Monografías Plus      Agregar a favoritos      Ayuda      Português      Ingles     

Leyes del álgebra de Boole

Enviado por Pablo Turmero



Partes: 1, 2



Monografias.com
Leyes del Álgebra de Boole INTRODUCCION Debido a que los computadores trabajan con información binaria, la herramienta matemática adecuada para el análisis y diseño de su funcionamiento es el Álgebra de Boole. El Álgebra de Boole fue desarrollada inicialmente para el estudio de la lógica. Ha sido a partir de 1938, fecha en que C.E. Shanon publicó un libro llamado "Análisis simbólico de circuitos con relés"

Monografias.com
Leyes del Álgebra de Boole Hoy en día, esta herramienta resulta fundamental para el desarrollo de los computadores ya que, con su ayuda, el análisis y síntesis de combinaciones complejas de circuitos lógicos puede realizarse con rapidez y eficacia.

Monografias.com
Leyes del Álgebra de Boole Definiciones básicas Se comenzará el estudio del Álgebra de Boole introduciendo el concepto de clase. Se define como clase el total de los elementos que cumplen las características definidas por un criterio de pertenencia. En general, una subclase S de una clase dada C, es una clase cuyos elementos pertenecen a la clase C. A su vez, la clase C podría ser una subclase de una clase más amplia que contuviera todos los elementos de C juntos con otros elementos distintos. E inversamente, la clase S puede contener sus propias subclases.

Monografias.com
Leyes del Álgebra de Boole Una clase especialmente importante es la denominada clase de referencia o clase universal, que es aquella que comprende a todos los elementos bajo estudio. Una vez definida la clase universal, se puede definir la clase complementaria de una clase cualquiera A perteneciente a la universal, como la clase que encierra a todos los elementos de la clase universal excepto aquellos que están contenidos en la clase A. Finalmente, se definir  la clase vacía como la clase complementaria de la clase universal. De acuerdo con la definición de clase universal, la clase vacía es aquella que no contiene ningún elemento.

Monografias.com
Leyes del Álgebra de Boole Diagramas de Venn Los diagramas de Venn constituyen un sistema para representar gráficamente las clases. Sus reglas básicas son las siguientes: La clase universal U se representa por un rectángulo. Una clase cualquiera A, perteneciente a la clase universal, se representa mediante la superficie definida por una curva cerrada, dibujada en el interior del rectángulo.

Monografias.com
Leyes del Álgebra de Boole Un elemento e de la clase A se representa por un punto dibujado en el interior de la curva cerrada. La clase complementaria A' de la clase A se representa por la superficie diferencia entre la de la clase universal U y la de la clase A. La clase vacía no tiene representación por medio de los diagramas de Venn.

Monografias.com
Leyes del Álgebra de Boole La representación de varias clases pertenecientes a la misma clase universal se realiza de la misma forma, es decir, dibujando en el interior del rectángulo tantos círculos como clases distintas se deseen representar.

Monografias.com
Leyes del Álgebra de Boole Las clases que tienen elementos comunes se representan mediante círculos que se cortan entre sí. El área común define el subconjunto formado por los elementos comunes a ambas clases. Si dos clases no tienen ningún elemento en común, no habrá ningún punto de corte entre sus dos diagramas. La representación de subclases de una clase dada se realiza dibujando círculos en el interior de la clase.

Monografias.com
Leyes del Álgebra de Boole OPERACIONES En esta sección se definirán las operaciones básicas del Álgebra de Boole, describiéndose a continuación su aplicación a los circuitos lógicos.

Monografias.com
Leyes del Álgebra de Boole Unión o adición La unión de dos clases A y B se define como la clase formada por todos los elementos de la clase A, todos los elementos de la clase B, y ningún otro elemento. La clase unión se representa mediante la simbología matemática: A O B

Monografias.com
Leyes del Álgebra de Boole Intersección o producto La intersección de dos clases A y B se define como la clase formada por todos los elementos que pertenecen simultáneamente a las clases A y B. La clase intersección se puede representar mediante los símbolos: A Y B

Monografias.com
Leyes del Álgebra de Boole Complementación La clase complementaria de una dada ya ha sido definida. Las notaciones simbólicas empleadas para representar el complementario de A son: A' o bien NO A.

Partes: 1, 2

Página siguiente 

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 
 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda