Monografías Plus      Agregar a favoritos      Ayuda      Português      Ingles     

Descomposición LU y matriz inversa

Enviado por Pablo Turmero





Monografias.com
AGENDA Introducción Objetivos Desarrollo de los temas Ejercicios resueltos en MATLAB Conclusiones

Monografias.com
INTRODUCCIÓN Se tratará una clase de métodos de eliminación llamada técnica de descomposición de matrices LU. Además la descomposición LU proporciona un medio eficiente para calcular la matriz inversa. La matriz inversa ofrece un medio para evaluar la condición de un sistema.

Monografias.com
OBJETIVOS Estudiar el método de descomposición LU y la inversión de matrices con la finalidad de facilitar la solución de sistemas de ecuaciones lineales. Realizar ejercicios programados empleando MATLAB. Ver las ventajas de utilizar descomposición LU en vez de resolver sistemas usando Gauss-Jordan.

Monografias.com
DESCOMPOSICIÓN LU Es un método directo para resolver sistemas de ecuaciones de la forma [A] {X}= {B} El principal recurso es que el paso de la eliminación, que toma mucho tiempo, se puede formular de tal manera que solo involucre operaciones con la matriz de coeficientes [A]. Muestra cómo el método de eliminación de Gauss se implementa como una descomposición LU. Una ventaja de este método es que proporciona un medio eficiente para evaluar diversos vectores del lado derecho.

Monografias.com
Pasos en la descomposición LU

Monografias.com
PROCEDIMIENTO Paso de descomposición LU: [A] se factoriza o “descompone” en las matrices triangular inferior [L] y superior [U]. Paso de sustitución: [L] y [U] determinan una solución {X} para un lado derecho {B}. De acuerdo a la Ec. [L]{D}={B} genera un vector {D} mediante sustitución hacia delante. El resultado se sustituye en la Ec. [U]{X}={D} mediante sustitución hacia atrás para X.

Monografias.com
PROCEDIMIENTO(continuación)

Monografias.com
PROCEDIMIENTO(continuación)

Monografias.com
PROCEDIMIENTO (continuación)

Monografias.com
Ejemplo (Descomposición LU)

Monografias.com
EJEMPLO (continuación)

Monografias.com
EJEMPLO (continuación)

Monografias.com
DESCOMPOSICIÓN CROUT Utiliza una matriz [U] con números 1 sobre la diagonal. Genera [U] y [L] barriendo las columnas y los renglones de la matriz.

Monografias.com
FÓRMULAS PARA DESCOMPOSICIÓN CROUT

Monografias.com
MATRIZ INVERSA Si una matriz [A] es cuadrada, existe otra matriz [A]-1, conocida como la inversa de [A], en donde: [A][A]-1=[A]-1[A]=[I] En esta sección se estudiará como calcular la inversa por medio del algoritmo de descomposición LU.

Monografias.com
PROCEDIMIENTO Se efectúa sustitución hacia delante para calcular la primera columna de la matriz inversa, utilizando un vector unitario (el número 1 en el primer reglón) como el vector del lado derecho.

Monografias.com
PROCEDIMIENTO (continuación) De lo anterior se obtiene {D}T, este vector se utilizará como el lado derecho en la siguiente ecuación: Donde se obtiene por sustitución hacia atrás {X}T, estos valores serán la primera columna de la matriz inversa.

Monografias.com
PROCEDIMIENTO (continuación) Para calcular la segunda columna se formula la siguiente ecuación: De esta forma se obtiene {D}, y los resultados se usan para calcular {X}T, que es la segunda columna de la inversa.

Monografias.com
PROCEDIMIENTO (continuación) Para el cálculo de la tercera columna se realiza de igual manera que las anteriores empleando {B}T=[O,O,1], para obtener {X}T. Finalmente la validez del resultado se comprueba al verificar que [A][A]-1=[I]

Monografias.com
CONCLUSIONES El uso de la descomposición de matrices LU es de gran utilidad ya que permite alivianar la cantidad de operaciones para resolver un sistema. Proporciona un medio eficiente para calcular matrices inversas, y éstas poseen un importante número de aplicaciones en la práctica de la ingeniería, sin dejar de lado que dichas inversas proporcionan un medio para evaluar la condición de un sistema. El uso de descomposición LU, debido que es un proceso más abreviado, provee una ganancia de tiempo para un programador a la hora de elaborar un programa.

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 
 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda