Monografías Plus      Agregar a favoritos      Ayuda      Português      Ingles     

Interpolación y aproximación polinomial

Enviado por Pablo Turmero





Monografias.com
Definición Un polinomio de grado n es una expresión de la forma: P(x) = anxn + an-1xn-1 + ... +a1x + a0 Donde an 0 Teorema (teorema de aproximación de Weierstrass) Suponga que f está definida y es continua en [a, b]. Para e > 0 existe un polinomio P definido en [a, b], con la propiedad de que |f(x) – P(x)| < e, para toda x en [a, b]

Monografias.com
Desarrollo en series de Taylor Sea f(x) = ex Desarrollando en serie de Taylor alrededor de x = 0 P0(x) = 1 P1(x) = 1 + x P2(x) = 1 + x + x2/2 P3(x) = 1 + x + x2/2 + x3/6 P4(x) = 1 + x + x2/2 + x3/6 + x4/24 P5(x) = 1 + x + x2/2 + x3/6 + x4/24 + x5/120

Monografias.com
Valores de ex Valores de las aproximaciones de ex con polinomios de Taylor

Monografias.com
Expansión de Taylor para 1/x

Monografias.com
Interpolación polinomial de Newton Revisaremos solo algunos casos: lineal, de segundo grado y de tercer grado.

Monografias.com
Interpolación lineal x0 x x1 f(x0) f1(x) f(x1) f(x) Utilizando triángulos semejantes Reordenando

Monografias.com
Ejemplo Estimar ln 2 mediante interpolación lineal si ln1 = 0 y ln 6 = 1.791759 y ln 4 = 1.386294 Valor real ln 2 = 0.6931472 Error relativo porcentual = 33.3% f(x) = ln x f1(x) Estimaciones lineales Valor verdadero

Monografias.com
Interpolación cuadrática Polinomio cuadrático f2(x) = b0 + b1(x – x0) + b2(x – x0)(x – x1) (1) simplificado f2(x) = b0 + b1x – b1x0 + b2x2 + b2x0 x1 – b2xx0 – b2xx1 Podemos escribirlo como f2(x) = a0 + a1x + a2x2 Donde a0 = b0 – b1x0 + b2x0 x1, a1 = b1 – b2x0 – b2x1, a2=b2 Podemos evaluar b0, b1 y b2 sustituyendo x0, x1 y x2 en la ecuación (1), se obtiene b0 = f(x0)

Monografias.com
ejemplo 2 Calculemos ln 2 con ln 4 y ln 6, los punto que se conocen son: x0 = 1 f(x0) = 0 x1 = 4 f(x0) = 1.386294 x0 = 6 f(x0) = 1.791759 Aplicando las ecs. anteriores b0 = 0 b1 = (1.386294 – 0)/(4 – 1) = 0.4620981 b2 = ((1.791759 – 1.386294) /(6 – 4) – 0.4620981)/(6 – 1) = – 0.0518731 El polinomio es f2(x) = 0.4620981(x – 1) – 0.0518731(x – 1)(x – 4) f2(2) = 0.5658444 f(x) = ln x Estimación cuadrática Valor verdadero Estimación lineal Valor real ln 2 = 0.6931472 Error relativo porcentual = 18.4%

Monografias.com
Forma general Polinomio general fn(x) = b0 + b1(x – x0) +...+ bn(x – x0)(x – x1)... (x – xn–1) Los coeficientes se calculan con b0 = f(x0) b1 = f [x1, x0] b2 = f [x2, x1, x0] bn = f [,xn, xn–1, ..., x1, x0] Donde los paréntesis cuadrados se denominan diferencias divididas finitas. La n-ésima diferencia dividida finita es: Se conoce como polinomio de interpolación de Newton en diferencias divididas.

Monografias.com
ejemplo 3 Calculemos ln 2 con ln 0, ln 4, ln 5 y ln 6, los punto que se conocen son: x0 = 1 f(x0) = 0 x1 = 4 f(x1) = 1.386294 x2 = 6 f(x3) = 1.791759 x3 = 5 f(x2) = 1.609438 primeras diferencias f [x1, x0] = (1.386294 – 0)/(4 – 1) = 0.4602981 f [x2, x1] = (1.791759 – 1.386294)/(6 – 4) = 0.2027326 f [x3, x2] = (1.609438 – 1.791759)/(5 – 6) = 0.1823216 Segundas diferencias f [x2, x1, x0] = (0.2027326 – 0.4602981)/(6 – 1) = –0.05187311 f [x3, x2, x1] = (0.1823216 – 0.2027326)/(5 – 4) = –0.02041100 tercera diferencia f [x3, x2, x1 , x0] = (–0.02041100–(–0.05187311))/(5 – 1) = 0.007865529 Polinomio f3(x) = 0 + 0.4602981(x – 1) –0.05187311(x – 1) (x – 4) + 0.007865529(x – 1) (x – 4) (x – 6) Valor calculado con el polinomio f3(2) = 0.6287686

Monografias.com
Ejemplo 3 (cont.) f(x) = ln x Valor verdadero Estimación cúbica f3(x)

Monografias.com
Estimación del error Rn = f [,xn+1, xn, ..., x1, x0](x – x0) (x – x1)... (x – xn) Para estimar el error requerimos de un datos más (xn+1). La siguiente fórmula puede utilizarse para estimar el error.

Monografias.com
Interpolación y polinomio de Lagrange Se trata de encontrar un polinomio de grado n que pase por los puntos (x0, f(x0)), (x1, f(x1)), ... (xn, f(xn)), se construye un cociente Ln,k(xk) con la propiedad de que Ln,k(xi) = 0 cuando i ? k y Ln,k(xk) = 1 Se requiere entonces que el numerador contenga (x – x0) (x – x1)... (x – xk–1)(x – xk+1)... (x – xn) El denominador debe coincidir con el numerador cuando x = xk.

Monografias.com
N-ésimo polinomio interpolante de Lagrange Teorema Si x0, x1, x2, ... xn, son n+1 números distintos y si f es una función cuyos valores están dados en esos números, entonces existe un polinomio de grado a lo más n, con la propiedad de que f(xk) = P(xk) para cada k = 0, 1, 2, ...n Este polinomio está dado por donde

Monografias.com
Aproximación a 1/x con interpolantes de Lagrange P(x) = 0.5*((x–6.5)x+10)+0.4*((–4x+24)x–32)/3+ 0.25*((x + 4.5)x+5)/3 P(x) = (0.05x – 0.425)x + 1.15 = 0.05x2 – 0.425x + 1.15 f(3) = P(3) = 0.325 Usaremos x0 = 2, x1 = 2.5 y x2 = 4, para obtener un polinomio de grado 2 para 1/x. f(x0) = 0.5, f(x1)= 0.4 y f(x2) = 0.25. Los polinomios de Lagrange son:

Monografias.com
Aproximación a 1/x con interpolantes de Lagrange P(x) = (0.05x – 0.425)x + 1.15 f(3) = P(3) = 0.325

Monografias.com
El error en la interpolación de Lagrange El error en la interpolación de Lagrange puede calcularse con

Monografias.com
Algoritmo en Matlab function fi = Lagran_(x, f, xi) fi=zeros(size(xi)); np1=length(f); for i=1:np1 z=ones(size(xi)); for j=1:np1 if i~=j, z = z.*(xi - x(j))/(x(i)-x(j));end end fi=fi+z*f(i); end return

Monografias.com
Calcula coeficientes de P2(x) %Calcula el polinomio interpolante de Lagrange de grado 2 function [a,b,c] = Lagrange(x0,x1,x2,fx0,fx1,fx2) t0 = (x0 - x1)*(x0 - x2); t1 = (x1 - x0)*(x1 - x2); t2 = (x2 - x0)*(x2 - x1); a = fx0/t0 +fx1/t1 +fx2/t2; b = -fx0*(x1 + x2)/t0 - fx1*(x0 + x2)/t1 - fx2*(x0 + x1)/t2; c = fx0*x1*x2/t0 + fx1*x0*x2/t1 + fx2*x0*x1/t2;

Monografias.com
Interpolación Inversa Tabla de valores de f (x) = 1/x. Se desea conocer el valor de x tal que f (x) = 0.3. El problema se resuelve definiendo un polinomio de interpolación de grado 2 con los puntos (2, 0.5), (3, 0.3333) y (4, 0.25) y resolviendo la ecuación: f (x) = 0.3 = 1.08333 – 0.375x + 0.041667x2 Lo que da x = 5.704158 y x = 3.295842, el valor real es 3.333.

Monografias.com
Trazadores (Splines) Dados n +1 puntos podemos construir un polinomio de grado n para interpolar valores dentro del intervalo. También se pueden usar líneas rectas entre cada par de puntos para hacer interpolación lineal entre ellos o polinomios cuadráticos o cúbicos. Tales interpoladores se llaman trazadores lineales, cuadráticos y cúbicos, respectivamente. La ventaja de los trazadores es que no presentan el efecto de oscilación de los polinomios de alto grado.

Monografias.com
f (x) x f (x) f (x) f (x)

Monografias.com
Trazadores lineales Para los trazadores lineales se definen rectas entre cada intervalo para calcular los valores intermedios. f (x) = f (x0) + m0(x – x0) x0

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 
 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda