Monografias.com > Sin categoría
Descargar Imprimir Comentar Ver trabajos relacionados

Ejercicios de cálculo vectorial (página 2)




Enviado por francolupio



Partes: 1, 2

-2u
d(F,G) = df
df = xeu+v+u xeu+v
du
dg
du
dv
dg
dv
-yeu-v-2v -yeu-v
-2u
du = eu+v
xeu+v
+v
=
y e 2u
+ 2 u e u+v
dx
0
-ye
u-v
– 2u
2u u+v
2xye + 2(u-v)xe + (u+v)ye
u-v
xeu+v+u
xeu+v +v
yeu-v-2v
-yeu-v
-2u

Monografias.com

2- f(x,y,u,v)= u+ e u+v
g(x,y,u,v)= v+eu-v
u= Ø(x,y)
dz (1,1)
dx
v= Ø(x,y)
dz (1,1)
dy
dz =
du + dv ,
dz = du + dv
dx
dx
dx
dy dy
dy
du + e u+v du + dv – 1 = 0
dv + eu-v
du – dv = 0
dx
dx
dx
dx
dx
dx
du + e u+v du + dv = 0
dv + eu-v
du – dv -1 = 0
dy
dy
dy
dy
dy
dy
dz = 0+1 = 1
dx
dz = 1+(-2)= -1
dy
3- f(x,y,u,v)= u-v+2x-2y=0
g(x,y,u,v)= 3u3+v3-5×2+y3=0
d(F,G) =
d(u,v)
1
9u2
-1
3v2
= 3v2+9u2
du = 2v2-y2
dy
v2+3u2
dv =
1
1
-2
= -y2+6u2
dy 3v2+ 9u2
9u2
3y2
v2 + 3u2
d2u = – 2v (y2+6u2) + 6u (2v2-y2)2- 2y (v2 + 3u2)
dy
2
2 2 3
(v + 3u )
4- f(x,y,u,v,w)= x+y+u+v+w= 0
g(x,y,u,v,w)= x2-y2+u2-2v2+w2+1= 0
h(x,y,u,v,w)= x3+y3+u4-3v4+8w4+2= 0
En P(1,-1,1,-1,0)
d(F,G,H) =
d(u,y,w)

d(F,G,H) =
d(u,y,w)

d(F,G,H) =
d(u,y,w)
1
2u
4u3

1
2u
4u3

1
2
4
1
-4y
-12v3

1
-2y
3y2

1
2
3
1
2w
32w2

1
2w
32w3

1
0
0
= -2
=8
dv (1,-1)= 1
dy
4

Monografias.com

5- f(x,y,z)= 0
z= f(x,y)

df dx + df dy = 0
dx
dy
df dy = – df dx
dy
dx
dy =
dx
– df
dx
df
dy
dy = – df
dx
df
dy
DERIVADA DIRECCIONAL
1- f(x,y,z) = 2×3+7y2+9z2
v = (a,b,c)
x = xo+ as
y = yo+bs
z = zo+cs

gs = 2 (xo+ as)3+7(yo+bs)2+9(zo+cs)2
= 2 (xo3+3x2as+3xoa2s2+a3s3)+7(yo2+2 yobs+b2s2)+9(zo2+2 zocs+c2s2)
= 2 xo3+6 x2as+6 xoa2s2+2 a3s3+7 yo2+14yobs+7 b2s2+9 zo2+18 zocs+9 c2s2
g’(s) = 6ax2+12a2xs+6a3s2+14byo+14b2s+18czo+18c2s
= 6ax2+14byo+18czo
2- f(x,y) = 3x-2y
v = (1/ 2 , 1/ 2 )
x = xo+ 1/
y = yo+ 1/
2 s
2 s
gs = 3(xo+ 1/ 2 s)-2(yo+ 1/ 2 s)
= 3xo+3/ 2 s- 2 yo-2/ 2 s)
g’(s) = 3/ 2 – 2/ 2
= 1/ 2
3- f(x,y) = x2+y2
v = (a,b)
p= (0,0)
x = 0+as
y = 0+bs

gs = (0+as)2+( 0+bs)2
= 02+2 0as+a2s2+ 02+2 0bs+b2s2
g’(s) = 2 0a+2 a2s+2 0b+2 b2s
=0

Monografias.com

2
df
(
4- f(x,y) = x y2+ x2y
v=(1,0)
x = xo+ s
y = yo+0

gs = xo+ s (y o +0)2+( x o + s)2 y o +0
g’(s) = (y o +0) + y o +0 .2(x o + s)
2
= y o +2 x o y o +2s y o
= y o2 +2 x o y o
5- f(x,y,z) = xyz
v= (1/3, -2/3,- 2/3)
x = xo+ 1/3s
y = yo-2/3s
z = zo-2/3s

gs = (xo+ 1/3s)( y o -2/3s)( z o -2/3s)
= xo yo – x o 2/3s+1/3s y o -2/9s2(zo-2/3s)
= zo xo y o – z o x o 2/3s+ zo1/3s yo- zo2/9s2 -2/3s xo yo+4/9s2-2/9 yos3+4/27 s3
g’(s) = – z o x o 2/3+ zo1/3 yo-4/9s zo-8/9s-6/9syo+12/27s2
= -2 z o x o + yo zo- 2 xo yo
3

DERIVADA PARCIAL

1- f(x,y) = x2y3

x2(0)+ y32x
= 2xy3
dx
x2 3 y2+ y3(0)
df
dy
3 x2y2
2 – f(x,y) = Sen (
2 x 3
y 2 )
Cos (
2 x 3
y 2 ) . 1/2 (
2 x 3
y 2 )-1/2 . 6×2
df
dx
= 3x2cos(
2 x 3

2 x 3
y 2 )

y 2 )
Cos (
2 x 3
y 2 ).1/2 (
2 x 3
y 2 )-1/2 . 2y
df
y Cos (
2 x 3
y 2 )
dy
(
2 x 3
y 2 )
3- f(x,y) = xy+yx

Monografias.com

df
dx

df
dy
= yxy-1 + yxlny

xy lnx + xy x-1
4- f(x,y) = (2y) x + 2 y
si
yxy-1 + yx lny
df
dx
= (2y)x ln 2y
si
xylnx + xyx-1
df
dy
x(2y)x-1 + 2y ln 2
5- f(x,y) = x ln y – y ln x

x(0)+lny(1)
-y(1/x)+lnx(0)
df
dx
= lny – y
x
x(1/y)+(-y)(0)+lnx(-1)
df
dy
x – lnx
y

DERIVADA DIRECCIONAL GRADIENTE

1- f(x, y, z)= x2y3z4
df = 2xy3z4
dx

En el punto (1,1,1) son:

df (1,1,1)= 2
dx
df = 3x2y2z4
dy

df (1,1,1)= 3
dy
df = 4x2y3z3
dz

df (1,1,1)= 4
dz
grad f (1,1,1)= (2,3,4)

2- f(x,y)= 3x2y+cos(xy) en p=(1,1)
df = 6xy -sen (xy) y
dx
df = 3×2 –sen (xy) x
dy
df (1,1) =
dx
5.982
df (1,1)= 2.98
dy

Monografias.com

4
-1
grad f (1,1)= (5.982 , 2.98 )

3- f(x,y)= xy en p= (2,2)
df = yxy-1
dx

df (2,2) =
dx
df = xy ln x
dy
df (2,2)= 4 ln 2
dy
grad f (1,1)= (4, 4 ln 2 )
4- f(x,y)=
3 x 2
y 2
df =
-x
df =
-x
dx
3 x
2
y
2
3 x 2
y 2
En el punto (1,1)
df =
-1
df =
-1
1

df (1,1) =
dx

grad f (1,1)= (-1, -1 )

5- f(x, y, z)= ln (x, y, z)

En el punto (1,1,1)
1

df (1,1)= -1
dy
df = 1
df =
1
df = 1
dx
x
dy
y
dz z
df = 1
df =
1
df = 1
dx
1
dy
1
dz 1
df = 1
dx
df =
dy
1
df = 1
dz
grad f (1,1,1)= (1, 1, 1 )

PUNTOS CRITICOS DE UNA FUNCION

1- f(x,y)= 3x+ 8y – 2xy + 4
df = 3 – 2y= 0
-2y =-3
y= 3

Monografias.com

)
y= 1
dx
2
df = 8 – 2x = 0
dy

pc= ( 4, 3
2

2- f(x,y)= x2+x+ y2+1

df = 2x+1 = 0
dx

df = 2y = 0
dy

pc= (
-1 , 0 )
-2x= -8

2x = -1

2y= 0
x= 4

x= -1
2

y= 0
2

3- f(x,y)= x2 + 2x + y2 – 4y + 10
df = 2x+2 = 0
dx

df = 2y- 4 = 0
dy

pc= (
-1 , -2 )
2x = -2

2y= -4
x= -1

y= -2
4- f(x,y)= 2×3 + 3×2 + 6x +y3 + 3y + 12
df = 6×2+6x +6 = 0
6×2= -6x – 6
x2 = -x -1
raiz negativa
dx
df = 3y2+3y = 0
dy
3y( y + 1) = 0
y = -1
y= 0
No hay puntos criticos

5- f(x,y)= x2y – x2 – 3xy + 3x + 2y -2
df = 2xy – 2x – 3y +3= 0
dx
2x (y -1 ) -3 (y -1) = 0
x= 1
df =
dy

pc= (
x2 – 3x + 2 = 0

1, 1 )
x(x-3) +2 = 0
DERIVADA DIRECCIONAL GRADIENTE

1- f(x, y, z)= x2y3z4

Monografias.com

4
dx
x2+y2
x2+y2
df = 2xy3z4
dx

En el punto (1,1,1) son:

df (1,1,1)= 2
dx
df = 3x2y2z4
dy

df (1,1,1)= 3
dy
df = 4x2y3z3
dz

df (1,1,1)= 4
dz
grad f (1,1,1)= (2,3,4)

2- f(x,y)= 3x2y+cos(xy) en p=(1,1)
df = 6xy -sen (xy) y
dx
df = 3×2 –sen (xy) x
dy
df (1,1) =
dx
5.982
df (1,1)= 2.98
dy
grad f (1,1)= (5.982 , 2.98 )

3- f(x,y)= xy en p= (2,2)
df = yxy-1
dx

df (2,2) =
dx
df = xy ln x
dy

df (2,2)= 4 ln 2
dy
grad f (1,1)= (4, 4 ln 2 )

DERIVADAS PARCIALES DE ORDEN SUPERIOR
(Teorema de Schwarz)
1- f(x,y) = x2+y2
si df = 2x , df = 2y
dx

d2f = d ( df ) = d (2x) = 2
dx2 dx dx

d2f = d ( df ) = d (2x) = 0
dy

d2f = d ( df ) = d (2y) = 0
dxdy dx dy dx

d2f = d ( df ) = d (2y) = 2
dydx dy dx
dy
dy2 dy dy
dy
2- f(x,y) = x2e x2+y2
si df = x2e x2+y2 (2x) + 2xe x2+y2 = 2xe
dx
df = x2e x2+y2 (2y) = 2x2ye x2+y2
dy
(x3+x)
d2f = d ( df ) = d 2x (x3+x) = 2xe
dx2 dx dx
dx
(3×2+1)+4 x2e
x2+y2
(x3+x)=
2 e x2+y2(2×4+5×2+)

Monografias.com

x2+y2
x2+y2
x2+y2
d2f = d ( df ) = d (2x e x2+y2(x3+x)= 4y e
(x3+x)
dydx dy dx
dy
d2f = d ( df ) = d (2×2 ye x2+y2) = 2×2 ye
dxdy dx dy dx
(2x)+ 4x ye x2+y2= 4y e
(x3+x)
2 2
d f = d ( df ) = d (2x ye
x2+y2 2
) = 2x ye
x2+y2 2
(2y)+ 2x e
x2+y2
2
= 2x e
x2+y2 2
(2y +1)
dy2 dy dy
dy
3- f(x,y) = x3+6x2y4+7xy5+10x3y
si df = 3×2+12xy4+7y5+30x2y
dx
df = 24y3x2+35xy4+10×3
dy
d2f = d ( df ) = d (3×2+12xy4+7y5+30x2y
) = 6x+12y4+60xy
dx2 dx dx
dx
d2f = d ( df ) = d (24y3x2+35xy4+10×3) = 48xy3+35y4+30x
dxdy dx dy dx
d2f = d ( df ) = d (3×2+12xy4+7y5+30x2y
) = 6x+12y4+60xy
dydx dy dx
dy
d2f = d ( df ) = d (24y3x2+35xy4+10×3) = 72x2y2+140xy3
dy2 dy dy
dy
4- f(x,y) = x+y Verificar que satisfaga lo siguiente: d2f + d2f = 0
2 2
df = y -2xy-x
x2+y2
dx2 dy2
dx
(x2+y2)2
d2f = d ( df ) = 2×3-2y3+6x2y-6xy2
dx2 dx dx

df = x2-2xy-y2
(x2+y2)3
dy
(x2+y2)2
d2f = 2y3-2×3+6y2x-6xy2
dy2
(x2+y2)3
d2f + d2f = 2×3-2y3+6x2y-6xy2 + 2y3-2×3+6y2x-6xy2 = 0
dx2
dy2
(x2+y2)3
(x2+y2)3
5- f(x,y) = xy
df = yxy-1
dy

d2f = xy-2(y2-y)
df = xy lnx
dx

d2f = xyln2x

Monografias.com

dy2

d2f = xy-1(ylnx+1)
dx dy
dx2

d2f = xy-1(ylnx+1)
dydx
FUNCIONES DIFERENCIABLES
1- f(x,y) =
xy2
?f= (x+?x) (y+?y)2= x+?x (y2+2y ?y + (?y)2) – xy2=
xy2+2xy?y+x(?y)2+ ?x y2+ ?x2y ?y+ ?x(?y)2- xy2=
2xy?y+x(?y)2+ ?x y2+ ?x2y ?y+ ?x(?y)2
Si es diferenciable

2-f(x,y) = x2+y2

?f= (x+?x)2+(y+ ?y)2 –( x2+y2) =
x2+2x ?x+( ?x)2+ y2+2y ?y + (?y)2)- ( x2+y2)=
2x ?x+( ?x)2+2y ?y + (?y)2

Si es diferenciable

3- f(x,y) = e-(x2+y2)

df = -2xe-(x2+y2)
dx

df = -2y e-(x2+y2)
dy

Si es diferenciable

4- f(x,y,z) = cos (x+y2+z3)

df = -sen (x+y2+z3)
dx

df = -2ysen (x+y2+z3)
dy

df = -3z2 sen (x+y2+z3)
dz
Si es diferenciable

5- f(x,y) = 3x

?f= 3(x+?x)-3x =
3x+3 ?x-3x = 3 ?x
Si es diferenciable

DIVERGENCIA Y ROTACIONAL

Monografias.com

Y LAPLACIANO

1. f (xyz) = x i + xy j + k
? xF=
i
j
k
d
dx
x
d
dy
xy
d
dz
1
=(0-0)i- (0-0)j + (y-0)k
? x F = yk

2. f (xyz) = -wy i + wx j
rot =
i
j
k
d
dx
-wy
d
dy
wx
d
dz
0
= 2wk
rot = 2w

3. F = x 2y i + z j + xyz k

div F = d (x 2y) + d (z) + d(xyz) = 2xy + 0 + xy = 3xy
dx
dy
dz
2xy + xy =

4. F = F1i + F2 j + F3 k

? 2 f = ? . (? f) = d2f + d2f + d2f
dx 2
3xy

dy 2 dz 2
? 2 f = ? 2 F1i +? 2 F2 j + ? 2F3 k

5. F = 3 x 2y i + 5xz3j – y2k

div F = d (x 2y) + d (z) + d(xyz) = 5xy + 0 + xy = 6xy
dx
dy
dz
5xy + xy = 6xy

ECUACIONES DEL PLANO OSCULADOR, NORMAL
Y RECTIFICANTE
1- F (s) =
cos s , sen s , s
p= f ( 2 ?) = (0 ,1, ?)
2
2
2

Monografias.com

s
s
0
1
,
T (s) = f’’(s) =
-1 sen s
, 1 cos s ,
2
2
2
2
2
f’’ (s) =
-1 cos s ,
-1 sen s
, 0
2
2
2
2
k ( s) = ½
N (s) = 1 f’’ (s) = 1
-1 cos s ,
-1 sen s
, 0
k ( s)
½
2
2
2
2
=
– cos s ,
2
– sen s
2
, 0
B (s) = T (s) x N (s) =
det
i
j
k
-1 sen s
1 cos s
2
2
2
2
2
– cos s
2
– sen s
2
=
1 sen s
, -1 cos s ,
1
2
2
2
2
2
T ( 2 ?)=
0 , -1 ,
2
2
N ( 2 ?) = ( 1, 0, 0)
B(
2 ? ) =
0 , 1
2
2
1
0 ( x-0) + 1
( y-1) + 1
( z- ?) = 0
y+ z = ? +1
Osculador
2
2
0 ( x-0) – 1
( y-1) + 1
( z- ?) = 0
-y+ z = ? +1
Normal
2
2
1 ( x-0) + 0 ( y-1) + 0 ( z- ?) = 0

2 3
2- F (t) = ( t , t , t )

u = f’(t) = (1, 2t, 3t2 ) ,
x = 0

p= f (2) = ( 2, 4, 8 )

f’’’(t) =( 0, 2, 6t)
Rectificante
v= f’(t) x f´´(t) = det
i
j
k
1
2t
3t2
= ( 6t2 – 6t, 2)

Monografias.com

3 4 3
0
0
0
2
6t
w = v x u = det
i
j
k
6t
1
2
– 6t
2t
2
3t2
= ( 18t -4t, 3 – 18 t , 12 t + 6t)
24 ( x-2) – 12 ( y – 4) + 2 ( z – 8 ) = 0

12x – 6y + z = 8

1 ( x-2) + 4 ( y – 4) + 12 ( z – 8 ) = 0

x + 4y + 12 z = 114

-152 ( x-2) – 286 ( y – 4)+ 108 ( z – 8 ) = 0

76x + 143 y – 54z= 292
Osculador

Normal

Rectificante
3- f ( t) = ( 2 cost,
2 sent , 2 )
p= (1 , 1, 2 )
f’(t) x f´´(t) = (- 2 sent,
2 cost , 0 ) x (- 2 cost, – 2 sent , 0)
= det
i
– 2 sent
j
2 cost
k
= ( 0, 0, 2)
– 2 cost

0 ( x-1) + 0 ( y-1) + 2 ( z-2) = 0
– 2 sent
Osculador
4 – si T ( – 3/5, 0, 4/5) ; p ( 0, 3 , 2 ?)

-3 ( x-0) + 0 ( y-3) + 4 (z- 2 ?) = 0
5
5
-3 x- + 0 + 4 z- 8 ? = 0
5
5
5
– 3x + 4z – 8 ? = 0
3x – 4z + 8 ? = 0

4x + 3z – 6 ? =0
Normal

Osculador
5- x= t – cost
y= 3 + sen 2t
z= 1 + cos 3 t
p= t= ?
2

Monografias.com

lim
x’ = 1 + sen t = 2

y’= 3 + sen2t = -2

z’= 1 + cos 3t = 3
x= t – cos t = ? – cos ?
=
?
2
2
2
y= 3 + sen 2t = 3

z= 1 + cos 3t = 1

2x- ? – 2y + 6 + 3z – 3 = 0
2x- 2y + 3z + 3 – ? = 0

FUNCIONES VECTORIALES

1- F(t) = (t2 +1, 2t, t)
Normal
lim
(t2 + 1) = 1 +1=2 , lim
(2t) = 2 , lim
(2t) = 2
t
1
t
1
t
1
lim
t
(t) = 1
1
lim
t
1
=
2i + 2j + k
2- F(t) = (t3 +1, t2 – 2 t +1 )
lim (t3 +1)= 2
( t2 – 2 t +1) = 0
t
1
t
1
lim = 2i
t
1
3- F(t) = (t , t2 , sent )
t
lim
(t , t2 , sent ) = (0, 0 1)
t
0
t
lim
t
(t) = 0
0
t
lim
0
(t2) = 0
t
lim
0
(t) =
t
sent
=1
lim
t
0
=
k

Monografias.com

4- F(t) = (3t-1, t)
lim t
(3t-1)
= 3- 1 = 2
t

lim t
t

lim t

t
1

1

1
(t) = 1

= 2i , j
5- F(t) = (1- cos t , 1- cos2t )
t2
t2
lim t
t

lim t
t
1

1
=

=
1 .
t

1 .
t
t

t
lim t
1

lim t
1
1- cost
t

1- cos2t
t
=

=
1.0=0

1. .01 = .01
lim t
t
1
=
.01 j
MATRIZ HESIANA

1. f(x,y)= 2 (x-1)2 + 3(y-2)2
df = 4 (x-1) = 0
dx

x= 1
df = 6(y-2) = 0
dy

y= 2
d2f
d2f
4
0
dx2
dydx
=
0
6
d2f
dxdy

(1,2 )
d2f
dy2

mínimo local
2 – f(x,y,z)= senx + sen y + sen z – sen (x+y+z)
en P(? , ? , ? )
2
2 2
H (? , ? , ?
) =
-2
-1
-1

Monografias.com

2
2
2
-1

-1
-2

-1
-1

-2
A1 = -2
A 2 =
-2
-1
= 3
A 3 = -4
-1
-2
H(p) – ?I) = -?3 – 6 ?2 – 9? – 4 = – (? + 1 )2 (? + 4 )
? = -1
? = -4
máximo local de p = 4
3- Se f: R4 – {( 0, 0, 0, 0)}

f ( x, y, z, u ) = x + y + z +u + 1
x y z u
dada por
df = 1 – y = 0
df = 1 – z = 0
df = 1 – u = 0
df = 1 – 1 = 0
dx
x2
dy
x y2
dz y z2
du z u2
H (x, y, z, u ) =
2y
x3
-1 0
x2
0
0
-1
x2
-1
2z
y3
-1
y2

2u -1
0
y2
z3 z2
0
0
-1
2
z2 u3

En el punto (1, 1,1 ,1 )
H ( 1, 1,1 ,1 ) =
2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2
A1 = 2
A2 = 2 -1 = 3
A3=
2 -1 0 = 2
A4 = 2 -1 0 0
=5
-1 2
-1 2 -1 -1 2 -1 0
0 -1 2
0 -1 2 -1
0 0 -1 2

mínimo local en ( 1, 1,1 ,1 ) = 5

Monografias.com

x
4- f(x,y,z)= e-x2 + e –y2 + z2
df = -2xe-x2
dx
df = -2y-y2
dy
df = 2z
dz
H=
(4×2-2)e-x2
0
0
0
(4y2-2)e-y2
0
0
0
2
H ( 0,0, 0)=

?1 = -2
-2
0
0

? 2 = 2
0
-2
0
0
0
2
Tiene punto de silla

5- f(x,y)= ax2 +by4
df = 2ax
dx
df = 4by3
dy
H (x,y) =
2a
0
0
12by2
H (0,0) =
2a
0
0
0
? = 0
Cualquier cosa puede pasar

LIMITES
1) lim
(x,y)
3x2y =
(0,0) x4+y2
si y(x=0)
lim
y 0

si y=x
0 = 0
y2 0
lim
0
3x2x = lim
x4+x 2
3 x3 =
x2(x2+1)
lim 3x
=
x2+1
0= 0
0+1
si y=x2
lim
x
0
3x2x 2 = lim
x4+x 4
3 x4 =
x2(x2+x2)
lim 3×2
2×2
=
3
2

Monografias.com

)
)
)
2
2
x
x
=
2) lim
sen(x2+y2) =
(x,y)
(0,0
x2+y2
De acuerdo a una propiedad de limites de funciones trigonometricas especifica por definición que :
lim
x 0

lim
(x,y)

3) lim
(x,y)
sen x = 1
x

sen(x2+y2) = 1
(0,0

x2 =
(0,0
por lo tanto

x2+y2

( x2+y2 )
si y(x=0)
lim
(x,y)

si y=x
0 = 0 = 1
0 0+y2
lim
0
x2 = lim x2 =
x + x x 0 2 x2
0 =
0
indeterminacion
si y=x2
lim
x
0
x2 = lim
x2 +x4
x2
=
x2(x+x2)
0 =
0
indeterminacion
4) lim
(x,y)
x4y =
(0,0) x4+y4
si y(x=0)
lim
y 0

si y=x
0 = 0
x4
lim
0
x4x = lim x5 =
x4+x 4 2×4
0 =
0
indeterminacion
5) lim

x

0=
0
x 1
x 1
1

indeterminacion
saco el conjugado
x 1 x 1
.
x 1 x 1
x1/2 +1
implica que x=1
DOMINIOS

Monografias.com

1) f(x,y)=
1 X 2 Y 2 =
1- X2 –y2> 0
despejo el uno
X2 +y2 x < x+y =>x2 0
y> 0
y< 0

3) f(x,y,z)= ln(1-x2-y2+z)

El dominio del logaritmo debe ser mayor que cero.
entoces:
2 2
1-x -y +z > 0
-x2-y2+z > -1
x2+ y2+z

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Categorias
Newsletter