Agregar a favoritos      Ayuda      Português      Ingles     

Muestreo y tamaño de muestra

Enviado por celorriosanchez



  1. Desarrollo
  2. Muestreo probabilístico por racimos
  3. Bibliografía

Introducción

Partiendo de la importancia que tiene para cualquier profesional e investigador conocer varios conceptos importantes de la estadística para poder desarrollar exitosamente una investigación de cualquier índole, en el presente trabajo nos proponemos dar tratamiento a algunos elementos de la estadística matemática de la forma mas elemental posible para que pueda ser asimilada por cualquier profesional sin tener en cuenta su especialidad ya sea de las ciencias sociales como de las ciencias exactas.

Nuestro propósito es encaminar al profesional en:

  • Conocer el aparato conceptual necesario desde el punto de vista estadístico para emprender de forma sólida y científica una investigación.
  • Mostrar algunas de las formas científicas de obtener una muestra.
  • Tipo de muestreo a utilizar según el interés del profesional.
  • Como determinar el tamaño de muestra necesario para el desarrollo de la investigación.

Dentro de esa gama de conceptos primarios tenemos los siguientes:

  • Población.
  • Muestra
  • Parámetro
  • Estadístico
  • Error muestral
  • Nivel de confianza
  • Varianza poblacional
  • Inferencia estadística

Desarrollo

Población. No es más que aquel conjunto de individuos o elementos que le podemos observar, medir una característica o atributo.

Ejemplos de población:

  • El conjunto formado por todos los estudiantes universitarios en Cuba.
  • El conjunto de todos los estudiantes de una Universidad.
  • El conjunto de personas fumadoras de una región.

Son características medibles u observables de cada elemento por ejemplo, su estatura, su peso, edad, sexo, etc.

Supongamos que nos interesa conocer el peso promedio de la población formada por los estudiantes de una universidad. Si la universidad tiene 5376 alumnos, bastaría pesar cada estudiante, sumar los 5376 pesajes y dividirlo por 5376. Pero este proceso puede presenta dificultades dentro de las que podemos mencionar:

  • localizar y pesar con precisión cada estudiante:
  • escribir todos los datos sin equivocaciones en una lista:
  • efectuar los cálculos.

Las dificultades son mayores si en número de elementos de la población es infinito, si los elementos se destruyen, si sufren daños al ser medidos o están muy dispersos, si el costo para realizar el trabajo es muy costoso.

Una solución a este problema consiste en medir solo una parte de la población que llamaremos muestra y tomar el peso medio en la muestra como una aproximación del verdadero valor del peso medio de la población.

El tamaño de la población es la cantidad de elementos de esta y el tamaño de la muestra es la cantidad de elementos de la muestra. Las poblaciones pueden ser finitas e infinitas.

Los datos obtenidos de una población pueden contener toda la información que se desee de ella. De lo que se trata es de extraerle esa información a la muestra, es decir a los datos muestrales sacarle toda la información de la población.

La muestra debe obtener toda la información deseada para tener la posibilidad de extraerla, esto sólo se puede lograr con una buena selección de la muestra y un trabajo muy cuidadosos y de alta calidad en la recogida de los datos.

Es bueno señalar que en un momento una población puede ser muestra en una investigación y una muestra puede ser población, esto esta dado por el objetivo del investigación, por ejemplo en el caso de determinar la estatura media de los estudiantes universitarios en Cuba una muestra podía ser escoger algunas universidades del país y realizar el trabajo, si por el contrario se quiere saber la estatura promedio de los estudiantes de una universidad en especifico en Cuba, entonces el conjunto formado por todos los estudiantes de esta universidad sería la población y la muestra estaría dada por los grupos, carreras o años seleccionado para realzar el experimento.

Parámetro : Son las medidas o datos que se obtienen sobre la distribución de probabilidades de la población, tales como la media, la varianza, la proporción, etc.

Estadístico. Los datos o medidas que se obtienen sobre una muestra y por lo tanto una estimación de los parámetros.

Error Muestral, de estimación o standard. Es la diferencia entre un estadístico y su parámetro correspondiente. Es una medida de la variabilidad de las estimaciones de muestras repetidas en torno al valor de la población, nos da una noción clara de hasta dónde y con qué probabilidad una estimación basada en una muestra se aleja del valor que se hubiera obtenido por medio de un censo completo. Siempre se comete un error, pero la naturaleza de la investigación nos indicará hasta qué medida podemos cometerlo (los resultados se someten a error muestral e intervalos de confianza que varían muestra a muestra). Varía según se calcule al principio o al final. Un estadístico será más preciso en cuanto y tanto su error es más pequeño. Podríamos decir que es la desviación de la distribución muestral de un estadístico y su fiabilidad.

Nivel de Confianza. Probabilidad de que la estimación efectuada se ajuste a la realidad. Cualquier información que queremos recoger está distribuida según una ley de probabilidad (Gauss o Student), así llamamos nivel de confianza a la probabilidad de que el intervalo construido en torno a un estadístico capte el verdadero valor del parámetro.

Varianza Poblacional. Cuando una población es más homogénea la varianza es menor y el número de entrevistas necesarias para construir un modelo reducido del universo, o de la población, será más pequeño. Generalmente es un valor desconocido y hay que estimarlo a partir de datos de estudios previos.

Inferencia estadística. Trata el problema de la extracción de la información sobre la población contenida en las muestras.

Para que los resultados obtenidos de los datos muestrales se puedan extender a la población, la muestra debe ser representativa de la población en lo que se refiere a la característica en estudio, o sea, la distribución de la característica en la muestra debe ser aproximadamente igual a la distribución de la característica en la población.

La representatividad en estadística se logra con el tipo de muestreo adecuado que siempre incluye la aleatoriedad en la selección de los elementos de la población que formaran la muestra. No obstante, tales métodos solo nos garantizan una representatividad muy probable pero no completamente segura.

Después de estos preliminares imprescindibles es posible pasa a tratar algunas de las formas que desde el punto de vista científico se puede extraer una muestra.

Al realizar un muestreo en una población podemos hablar de muestreos probabilísticos y no probabilísticos, en nuestro caso nos referiremos a los muestreos probabilísticos y dentro del mismo estudiaremos el muestreo aleatorio simple (MAS), como método básico en la estadística, el muestreo estratificado y el muestreo por racimos.

Muestreo aleatorio simple: Es aquel en que cada elemento de la población tiene la misma probabilidad de ser seleccionado para integrar la muestra.

Una muestra simple aleatoria es aquella en que sus elementos son seleccionados mediante el muestreo aleatorio simple.

En la práctica no nos interesa el individuo o elemento de la población seleccionado en general, sino solo una característica que mediremos u observaremos en él y cuyo valor será el valor de una variable aleatoria que en cada individuo o elemento de la población puede tomar un valor que será un elemento de cierto conjunto de valores. De modo que una muestra simple aleatoria se puede interpretar como un conjunto de valores devariables aleatorias independientes, cada una de las cuales tiene la misma distribución que es llamada distribución poblacional.

Existen dos formas de extraer una muestra de una población: con reposición y sin reposición.

Muestreo con reemplazo: Es aquel en que un elemento puede ser seleccionado más de una vez en la muestra para ello se extrae un elemento de la población se observa y se devuelve a la población, por lo que de esta forma se pueden hacer infinitas extracciones de la población aun siendo esta finita.

Muestreo sin reemplazo: No se devuelve los elementos extraídos a la población hasta que no se hallan extraídos todos los elementos de la población que conforman la muestra.

Cuando se hace una muestra probabilística debemos tener en cuenta principalmente dos aspectos:

  • El método de selección.
  • El tamaño de la muestra

1.- Método de selección:

Un procedimiento de extraer una muestra aleatoria de una población finita es el de enumerar todos los elementos que conforman la población, escribir esos números en bolas o papelitos echarlos en un bombo o bolsa mezclarlos bien removiéndolos y sacar uno a uno tantos como lo indique el tamaño de la muestra. En este caso los elementos de la muestra lo constituirán los elementos de la población cuyos número coincidan con los extraídos de la bolsa o bombo.

Otro procedimiento para obtener una muestra de una población ya sea el muestreo con replazo o sin reemplazo es mediante la utilización de la tabla de números aleatorios pero solamente para poblaciones finitas, la utilización de estas tablas puede realizarse de diferentes modos pero en el presente trabajo solo expondremos el que consideramos mas eficiente ya que no se necesita de la búsqueda de una gran cantidad innecesaria de números aleatorios en la tabla, el cual será ejemplificado.

Existen diferentes tablas de números aleatorios nosotros en nuestro trabajo utilizaremos como referencia la tabla de M. G. Kendall y B. Babington Smith que se encuentra en el texto de tablas estadísticas, la misma está constituida por 4 bloques de 1000 números aleatorios dispuestos en 25 filas y 40 columnas.

Veamos como se procede para la utilización de la tabla. Consideremos que se desea extraer de una población de tamaño N una muestra de tamaño n se selecciona el bloque, la fila y la columna de la tabla que se va a comenzar, a partir de esta selección (que la hace el muestrista) se toman tantas columnas como dígitos tiene N. Comenzando por el primer número de las columnas seleccionadas se irán incluyendo en la muestra aquellos individuos que en la lista de la población ( ya sea de forma horizontal o vertical) ocupa la posición de los n números de las columnas seleccionadas que resultan menores que N, en los caso que al seleccionar un número en la tabla de números aleatorios sea mayor que N se divide este por N y el resto de la división que será un número entre 0 y N-1 será la posición del individuo a seleccionar tomando el convenio de que el resto 0 corresponde a la posición N. Para la aplicación de este procedimiento requiere que se fije previamente el mayor múltiplo de N que se considerará, para así garantizar que todos los restos desde 0 a N -1 tengan la misma probabilidad de ser seleccionados, por ejemplo si N = 150 y tomando 3 columnas se consideraran sólo aquellos números menores o iguales que 900, los números mayores que 900 no serán analizados en la selección de la muestra.

Ejemplo 1.1: Dada la siguiente población formada por la edad del hijo mayor de 200 núcleos familiares de una cierta región.

Seleccione una muestra aleatoria de tamaño 10 (use la tabla de números aleatorios, escoja la tercera fila, tercera columna del segundo bloque de a 1000) numere la población horizontalmente.

48

49

50

51

50

46

47

56

47

38

53

50

47

46

48

47

48

46

46

50

42

51

51

49

47

51

48

47

42

49

46

48

50

47

48

47

51

56

45

49

45

54

61

46

48

46

46

47

50

34

46

46

51

39

53

55

52

49

47

46

33

40

52

46

44

52

44

54

41

33

48

49

52

42

42

49

47

47

38

48

44

43

44

40

44

45

49

44

43

42

49

49

48

41

51

51

52

42

40

47

37

48

45

46

50

45

47

53

43

47

44

40

46

46

45

48

47

42

47

46

52

53

47

49

46

47

49

42

43

42

43

38

52

50

44

52

44

53

43

45

41

57

47

48

52

53

40

49

40

50

45

42

44

53

57

46

62

47

50

47

45

51

43

45

39

39

41

44

35

41

54

48

51

53

54

42

48

51

37

38

42

37

52

50

45

55

51

46

38

43

53

43

42

39

46

52

53

39

51

40

Para extraer la muestra lo primero que hacemos es disponer tres columnas en las cuales la primera se ubicaran los números aleatorios, es decir los números extraídos de la tabla de números aleatorios; en la segunda columna pondremos los números aleatorios rectificados que serán aquellos números aleatorios menores que N =200 y los restos de las divisiones de los números aleatorios mayores que N =200 y menores que el mayor múltiplo de N es decir 800 y en la tercera columna de encontrara los valores de la muestra.

En la tabla de números aleatorios la tercera fila, tercera columna del segundo bloque de a 1000 le corresponde al número 3 pero como tenemos que coger el número aleatorio de tres dígitos el primer número aleatorio sería el 017, los demás serian, 984, 955, 130, 850, 374, 665, 910, 288, 753, 765, 691, 496, 001, hemos escogido 14 números de la tabla de números aleatorios debido a que hay 4 que son mayores que 800. Veamos a continuación como extraemos la muestra de la población:

Para el primer número aleatorio 017 se busca en la población el valor que ocupa la posición 017 leída la población horizontalmente que seria la edad de 48 años, el número aleatorio 984 no se contempla dentro del análisis ya que es mayor que 800, al igual que el número 955, el número 130, le corresponde la edad de 52 años, al número 850 no se contempla dentro del análisis, el 374 como es mayor que 200 se divide por 200 y se obtiene reto 174 y este es el número aleatorio rectificado correspondiéndole la edad de 53 años, al número 665 se divide por 200 y se obtiene resto 65 que es el número aleatorio rectificado correspondiéndole la edad de 44 años en la población, a continuación presentaremos la tabla de las tres columnas a la cual nos referimos anteriormente como una vía fácil y práctica para obtener la muestra deseada.

Número aleatorio

Número aleatorio rectificado

muestra

017

017

48

984

--

955

--

130

130

42

850

--

374

174

53

665

065

53

910

--

288

088

44

753

153

44

765

165

39

691

091

49

496

096

51

001

001

48

Nota: obsérvese que en la muestra existen edades que se repiten esto puede pasar si el muestreo es con reemplazo si el muestreo es sin reemplazo debemos seguir buscando de la misma manera en la tabla de números aleatorios seguido del número 001, hasta lograr tener la muestra con 10 valores de la población no repetidos.

Este muestreo se puede realizar utilizando Microsoft Excel siguiendo los pasos siguiente:

  1. Se instala la opción de análisis de datos para ello se va a herramienta luego a complemento y se activa en la ventana complemento la opción herramienta para análisis.
  2. Se abre una hoja Excel y se introducen los datos de la población en columna.
  3. Se va a herramienta y se elige análisis de datos y en esta ventana se selecciona la opción muestra.
  4. En la ventana muestra se introduce el rango de entrada que sería seleccionar todos los valores de la población, si al suministrar en la hoja Excel los datos de la población al inicio se le designan a estos alguna variable o comentario debe activarse la opción rótulo de lo contrario no debe ser activada, se activa la casilla de muestreo aleatorio y se introduce el tamaño de muestra deseado.
  5. Se selecciona el rango de salida que consiste en seleccionar una celda en la hoja Excel que no esté afectada por ninguna información ni hacia abajo ni a la derecha de la misma.
  6. Se selecciona aceptar en esta ventana y saldrá el resultado deseado que sería las muestras elegidas por el programa en la población.

2.- El tamaño de la muestra:

Al realizar un muestreo probabilística nos debemos preguntar ¿Cuál es el número mínimo de unidades de análisis ( personas, organizaciones, capitulo de telenovelas, etc), que se necesitan para conformar una muestra (que me asegure un error estándar menor que 0.01 ( fijado por el muestrista o investigador), dado que la población es aproximadamente de tantos elementos.

En el tamaño de una muestra de una población tenemos que tener presente además si es conocida o no la varianza poblacional.

Para determinar el tamaño de muestra necesario para estimar con un error máximo permisibleprefijado y conocida la varianza poblacional () podemos utilizar la formula:

 

 

 

 

(1)

que se obtiene de reconocer que es el error estándar o error máximo prefijado y está dado por la expresión para el nivel de confianza y constituye una medida de la precisión de la estimación, por lo que podemos inferir además que .

Ejemplo 1.2

Se desea estimar el peso promedio de los sacos que son llenados por un nuevo instrumento en una industria. Se conoce que el peso de un saco que se llena con este instrumento es una variable aleatoria con distribución normal. Si se supone que la desviación típica del peso es de 0,5 kg. Determine el tamaño de muestra aleatoria necesaria para determinar una probabilidad igual a 0,95 de que el estimado y el parámetro se diferencien modularmente en menos de 0,1 kg.

Solución:

Evidentemente un tamaño de muestra no puede ser fraccionario por lo que se debe aproximar por exceso. El tamaño de muestra sería de 97.

Si la varianza de la población es desconocida, que es lo que mas frecuente se ve en la práctica el tratamiento será diferente, no es posible encontrar una fórmula cuando la varianza poblacional es desconocida por lo que para ello aconsejamos utilizar el siguiente procedimiento-

Primeramente, se toma una pequeña muestra, que se le llama muestra piloto, con ella se estima la varianza poblacional () y con este valor se evalúa en la formula (1), sustituyendo () por su estimación (). El valor deobtenido será aproximadamente el valor necesario, nuevamente con ese valor de se extrae una muestra de este tamaño de la población se le determina la varianza a esa muestra, como una segunda estimación de () y se aplica de nuevo la formula (1), tomando la muestra con el obtenido como muestra piloto para la siguiente iteración, se llegará a cumplir con las restricciones prefijadas. Se puede plantear esta afirmación ya que la de tiende a estabilizarse a medida que aumentaalrededor de la por lo que llegará el momento en que se encuentre el tamaño de muestra conveniente, sin embargo, en la práctica es mucho más sencillo pues, a lo sumo con tres iteraciones se obtiene el tamaño de muestra deseado, este procedimiento para obtener el tamaño de muestra deseado se puede realizar utilizando en Microsoft Excel en la opción análisis de datos las opciones estadística descriptiva para ir hallando la varianza de cada una de las muestras y la opción muestra para ir determinado las muestras pilotos. Para obtener el tamaño de la muestra utilizando este método recomendamos la utilización de un paquete de computo como por ejemplo el Microsoft Excel, aplicando las opciones muestra y estadística descriptiva.

Para determinar el tamaño de la muestra cuando los datos son cualitativos es decir para el análisis de fenómenos sociales o cuando se utilizan escalas nominales para verificar la ausencia o presencia del fenómeno a estudiar, se recomienda la utilización de la siguiente formula:

(2)

siendo sabiendo que:

es la varianza de la población respecto a determinadas variables.

es la varianza de la muestra, la cual podrá determinarse en términos de probabilidad como

es error estandar que está dado por la diferencia entre () la media poblacional y la media muestral.

es el error estandar al cuadrado, que nos servirá para determinar , por lo que =es la varianza poblacional.

Ejemplo 1.3

De una población de 1 176 adolescentes de una ciudad X se desea conocer la aceptación por los programas humorísticos televisivos y para ello se desea tomar una muestra por lo que se necesita saber la cantidad de adolescentes que deben entrevistar para tener una información adecuada con error estandar menor de 0.015 al 90 % de confiabilidad.

Solución:

= 1 176

= 0,015

por lo que

Es decir para realizar la investigación se necesita una muestra de al menos 298 adolescentes.

Muestreo Estratificado:

El pasado ejemplo corresponde a una muestra probabilística simple. Determinamos en este caso que el tamaño de muestra sería n =298 adolescentes muestreados. Pero supongamos que la situación se complica y que esta n la tendremos que estratificar a fin de que los elementos muestrales o unidad de análisis posean un determinado atributo. En nuestro ejemplo este tributo es los diferentes canales de televisión. Es decir, cuando no basta que cada uno de los elementos muestrales tengan la misma probabilidad de ser escogidos, sino que además es necesario estratificar la muestra en relación a estratos o categorías que se presentan en la población y que aparte son relevantes para los objetivos del estudio, se diseña una muestra probabilística estratificada. Lo que aquí se hace es dividir a la población en subpoblaciones o estratos y se selecciona la muestra para cada estrato. La estratificación aumenta la precisión de la muestra e implica el uso deliberado de diferentes tamaños de muestra para cada estrato, " a fin de lograr reducir la varianza de cada unidad muestral " (Kish, 1965 ), en su libro de muestreo que en un número determinado de elementos muestrales n = la varianza de la media muestral puede reducirse al mínimo si el tamaño de la muestra para cada estrato es proporcional a la desviación estándar dentro del estrato.

Esto es,

(3 )

En donde es la fracción del estrato, el tamaño de la muestra, el tamaño de la población, es la desviación estándar de cada elemento del estrato , y es una proporción constante que nos dará como resultado una óptima para cada estrato.

Siguiendo nuestro ejemplo de los adolescentes tenemos que la población es de 1176 adolescentes y que el tamaño de la muestra es = 298. la fracción para cada estrato fh será :

(4)

De manera que el total de la subpoblación se multiplicará por esta fracción constante a fin de obtener el tamaño de muestra para el estrato. Sustituyendo tenemos que:

(5)

MUESTRA PROBABILÍSTICA ESRTRATIFICADA DE LA ACEPTACIÓN DE ADOLESCENTES POR LOS PROGRAMAS HUMORÍSTICOS TELEVISIVOS DE LA CIUDAD X.

Estratos

Repartos de la ciudad X

Total población*

(fh) = 0.2534

Muestra

Nh (fh) = nh

1

53

13

2

109

3

215

55

4

87

22

5

98

25

6

110

28

7

81

20

8

221

56

9

151

38

10

51

13

= 1176

  

Por ejemplo :

= 53 directores de empresas extractivas corresponde a la población total de este giro.

= 0.2534 es la fracción constante.

= 13 es el número redondeado de directores de empresa del giro Estractivo que tendrán que entrevistarse.

MUESTREO PROBABILÍSTICO POR RACIMOS:

En algunos casos en donde el investigador se ve limitado por recursos financieros, por tiempo, por distancias geográficas o por una combinación de estos y otros obstáculos, se recurre a otra modalidad de muestreo llamado por racimos. En este tipo de muestreo se reducen costos, tiempo y energía al considerar que muchas veces nuestras unidades de análisis se encuentran encapsuladas o encerradas en determinados lugares físicos o geográficos que denominamos racimos. Para dar algunos ejemplos tenemos la tabla 8.3., en donde en la primera columna se encuentran unidades de análisis que frecuentemente vamos a estudiar en ciencias sociales. En la segunda columna, sugerimos posibles racimos en donde se encuentran dichos elementos.

EJEMPLOS DE RACIMOS

Unidad de Análisis

Posibles Racimos

Adolescentes

Preparatorias

Obreros

Industrias

Amas de casa

Mercados

Niños

Colegios

Personajes de televisión

Programas de televisión

El muestrear por racimos implica diferencias entre la unidad de análisis y la unidad muestral. La unidad de análisis - como lo indicamos al principio de este capítulo – se refiere a quiénes van a ser medidos, o sea , el sujeto o sujetos a quienes en última instancia vamos a aplicar el instrumento de medición . la unidad muestral – en este tipo de muestra – se refiere al racimo a través del cual se logra el acceso a la unidad de análisis. El muestreo por racimos supone una selección en dos etapas, ambas con procedimientos probabilísticos. En la primera, se seleccionan los racimos, siguiendo los ya reseñados pasos de una muestra probabilística simple o estratificada. En la segunda, y dentro de estos racimos se seleccionan a los sujetos u objetos que van a ser medidos. Para ello se hace una selección que asegure que todos los elementos del racimo tienen la misma probabilidad de ser elegidos. A continuación daremos un ejemplo que comprenda varios de los procedimientos descritos hasta ahora y que ilustra la manera como frecuentemente se hace una muestra probabilística en varias etapas.

EJEMPLO

¿Cómo hacer una muestra probabilística estratificada y por racimos?

Problema de investigación: Una estación de radio local necesita saber con precisión – a fin de planear sus estrategias – cómo usan la radio los adultos de una ciudad de 2 500 000 habitantes. Es decir, qué tanto radio escuchan, a qué horas, qué contenidos prefieren y sus opiniones con respecto a los programas noticiosos.

Procedimientos: Se diseñará un cuestionario que indague estas áreas sobre uso del radio. Los cuestionarios se aplicarán por entrevistadores a una muestra de sujetos adultos.

Población: Todos aquellos sujetos – hombres o mujeres – de más de 21 años de edad, y que vivan en una casa o departamento propio o rentado de la ciudad X.

Diseño por conglomerado: los directivos de la estación de radio desconocen el número total de sujetos con las características arriba señaladas. Sin embargo, nos piden que diseñemos una muestra que abarque a todos los sujetos adultos de la ciudad, adultos por edad cronológica y por ser jefes de familia , es decir, excluye a los adultos dependientes. Se recurre entonces a la estrategia de seleccionar conglomerados y se considera el uso de un mapa actualizado de la ciudad y que demuestra que en dicha ciudad hay 5 000 cuadras. Las cuadras se utilizan como conglomerados, es decir, como unidades muestrales a partir de las cuales obtendremos en última instancia a nuestros sujetos adultos. Lo primero entonces es determinar ¿Cuántas cuadras necesitaremos muestrear, de una población de una población total de 5 000 cuadras, si queremos que nuestro error estándar sea no mayor de 0.15 y con una probabilidad de ocurrencia del 50 % ?.

Tenemos entonces que para una muestra probabilística simple.

(6)

Necesitaremos una muestra de 909 cuadras de ciudad X para estimar los valores de la población con una probabilidad de error menor a 0.1 .

Sabemos que la población N = 5 000 cuadras de la ciudad, está dividida por previos estudios de acuerdo a 4 estratos socioeconómicos , que categorizar las 5 000 cuadras según el ingreso mensual promedio de sus habitantes de manera que se distribuyen como sigue :

Estrato

Número de cuadras

1

270

2

1940

3

2000

4

790

T = 5 000

  • Estratificación de la muestra:

¿ Cómo distribuiremos los 909 elementos muestrales de , para optimizar nuestra muestra , de acuerdo a la distribución de la población en los 4 estratos socioeconómicos?.

Estrato

No. de cuadras

fh = 0.1818

1

270

(0.1818 )

50

2

1940

(0.1818 )

353

3

2000

(0.1818 )

363

4

790

(0.1818 )

143

N = 5000

n = 909

Tenemos que en principio, de 5000 cuadras de la ciudad se seleccionarán 50 del estrato 1, 553 del estrato 2, 363 del estrato 3 y 143 del estrato 4. Esta comprende la selección de los conglomerados, los cuales se pueden numerar y elegir aleatoriamente hasta completar el número de cada estrato. En una última etapa se seleccionan a los sujetos dentro de cada conglomerado. Este procedimiento también se hace de manera aleatoria, hasta lograr un número de sujetos determinados en cada conglomerado.

Estrato

Nh cuadras

Nh

número de hogares – sujeto en cada cuadra

Total de hogares por estrato

1

270

50

20

1000

2

1940

353

20

7060

3

2000

363

20

7220

4

790

143

20

2860

N = 5000

n = 909

11840

Nota: El procedimiento para realizar el muestreo en cada conglomerado se hace de forma aleatoria utilizando la tabla de números aleatorios o mediante Microsoft Excel tal como se explico en el ejemplo (1.1)

Bibliografía:

Calero Vinelo, Arístides. Técnicas de Muestreo / Arístides Calero Vinelo.- La Habana: Editorial. Pueblo y Eduacación, 1978.- 514p.

Metodología de la Investigación / M. En C. Roberto Hernández Sampiere ... et al. – México:/5.n/, 1997.---505p

Sánchez Älvares, Rafael. Estadística Elemental 7 Rafael Sánchez Älvares y José A. Torres Delgado.- La Habana : Ed. Pueblo y Eduacació, 1989.- 326p.

Taro, Yamane. Elementary Sampling Theory / Yamane Taro.- La Habana: Editorial Pueblo y Educación, 1989.- 405p.

 

 

 

 Ms.C: Arsenio Celorrio Sánchez

O también

 


Comentarios


Trabajos relacionados

Ver mas trabajos de Estadistica

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda