta su modelo "IBM PC", la cual se convirtió en un tipo de computadora ideal para uso "personal", de ahí que el término "PC" se estandarizó y los clones que sacaron posteriormente otras empresas fueron llamados "PC y compatibles", usando procesadores del mismo tipo que las IBM, pero a un costo menor y pudiendo ejecutar el mismo tipo de programas.

Existen otros tipos de microcomputadoras, como la Macintosh®, que no son compatibles con la IBM, pero que en muchos de los casos se les llaman también "PC´s", por ser de uso personal.

En la actualidad existen variados tipos en el diseño de PC´s:

  • Computadoras personales, con el gabinete tipo minitorre, separado del monitor.
  • Computadoras personales portátiles "Laptop" o "Notebook".
  • Computadoras personales más comunes, con el gabinete horizontal, separado del monitor.
  • Computadoras personales que están en una sola unidad compacta el monitor y el CPU.

Las computadoras "laptops" son aquellas computadoras que están diseñadas para poder ser transportadas de un lugar a otro. Se alimentan por medio de baterías recargables, pesan entre 2 y 5 kilos y la mayoría trae integrado una pantalla de LCD (Liquid Crys tal Display).

A.1) Supercomputadoras: Una supercomputadora es el tipo de computadora más potente y más rápido que existe en un momento dado. Estas máquinas están diseñadas para procesar enormes cantidades de información en poco tiempo y son dedicadas a una tarea específica.

Así mismas son las más caras, sus precios alcanzan los 30 MILLONES de dólares y más; y cuentan con un control de temperatura especial, ésto para disipar el calor que algunos componentes alcanzan a tener.

Unos ejemplos de tareas a las que son expuestas las supercomputadoras son los siguientes:

  • Búsqueda y estudio de la energía y armas nucleares.
  • Búsqueda de yacimientos petrolíferos con grandes bases de datos sísmicos.
  • El estudio y predicción de tornados.
  • El estudio y predicción del clima de cualquier parte del mundo.
  • La elaboración de maquetas y proyectos de la creación de aviones, simuladores de vuelo.
  • Etc.

Debido a su precio, son muy pocas las supercomputadoras que se construyen en un año.

A.2) Minicomputadoras: En 1960 surgió la minicomputadora, una versión más pequeña de la Macrocomputadora. Al ser orientada a tareas específicas, no necesitaba de todos los periféricos que necesita un Mainframe, y ésto ayudo a reducir el precio y costos de mantenimiento.

Las minicomputadoras, en tamaño y poder de procesamiento, se encuentran entre los mainframes y las estaciones de trabajo.

En general, una minicomputadora, es un sistema multiproceso (varios procesos en paralelo) capaz de soportar de 10 hasta 200 usuarios simultáneamente. Actualmente se usan para almacenar grandes bases de datos, automatización industrial y aplicaciones multiusuario.

A.3) Estaciones de trabajo o Workstations: Las estaciones de trabajo se encuentran entre las minicomputadoras y las macrocomputadoras (por el procesamiento). Las estaciones de trabajo son un tipo de computadoras que se utilizan para aplicaciones que requieran de poder de procesamiento moderado y relativamente capacidades de gráficos de alta calidad. Son usadas para:

  • Aplicaciones de ingeniería
  • CAD (Diseño asistido por computadora)
  • CAM (manufactura asistida por computadora)
  • Publicidad
  • Creación de Software

En redes, la palabra "workstation" o "estación de trabajo" se utiliza para referirse a cualquier computadora que está conectada a una red de área local.

  1. B.1) Macrocomputadoras o Mainframes:

    Las macrocomputadoras son también conocidas como Mainframes. Los mainframes son grandes, rápidos y caros sistemas que son capaces de controlar cientos de usuarios simultáneamente, así como cientos de dispositivos de entrada y salida.

    Los mainframes tienen un costo que va desde 350,000 dólares hasta varios millones de dólares. De alguna forma los mainframes son más poderosos que las supercomputadoras porque soportan más programas simultáneamente. PERO las supercomputadoras pueden ejecutar un sólo programa más rápido que un mainframe.

    En el pasado, los Mainframes ocupaban cuartos completos o hasta pisos enteros de algún edificio, hoy en día, un Mainframe es parecido a una hilera de archiveros en algún cuarto con piso falso, ésto para ocultar los cientos de cables d e los periféricos, y su temperatura tiene que estar controlada.

    B.2) Servidor de archivos:

    Dispositivo de almacenamiento de archivos en una red de área local al que todos los usuarios de la red pueden acceder. A diferencia de un servidor de disco, que aparece ante el usuario como una unidad de disco remota, un servidor de archivos es un dispositivo más complejo que no sólo almacena archivos sino que también los administra y los mantiene en orden a medida que los usuarios de la red los solicitan y los modifican. Para gestionar las tareas de manejo de varias solicitudes (a veces simultáneas), un servidor de archivos cuenta con un procesador y software de control, así como una unidad de disco para el almacenamiento. En redes de área local, un servidor de archivos suele ser una computadora con un disco duro grande que está dedicado exclusivamente a las funciones de administración de archivos compartidos.

  2. Historia de los Servidores y Mainframes:

    Es dispositivo formado por un monitor y un teclado. Un terminal no hace prácticamente ningún procesamiento por sí solo, sino que está conectado a una computadora con un enlace de comunicaciones a través de un cable. La entrada a través del teclado se envía desde el terminal a la computadora, y la salida de vídeo se envía desde la computadora al terminal. Los terminales se usan sobre todo en sistemas multiusuario y no se utilizan hoy día en computadoras personales de un solo usuario. En electrónica, un punto que puede ser conectado físicamente a algún otro, normalmente a través de un cable, para formar una conexión eléctrica.

  3. Terminales Tontas: en informática, terminal sin capacidad de proceso. Por lo general, los terminales tontos sólo son capaces de presentar caracteres alfanuméricos y de responder a un protocolo de comunicaciones sencillo, como el VT-52, VT-100 o ANSI.

    RISC: (Reduced Instruction Set Computer) computadora de conjunto de instrucciones reducido

    Arquitectura de computadoras que ejecuta un número limitado de instrucciones. El concepto es que la mayoría de los programas usan generalmente unas pocas instrucciones, y si se acelera la ejecución de esas instrucciones básicas, se mejora el rendimiento.

    La arquitectura RISC elimina una capa de carga operativa llamada "microcódigo", que se emplea normalmente para facilitar la agregación de nuevas y complejas instrucciones a una computadora. Las computadoras RISC poseen un pequeño número de instrucciones montadas en los circuitos de nivel inferior, que trabajan a máxima velocidad.

    Aunque las máquinas RISC son sólo de un 15% a un 50% más veloces que sus contrapartidas CISC

    CISC: (Complex Instruction Set Computer) Computadora de conjunto de instrucciones complejo Computadoras que poseen un conjunto de instrucciones muy extenso. Las máquinas CISC tienen de doscientas a trescientas instrucciones, que están grabadas en microcódigo.

  4. Tecnologías RISC y CISC:

    MMX: (Multimedia Extensions) son 57 instrucciones MMX que se usan para acelerar los procesos de programas multimedia tales como vídeo y sonido, ocho registros MMX de 64 bits

    Pentium Pro: incorpora en el mismo encapsulado del procesador un total de 256 ó 512 KB de memoria caché de segundo nivel(caché L2). La comunicación entre dicha memoria caché y el núcleo del procesador se realiza a la velocidad a la que funcione el Pentium Pro.

  5. Tecnologías MMX y Pentium Pro:
  6. Microprocesadores:

F.1) Historia de los Microprocesadores:

Muchas grandes invenciones simplemente son el resultado de que alguien se ha encontrado con un problema técnico y propone una solución diferente y audaz. Y típicamente, ese problema tiene que ver con dinero.

Ese era el caso ciertamente a finales de 1969 para una joven y agresiva compañía japonesa llamada

Busicom. Busicom había tenido realmente varios nombres en su breve carrera, incluso ETI y Máquinas Calculadoras de Japón.

Esa era una característica de naturaleza imprevisible de esa empresa. Y Busicom no estaba solo. Era uno de los centenares de compañías que estaban decididos a entrar en un negocio que estaba surgiendo como un gran mercado de consumidores, hecho posible por los circuitos integrados: las calculadoras. Se había comprobado que existía un marcado interés por las nuevas calculadoras versiones digitales que las antiguas calculadoras electromecánicas, especialmente cuando estas versiones digitales podían realizar cálculos complejos como raíces cuadradas.

Busicom no era ni un jugador mayor, ni uno menor en este negocio. Justo uno de las multitudes. Pero era un jugador que tenía unas buenas ganas para tomar riesgos tecnológicos más que sus competidores, y contaba con un visionario tecnológico en su laboratorio llamado Masatoshi Shima.

A través de 1969, se reconoció generalmente en la industria de la electrónica que era teóricamente posible usar el nuevo semiconductor metal-on-silicon (MOS) para poner toda la función de una calculadora en una sola pastilla. ¿Pero quién estaba deseoso de hacerlo?.

Busicom escogio a Intel Corporation. Una compañía diminuta de Santa Clara, California para fabricarlo.

Luego de las correcciones realizadas en el diseño y construcción por parte de Federico Faggin de Intel del primer microprocesador, en Febrero de 1971 el 4004 estaba listo para la producción.

Así a mediados de Marzo de 1971, Intel envió el conjunto de chips de la familia 4000 a BUSICOM. Esta familia consistiría en:

  • Una ROM de 2048 bits como el 4001
  • Una memoria RAM de 320 bits como el 4002
  • Un Shift regiter de 10 bits como el 4003
  • El procesador central de 4 bits como el 4004

La revolución del Microprocesador había empezado.

El 8008 siguió al 4004 y fue formalmente introducido en Abril de 1972. Este proyecto empezó con el nombre de 1201 y se trataba de una arquitectura de 8 bits. Y fue así que el 8008 se convirtió en el primer microprocesador de 8 bits.

Para el siguiente microprocesador de 8 bits el 8080 sus primeras pruebas tuvieron lugar en Diciembre de 1973. Después que Faggin y su equipo corrigieron algunos errores, el producto fue formalmente introducido al público en Marzo de 1974.

Como Faggin diría: "El 8080 realmente creó el mercado del microprocesador. El 4004 y el 8008 lo sugirieron, pero el 8080 lo hizo realidad."

Con la introducción del 8080 puede decirse de verdad que la humanidad cambió. La naturaleza extraordinaria del 8080 fue reconocida casi instantáneamente por miles de ingenieros en todo el mundo quienes habían estado esperando su llegada. Dentro de un año, había sido introducido en cientos de productos diferentes. Nada volvería a ser igual otra vez.

Los que se llevan el crédito de este invento(uno de las más grandes invenciones de este siglo) son: Ted Hoff como el inventor, Federico Faggin como el creador, Mazor y Shima como contribuyentes críticos.

EL PENTIUM II

Es el último Microprocesador de Intel y alcanza velocidades de hasta 400Mhz. Ya llegaron al PERU pero todavía no se ve la última versión, sin embargo ya hay muchas marcas de computadoras en Estados Unidos que los usan. La forma de este procesador y su forma de instalación es diferente, en vez usa un cartucho(de un sólo borde) el cual se coloca en la placa madre dentro de un conector tipo slot. No usa el socket7 como las anteriores PENTIUM. Más información sobre el PENTIUM II.

EL K6 DE AMD

Este procesador es el último de AMD y alcanza velocidades de hasta 266Mhz y se está trabajando en una versión de 300Mhz. Dicen que es tan rápido que el PENTIUM II. Ya llegó al PERU, pero sólo los de 200Mhz y 233Mhz. Usa el mismo socket7 de las placas madres comunes y esto hace fácil instalarlo y usarlo en las placas madres más antiguas. Más información sobre AMD K6.

EL 6x86 DE

Es el último de CYRIX y es la respuesta de este fabricante a la competencia de Intel y Amd. Este procesador puede usar una velocidad de bus de 75Mhz lo que lo hace distinto a los demás. Es posible que ya se comercialize en el PERU. Más información sobre EL 6x86 MX.

EL POWERPC DE

Este procesador de arquitectura RISC es usado en las computadoras Mac de APPLE y se dice que alcanza hasta 300 Mhz de velocidad.

F.2) Listado de los Microprocesadores:

VERSIONES DE INTEL

MICROPROCESADORES ANTERIORES AL PENTIUM

  • MICROPROCESADOR 8088
  • MICROPROCESADOR 8086
  • MICROPROCESADOR 80286
  • MICROPROCESADOR 80386
  • MICROPROCESADOR 80486
  • MODELO DX1
  • MODELO DX2
  • MODELO DX4

PENTIUM SIMPLE(COMUNES)

  • PENTIUM 60 MHZ
  • PENTIUM 66 MHZ
  • PENTIUM 75 MHZ
  • PENTIUM 100 MHZ
  • PENTIUM 133 MHZ
  • PENTIUM 166 MHZ
  • PENTIUM 200 MHZ

PENTIUM MMX (FAMILIA P55C)

  • PENTIUM MMX 166 MHZ
  • PENTIUM MMX 200 MHZ
  • PENTIUM MMX 233 MHZ

PENTIUM II Y PENTIUM PRO (FAMILIA P6)

PENTIUMS PRO

  • PENTIUM PRO DE 2OO MHZ Y CACHE L2(NIVEL2) DE 256KB, 512KB Y 1MB
  • PENTIUM PRO DE 180MHZ Y 256KB DE CACHE L2
  • PENTIUM PRO DE 166MHZ Y 512KB DE CACHE L2
  • PENTIUM PRO DE 150MHZ Y 256KB DE CACHE L2

PENTIUMS II

  • PENTIUM II DE 233 MHZ
  • PENTIUM II CELEROM DE 266 MHZ Y SIN CACHE L2
  • PENTIUM II DE 266 MHZ Y 512KB DE CACHE L2
  • PENTIUM II DE 300 MHZ Y 512KB DE CACHE L2
  • PENTIUM II DE 333 MHZ Y 512KB DE CACHE L2
  • PENTIUM II DE 350 MHZ Y 512KB DE CACHE L2
  • PENTIUM II DE 400 MHZ Y 512KB DE CACHE L2
  • MUY PRONTO EL PENTIUM II DE 450 MHZ Y 512KB DE CACHE L2

VERSIONES DE AMD

AMD K5

  • AMD K5 DE 100 MHZ
  • AMD K5 DE 133 MHZ
  • AMD K5 DE 166 MHZ

AMD K6

  • AMD K6 DE 166 MHZ
  • AMD K6 DE 200 MHZ
  • AMD K6 DE 233 MHZ
  • AMD K6 DE 266 MHZ
  • AMD K6 DE 300 MHZ

VERSIONES DE CYRIX

CYRIX M1

CYRIX 6x86 MMX(LLAMADO ANTERIORMENTE M2)

  • 6x86PR166 MMX
  • 6x86PR200 MMX
  • 6x86PR233 MMX
  • 6x86PR266 MMX
  • 6x86PR300 MMX
  1. G-1 RAM: (Random access memory), memoria de acceso aleatorio, la utiliza el usuario mediante sus programas, y es volátil. La memoria del equipo permite almacenar datos de entrada, instrucciones de los programas que se están ejecutando en ese momento, los dato s resultados del procesamiento y los datos que se preparan para la salida. Los datos proporcionados a la computadora permanecen en el almacenamiento primario hasta que se utilizan en el procesamiento. Durante el procesamiento, el almacenamiento primario almacena los datos intermedios y finales de todas las operaciones aritméticas y lógicas. El almacenamiento primario debe guardar también las instrucciones de los programas usados en el procesamiento. La memoria está subdividida en celdas individuales cada una de las cuales tiene una capacidad similar para almacenar datos.

    G-2 DRAM: (Dynamic RAM) El tipo más común de memoria para computadoras. La arquitectura RAM dinámica (DRAM) emplea habitualmente un transistor y un condensador para representar un bit. Los condensadores deber ser energizados cientos de veces por segundo para mantener las cargas correctas. Nótese la diferencia con static RAM, la cual es habitualmente más rápida y no requiere circuitería de refresco. A diferencia de los chips de firmware (ROM, PROM, etc.), ambas variedades de RAM pierden su contenido cuando se corta el suministro de energía.

    G-3 ROM: (read only memory), memoria de sólo lectura, en la cual se almacena ciertos programas e información que necesita la computadora las cuales están grabadas permanentemente y no pueden ser modificadas por el programador. Las instrucciones básicas para arrancar una computadora están grabadas aquí y en algunas notebooks han grabado hojas de calculo, basic, etc.

    G-4 Cache: Una sección reservada de la memoria que se utiliza para mejorar el rendimiento. Un cache de disco es una porción reservada de la memoria normal, o memorias adicionales en la tarjeta controladora del disco. Cuando el disco es leído, se copia un gran bloque de datos en el cache. Si los requerimientos de datos subsiguientes pueden ser satisfecho por el cache, no se necesita el empleo de un acceso a disco que es más lento. Si el cache es utilizado para escritura, los datos se alinean en memoria y se graban en el disco en bloques más grandes.

    Los caches de memoria son bancos de memoria de alta velocidad entre la memoria normal y la CPU. Los bloques de instrucciones y datos se copian en el cache, y la ejecución de las instrucciones y la actualización de los datos es llevada a cabo en la memoria de alta velocidad.

    G-5 Discos Duros: una o varias láminas rígidas de forma circular, recubiertas de un material que posibilita la grabación magnética de datos. Un disco duro normal gira a una velocidad de 3.600 revoluciones por minuto y las cabezas de lectura y escritura se mueven en la superficie del disco sobre una burbuja de aire de una profundidad de 10 a 25 millonésimas de pulgada. El disco duro va sellado para evitar la interferencia de partículas en la mínima distancia que existe entre las cabezas y el disco. Los discos duros proporcionan un acceso más rápido a los datos que los discos flexibles y pueden almacenar mucha más información. Al ser las láminas rígidas, pueden superponerse unas sobre otras, de modo que una unidad de disco duro puede tener acceso a más de una de ellas. La mayoría de los discos duros tienen de dos a ocho láminas.

    Disco duro

    El disco duro de una computadora se utiliza para guardar datos en soporte magnético.

  2. RAM, DRAM, ROM, Cache y Discos Duros:

    Monocromáticos, despliegan sólo 2 colores, uno para el fondo y otro para la superficie. Los colores pueden ser blanco y negro, verde y negro ó ámbar y negro. Escala de Grises, un monitor a escala de grises es un tipo especial de monitor monocromático capaz de desplegar diferentes tonos de grises.

    Color: Los monitores de color pueden desplegar de 4 hasta 1 millón de colores diferentes. Conforme ha avanzado la tecnología han surgido los diferentes modelos:

    TTL, Monocromático, muy pobre resolución, los primeros no tenían capacidad de graficar.

    CGA, Color Graphics Adapter, desplegaba 4 colores, con muy pobre resolución a comparación de los monitores actuales, hoy en día fuera del mercado.

    EGA, Enhanced Graphics Adapter, manejaba una mejor resolución que el CGA, de 640x350 pixeles. (los pixeles son los puntos de luz con los que se forman los caracteres y gráficas en el monitor, mientras más pixeles mejor resolución). Desplegaban 64 colores.

    VGA, Vídeo Graphics Array, los hay monocromáticos y de color. Adecuados para ambiente gráfico por su alta resolución (640x480 pixeles). Pueden llegar hasta 256,000 colores ó 64 tonalidades de gris dependiendo de la memoria destinada al dispositivo.

    SPVGA, Super Vídeo Graphics Array, maneja una resolución más alta (1,024x768), el número de colores desplegables varía dependiendo de la memoria, pero puede ser mayor que 1 millón de colores.

    UVGA, Ultra Vídeo Graphics Array, Resolución de 1280 x 1024. La calidad de las imágenes que un monitor puede desplegar se define más por las capacidades de la tarjeta controladora de vídeo, que por las del monitor mismo. El controlador de vídeo es un dispositivo intermediario entre el CPU y el monitor. El controlador contiene la memoria y otros circuitos electrónicos necesarios para enviar la información al monitor para que la despliegue en la pantalla.

  3. Monitores: El monitor ó pantalla de vídeo, es el dispositivo de salida más común. Hay algunos que forman parte del cuerpo de la computadora y otros están separados de la misma. Existen muchas formas de clasificar los monitores, la básica es en término de sus capacidades de color, pueden ser:

    IMPRESORAS DE IMPACTO:

    Una impresora que utiliza un mecanismo de impresión que hace impactar la imagen del carácter en una cinta y sobre el papel. Las impresoras de línea, de matriz de punto y de rueda de margarita son ejemplos de impresoras de impacto.

    Impresora de Matriz de puntos, es la impresora más común. Tiene una cabeza de impresión movible con varias puntillas o agujas que al golpear la cinta entintada forman caracteres por medio de puntos en el papel, Mientras mas agujas tenga la cabeza de impresión mejor será la calidad del resultado. Las hay de 10 y 15", las velocidades varían desde: 280 cps hasta 1,066 cps

    Impresoras de margarita; tiene la misma calidad de una máquina de escribir mediante un disco de impresión que contiene todos los caracteres, están de salida del mercado por lentas.

    Impresoras de Línea: Son impresoras de alta velocidad que imprimen una línea por vez. Generalmente se conectan a grandes computadoras y a Minicomputadoras. Las impresoras de línea imprimen una línea a la vez desde aproximadamente 100 a 5000 LPM.

    IMPRESORAS SIN IMPACTO:

    Hacen la impresión por diferentes métodos, pero no utilizan el impacto. Son menos ruidosas y con una calidad de impresión notoriamente mejor a las impresoras de impacto. Los métodos que utilizan son los siguientes:

    Térmicas: Imprimen de forma similar a la máquina de matriz, pero los caracteres son formados marcando puntos por quemadura de un papel especial. Vel. 80 cps. Los faxes trabajan con este método.

    Impresora de inyección de tinta: Emite pequeños chorros de tinta desde cartuchos desechables hacia el papel, las hay de color. Vel. de 4 a 7 ppm.

    Electrofotográficas o Láser: Crean letras y gráficas mediante un proceso de fotocopiado. Un rayo láser traza los caracteres en un tambor fotosensible, después fija el toner al papel utilizando calor. Muy alta calidad de resolución, velocidades de 4 a 18 ppm.

  4. Impresoras: Dispositivo que convierte la salida de la computadora en imágenes impresas. Las impresoras se pueden dividir en 2 tipos: las de impacto y las de no impacto.
  5. Scanners: Convierten texto, fotografías a color ó en Blanco y Negro a una forma que puede leer una computadora. Después esta imagen puede ser modificada, impresa y almacenada. Son capaces de digitalizar una página de gráficas en unos segundos y proporcionan una forma rápida, fácil y eficiente de ingresar información impresa en una computadora; también se puede ingresar información si se cuenta con un Software especial llamado OCR (Reconocimiento óptico de caracteres).

Bibliografía

Jorge Romeo Gaitán Rivera

Bachiller Industrial Perito en Electrónica Digital y Microprocesadores

1er. Semestre de Ingeniería Electrónica

jrgaitan[arroba]geocities.com



Comentarios


Trabajos relacionados

Ver mas trabajos de General

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda