Agregar a favoritos      Ayuda      Português      Ingles     

Serie y transformada de Fourier

Enviado por dambrosio



Partes: 1, 2

  1. Serie de Fourier
  2. Funciones Periódicas
  3. Relaciones de Ortogonalidad
  4. Serie Senos y Cosenos
  5. Transformada de Fourier
  6. Propiedades de la Transformada de Fourier
  7. Interpretación de la Transformada de Fourier
  8. Conclusión
  9. Bibliografía
  10. Anexos

 Introducción

  Si no tienes unas nociones previas, puede ser complicado comprender el concepto de "representación en frecuencia de una señal". Básicamente la Transformada de Fourier se encarga de transformar una señal del dominio del tiempo, al dominio de la frecuencia, de donde se puede realizar su antitransformada y volver al dominio temporal. Estudiaremos a lo largo de este trabajo la Serie de Fourier, Ejercicios referentes al seno y coseno , las Transformadas de Fourier, propiedades e interpretación.

SERIE DE FOURIER

Sea una función f(t) una función periódica de periodo T, la cual se puede representar por la serie trigonometrica

donde w 0=2p /T.

Una serie como la representada se llama serie trigonometrica de Fourier. Esta serie también se puede representar así:

Ejemplo 1: Deducir la forma de y expresar Cn y q n en términos de an t bn.

Se puede expresar así

se utiliza la entidad trigonométrica

donde

por consiguiente,

ó

También si se hace

Se Obtiene

Es obvio que la representación de Fourier de una función periódica, representa la función como la suma de componentes sinusoides que tienen diferentes frecuencias. La componente senosiudad de frecuencia se denomina la enésima armónica de la función periódica. La primera armónica comúnmente se conoce como la componente fundamental porque tiene el mismo período de la función y se conoce como la frecuencia angular fundamental. Los coeficientes Cn y los ángulos q n se conocen como amplitudes armónicas y ángulos de fase, respectivamente.

Funciones Periódicas

Una función periódica se puede definir como una función para la cual

(1.1)

para todos los valores de t. La constante mínima T que sastiface la relación , se llama el período de la función. Mediante repetición de , se obtiene:

En la siguiente función se muestra un ejemplo de una función periódica

Ejemplo 1: Encontrar el periodo de la función

Si la función f(t) es periódica con un periodo T, entonces, de se tiene

puesto que cos(q + 2 p m)=cos q para cualquier entero m se tiene que

donde m y n son enteros, Por consiguiente T= 6p m; cuando m = 4 y n = 3, se obtiene el mínimo valor de T. (esto se puede ver mediante el procedimiento de ensayo y error). De donde, T = 24p

en general, si la función

es periódica con período T, entonces es posible encontrar dos enteros m y n tales que

w 1T = 2nm

w 2T = 2mn el cociente es

es decir, la relación w 1 / w 2 debe ser un numero racional.

Ejemplo 2: Decir si la función es una función periódica.

Aquí y . Puesto que

Partes: 1, 2

Página siguiente 

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda