Agregar a favoritos      Ayuda      Português      Ingles     

Historia de la numeración

Enviado por elgordito48



Indice
1. Introducción. El Concepto de Base
2. Sistemas de Numeración Aditivos
3. El Sistema de Numeración Egipcio
4. El Sistema de Numeración Griego
5. Sistemas de Numeración Híbridos
6. El Sistema de Numeración Chino
7. Sistemas de Numeración Posicionales
8. El Sistema de Numeración Babilónico

1. Introducción. El Concepto de Base

Cuando los hombres empezaron a contar usaron los dedos, guigarros, marcas en bastones, nudos en una cuerda y algunas otras formas para ir pasando de un número al siguiente. A medida que la cantidad crece se hace necesario un sistema de representación más práctico.
En diferentes partes del mundo y en distintas épocas se llegó a la misma solución, cuando se alcanza un determinado número se hace una marca distinta que los representa a todos ellos. Este número es la base. Se sigue añadiendo unidades hasta que se vuelve a alcanzar por segunda vez el número anterior y se añade otra marca de la segunda clase . Cuando se alcanza un número determinado (que puede ser diferente del anterior constituyendo la base auxiliar) de estas unidades de segundo orden, las decenas en caso de base 10, se añade una de tercer orden y así sucesivamente.
La base que más se ha utilizado a lo largo de la Historia es 10 según todas las apariencias por ser ese el número de dedos con los que contamos. Hay alguna excepción notable como son las numeración babilónica que usaba 10 y 60 como bases y la numeración maya que usaba 20 y 5 aunque con alguna irregularidad.
Desde hace 5000 años la gran mayoría de las civilizaciones han contado en unidades, decenas, centenas, millares etc. es decir de la misma forma que seguimos haciéndolo hoy. Sin embargo la forma de escribir los números ha sido muy diversa y muchos pueblos han visto impedido su avance científico por no disponer de un sistema eficaz que permitiese el cálculo.
Casi todos los sistemas utilizados representan con exactitud los números enteros, aunque en algunos pueden confundirse unos números con otros, pero muchos de ellos no son capaces de representar grandes cantidades, y otros requieren tal cantidad de simbolos que los hace poco prácticos.
Pero sobre todo no permiten en general efectuar operaciones tan sencillas como la multiplicación, requiriendo procedimientos muy complicados que sólo estaban al alcance de unos pocos iniciados. De hecho cuando se empezó a utilizar en Europa el sistema de numeración actual, los abaquistas, los profesionales del cálculo se opusieron con las más peregrinas razones, entre ellas la de que siendo el cálculo algo complicado en sí mismo, tendría que ser un metodo diabólico aquel que permitiese efectuar las operaciones de forma tan sencilla.
El sistema actual fue inventado por los indios y transmitido a Europa por los árabes;. Del origen indio del sistema hay pruebas documentales más que suficientes, entre ellas la opinión de Leonardo de Pisa (Fibonacci) que fue uno de los indroductores del nuevo sistema en la Europa de 1200. El gran mérito fue la introducción del concepto y símbolo del cero, lo que permite un sistema en el que sólo diez simbolos puedan representar cualquier número por grande que sea y simplificar la forma de efectuar las operaciones.

2. Sistemas de Numeración Aditivos

Para ver cómo es la forma de representación aditiva consideremos el sistema jeroglífico egipcio. Por cada unidad se escribe un trazo vertical, por cada decena un símbolo en forma de arco y por cada centena, millar, decena y centena de millar y millón un jeroglífico específico. Así para escribir 754 usaban 7 jeroglíficos de centenas 5 de decenas y 4 trazos. De alguna forma todas las unidades están físicamente presentes.
Los sistemas aditivos son aquellos que acumulan los símbolos de todas las unidades, decenas... como sean necesarios hasta completar el número. Una de sus características es por tanto que se pueden poner los símbolos en cualquier orden, aunque en general se ha preferido una determinada disposición.
Han sido de este tipo las numeraciones egipcia, sumaria (de base 60), hitita, cretense, azteca (de base 20), romana y las alfabéticas de los griegos, armenios, judios y árabes. 

3. El Sistema de Numeración Egipcio

Desde el tercer milenio A.C. los egipcios usaron un sistema deescribir los números en base diez utilizando los geroglíficos de la figura para representar los distintos ordenes de unidades.
Se usaban tantos de cada uno cómo fuera necesario y se podian escribir indistintamente de izquierda a derecha, al revés o de arriba abajo, cambiando la orientación de las figuras según el caso.
Al ser indiferente el orden se escribían a veces según criterios estéticos, y solían ir acompañados de los geroglíficos correspondientes al tipo de objeto (animales, prisioneros, vasijas etc.) cuyo número indicaban. En la figura aparece el 276 tal y como figura en una estela en Karnak.
Estos signos fueron utilizados hasta la incorporación de Egipto al imperio romano. Pero su uso quedó reservado a las inscripciones monumentales, en el uso diario fue sustituido por la escritura hierática y demótica, formas más simples que permitian mayor rapidez y comodidad a los escribas.
En estos sistemas de escritura los grupos de signos adquirieron una forma propia, y asi se introdujeron símbolos particulares para 20, 30....90....200, 300.....900, 2000, 3000...... con lo que disminuye el número de signos necesarios para escribir una cifra.
 

4. El Sistema de Numeración Griego

El primer sitema de numeración griego se desarrolló hacia el 600 A.C. Era un sistema de base decimal que usaba los símbolos de la figura siguiente para representar esas cantidades. Se utilizaban tantas de ellas como fuera necesario según el principio de las numeraciones aditivas.
Para representar la unidad y los números hasta el 4 se usaban trazos verticales. Para el 5, 10 y 100 las letras correspondientes a la inicial de la palabra cinco (pente), diez (deka) y mil (khiloi). Por este motivo se llama a este sistema acrofónico.
Los símbolos de 50, 500 y 5000 se obtienen añadiendo el signo de 10, 100 y 1000 al de 5, usando un principio multiplicativo. Progresivamente este sistema ático fue reemplazado por el jónico, que empleaba las 24 letras del alfabeto griego junto con algunos otros símbolos según la tabla siguiente .
De esta forma los números parecen palabras, ya que están compuestos por letras, y a su vez las palabras tienen un valor numérico, basta sumar las cifras que corresponden a las letras que las componen. Esta circunstancia hizo aparecer una nueva suerte de disciplina mágica que estudiaba la relación entre los números y las palabras. En algunas sociedades como la judía y la árabe, que utilizaban un sistema similar, el estudio de esta relación ha tenido una gran importancia y ha constituido una disciplina aparte: la kábala, que persigue fines místicos y adivinatorios.

5. Sistemas de Numeración Híbridos

En estos sistemas se combina el principio aditivo con el multiplicativo. Si para representar 500 los sistemas aditivos recurren a cinco representaciones de 100, los híbridos utilizan la combinación del 5 y el 100. Pero siguen acumulando estas combinaciones de signos para los números más complejos. Por lo tanto sigue siendo innecesario un símbolo para el 0. Para representar el 703 se usa la combinación del 7 y el 100 seguida del 3.
El orden en la escritura de las cifras es ahora fundamental para evitar confusiones, se dan así los pasos para llegar al sistema posicional, ya que si los signos del 10, 100 etc se repiten siempre en los mismos lugares, pronto alguien piensa en suprimirlos, dándolos por supuestos y se escriben sólo las cifras correspondientes a las decenas, centenas etc. .Pero para ello es necesario un cero, algo que indique que algún orden de magnitud está vacío y no se confundan el 307 con 370, 3070 ...
Además del chino clásico han sido sistemas de este tipo el asirio, arameo, etíope y algunos del subcontinente indio cómo el tamil, el malayalam y el cingalés.
 

6. El Sistema de Numeración Chino

La forma clásica de escritura de los números en China se empezó a usar desde el 1500 A.C. aproximadamente. Es un sistema decimal estricto que usa las unidades y los distintas potencias de 10. Utiliza los ideogramas de la figura
y usa la combinación de los números hasta el diez con la decena, centena, millar y decena de millar para según el principio multiplicativo representar 50, 700 ó 3000. El orden de escritura se hace fundamental,ya que 5 10 7 igual podría representar 57 que 75.
Tradicionalmente se ha escrito de arriba abajo aunque también se hace de izquierda a derecha como en el ejemplo de la figura. No es necesario un símbolo para el cero siempre y cuando se pongan todos los ideogramas, pero aún así a veces se suprimían los correspondientes a las potencias de 10.
Aparte de esta forma que podríamos llamar canónica se usaron otras. Para los documento importantes se usaba una grafía más complicada con objeto de evitar falsificaciones y errores. En los sellos se escribía de forma más estilizada y lineal y aún se usaban hasta dos grafías diferentes en usos domésticos y comerciales, aparte de las variantes regionales. Los eruditos chinos por su parte desarrollaron un sistema posicional muy parecido al actual que desde que incorporó el cero por influencia india en s. VIII en nada se diferencia de este.

7. Sistemas de Numeración Posicionales

Mucho más efectivos que los sitemas anteriores son los posicionales. En ellos la posición de una cifra nos dice si son decenas, centenas ... o en general la potencia de la base correspondiente.
Sólo tres culturas además de la india lograron desarrollar un sistema de este tipo. Babilonios, chinos y mayas en distintas épocas llegaron al mismo principio. La ausencia del cero impidió a los chinos un desarrollo completo hasta la intraducción del mismo. Los sistemas babilónico y maya no eran prácticos para operar porque no disponían de simbolos particulares para los dígitos, usando para representarlos una acumulación del signo de la unidad y la decena. El hecho que sus bases fuese 60 y 20 respectivamente no hubiese representado en principio nigún obstáculo. Los mayas por su parte cometían una irregularidad a partir de las unidades de tercer orden, ya que detrás de las veintenas no usaban 20x20=400 sino 20x18=360 para adecuar los números al calendario, una de sus mayores preocupaciones culturales.
Fueron los indios antes del siglo VII los que idearon el sistema tal y como hoy lo conocemos, sin mas que un cambio en la forma en la que escribimos los nueve dígitos y el cero. Aunque con frecuencia nos referimos a nuestro sistema de numeración cómo árabe, las pruebas arqueológicas y documentales demuestran el uso del cero tanto en posiciones intermedias como finales en la India desde el sss. Los árabes transmitieron esta forma de representar los números y sobre todo el cáculo asociado a ellas, aunque tardaron siglos en ser usadas y aceptadas. Una vez más se produjo una gran resistencia a algo por el mero hecho de ser nuevo o ajeno, aunque sus ventajas eran evidentes. Sin esta forma eficaz de numerar y efectuar cálculos dificilmente la ciencia hubiese podido avanzar.

8. El Sistema de Numeración Babilónico

Entre la muchas civilizaciones que florecieron en la antigua Mesopotamia se desarrollaron distintos sistemas de numeración. En el ssss A.C. se inventó un sistema de base 10, aditivo hasta el 60 y posicional para números superiores.
Para la unidad se usaba la marca vertical que se hacía con el punzón en forma de cuña. Se ponían tantos como fuera preciso hasta llegar a 10, que tenía su propio signo.
De este se usaban los que fuera necesario completando con las unidades hasta llegar a 60.
A partir de ahí se usaba un sistema posicional en el que los grupos de signos iban representando sucesivamente el número de unidades, 60, 60x60, 60x60x60 y asi sucesivamente como en los ejemplos que se acompañan.

El Sistema de Numeración Maya
Los mayas idearon un sistema de base 20 con el 5 cómo base auxiliar. La unidad se representaba por un punto. Dos, tres, y cuatro puntos servían para 2, 3 y 4. El 5 era una raya horizontal, a la que seañadían los puntos necesarios para representar 6, 7, 8 y 9. Para el 10 se usaban dos rayas, y de la misma forma se continúa hasta el 20, con cuatro rayas.
Hasta aquí parece ser un sistema de base 5 aditivo, pero en realidad, considerados cada uno un solo signo, estos símbolos constituyen las cífras de un sistema de base 20, en el que hay que multiplicar el valor de cada cifra por 1, 20, 20x20, 20x20x20 ... según el lugar que ocupe, y sumar el resultado. Es por tanto un sistema posicional que se escribe a arriba abajo, empezando por el orden de magnitud mayor.
Al tener cada cifra un valor relativo según el lugar que ocupa, la presencia de un signo para el cero, con el que indicar la ausencia de unidades de algún orden, se hace imprescindible y los mayas lo usaron, aunque no parece haberles interesado el concepto de cantidad nula. Cómo los babilonios lo usaron simplemente para indicar la ausencia de otro número.
Pero los científicos mayas eran a la vez sacerdotes ocupados en la observación astronómica y para expresar los número correspondientes a las fechas usaron unas unidades de tercer orden irregulares para la base 20. Así la cifra que ocupaba el tercer lugar desde abajo se multiplicaba por 20x18=360 para completar una cifra muy próxima a la duración de un año.
El año lo consideraban dividido en 18 uinal que constaba cada uno de 20 días. Se añadían algunos festivos (uayeb) y de esta
forma se conseguía que durara justo lo que una de las unidades de tercer orden del sistema numérico. Además de éste calendario solar, usaron otro de carater religioso en el que el año se divide en 20 ciclos de 13 días.
Al romperse la unidad del sistema éste se hace poco práctico para el cálculo y aunque los conocimiento astronómicos y de otro tipo fueron notables los mayas no desarrollaron una matemática más allá del calendario.

 

 

 

Autor:


Diego Fernando Sanchez.


Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda