Agregar a favoritos      Ayuda      Português      Ingles     

Números Racionales

Enviado por Yonifer Quiñonez



Partes: 1, 2

  1. Definición de Número racional
  2. Operaciones con fracciones

UNIDAD I

Definición de Número racional

Es el que se puede expresar como cociente de dos números enteros. El término "racional" hace referencia a una "ración" o parte de un todo; el conjunto de los números racionales se designan con "Q" por "quotient" que significa "cociente" en varios idiomas europeos. El conjunto Q de los números racionales está compuesto por los números enteros y por los fraccionarios. Los números enteros son racionales, pues se pueden expresar como cociente de ellos mismos por la unidad: a/1. Los números racionales no enteros se llaman fraccionarios.

Se pueden sumar, restar, multiplicar y dividir (salvo por cero) y el resultado de todas esas operaciones entre dos números racionales es siempre otro número racional.

Así como en el conjunto Z de los números enteros cada número tiene un siguiente (el siguiente al 7 es el 8, el siguiente al -5 es el -4), no pasa lo mismo con los racionales, pues entre cada dos números racionales existen infinitos números.

Los números racionales sirven para expresar medidas, ya que al comparar una cantidad con su unidad el resultado es, frecuentemente, fraccionario.

Operaciones con fracciones

ADICIÓN Y SUSTRACCIÓN:

Procedemos según sea el caso de los denominadores. Cabe destacar que los enteros pueden ser positivos o negativos así que debe recordarse la Ley de los signos.

Signos iguales se suman y se coloca el mismo signo + + = + ; - - = -

Signos diferentes se restan y se coloca el signo del mayor + - = - ; - + = -

IGUAL DENOMINADOR:

Para sumar fracciones con igual denominador, se suman los denominadores y se deja el mismo denominador.

En general:

Ejemplo:

DISTINTO DENOMINADOR:

Para esto de buscan dos fracciones equivalentes de los dados que tengan el mismo denominador, después se suman dichas fracciones equivalentes.

Método de las cruces:

El numerador de la primera fracción por el denominador de la segunda fracción, el numerador de la segunda fracción por el denominador de la primera fracción, luego el denominador de la primera fracción por el denominador de la segunda fracción.

a + c

b d

a x d + b x c

b x d

Siendo

b y d≠O

Ejemplo:


Partes: 1, 2

Página siguiente 

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda