Agregar a favoritos      Ayuda      Português      Ingles     
 Página anterior Volver al principio del trabajoPágina siguiente 

Trabajo de investigación sobre archivos (página 2)




Partes: 1, 2, 3, 4


Información a nutrirse:

El dispositivo de cálculo más antiguo que se conoce es el ábaco.

· Su nombre viene del griego abakos que significa superficie plana. Se sabe que los griegos empleaban tablas para contar en el siglo V antes de Cristo o tal vez antes. El ábaco tal como lo conocemos actualmente esta constituido por una serie de hilos con cuentas ensartadas en ellos. En nuestro país este tipo de ábaco lo hemos visto todos en las salas de billar.

· Esta versión de ábaco se ha utilizado en Oriente Medio y Asia hasta hace relativamente muy poco. A finales de 1946 tuvo lugar en Tokio una competición de cálculo entre un mecanógrafo del departamento financiero del ejército norteamericano y un oficial contable japonés. El primero empleaba una calculadora eléctrica de 700 dólares el segundo un ábaco de 25 centavos. La competición consistía en realizar operaciones matemáticas de suma resta multiplicación y división con números de entre 3 y 12 cifras. Salvo en la multiplicación el ábaco triunfó en todas las pruebas incluyendo una final de procesos compuestos.

· Tras el ábaco de los griegos pasamos al siglo XVI. John Napier (1550-1617) fue un matemático escocés famoso por su invención de los logaritmos funciones matemáticas que permiten convertir las multiplicaciones en sumas y las divisiones en restas. Napier inventó un dispositivo consistente en unos palillos con números impresos que merced a un ingenioso y complicado mecanismo le permitía realizar operaciones de multiplicación y división.

· El primer calculador mecánico apareció en 1642 tan sólo 25 años después de que Napier publicase una memoria describiendo su máquina. El artífice de esta máquina fue el filósofo francés Blaise Pascal (1.623-1.662) en cuyo honor se llama Pascal uno de los lenguajes de programación que más impacto ha causado en los últimos años. · A los 18 años Pascal deseaba dar con la forma de reducir el trabajo de cálculo de su padre que era un funcionario de impuestos. La calculadora que inventó Pascal tenía el tamaño de un cartón de tabaco y su principio de funcionamiento era el mismo que rige los cuentakilómetros de los coches actuales; una serie de ruedas tales que cada una de las cuales hacía avanzar un paso a la siguiente al completar una vuelta. Las ruedas estaban marcadas con números del 0 al 9 y había dos para los decimales y 6 para los enteros con lo que podía manejar números entre 000.000 01 y 999.999 99.

· Las ruedas giraban mediante una manivela con lo que para sumar o restar lo que había que hacer era girar la manivela correspondiente en un sentido o en otro el número de pasos adecuado.
· Leibnitz (1646-1716) fue uno de los genios de su época; a los 26 años aprendió matemáticas de modo autodidacta y procedió a inventar el cálculo. Inventó una máquina de calcular por la simple razón de que nadie le enseñó las tablas de multiplicar.

· La máquina de Leibnitz apareció en 1672; se diferenciaba de la de Pascal en varios aspectos fundamentales el más importante de los cuales era que podía multiplicar dividir y obtener raíces cuadra-das.

· Leibnitz propuso la idea de una máquina de cálculo en sistema binario base de numeración empleada por los modernos ordenadores actuales. Tanto la máquina de Pascal como la de Leibnitz se encontraron con un grave freno para su difusión: la revolución industrial aún no había tenido lugar y sus máquinas eran demasiado complejas para ser realizadas a mano. La civilización que habría podido producir las en serie estaba todavía a más de 200 años de distancia.

· Entre 1673 y 1801 se realizaron algunos avances significativos el más importante de los cuales probablemente fue el de Joseph Jacquard (1.752-1.834) quien utilizó un mecanismo de tarjetas perforadas para controlar el dibujo formado por los hilos de las telas confeccionadas por una máquina de tejer.

· Hacia 1725 los artesanos textiles franceses utilizaban un mecanismo de tiras de papel perforado para seleccionar unas fichas perforadas las que a su vez controlaban la máquina de tejer.

· Jacquard fue el primero en emplear tarjetas perforadas para almacenar la información sobre el dibujo del tejido y además controlar la máquina.

· La máquina de tejer de Jaquard presentada en 1.801 supuso gran éxito comercial y un gran avance en la industria textil. · La antesala de la informática.

· Aunque hubo muchos precursores de los actuales sistemas informáticos para muchos especialistas la historia empieza con Charles Babbage matemático e inventor inglés que al principio del siglo XIX predijo muchas de las teorías en que se basan los actuales ordenadores. Desgraciadamente al igual que sus predeceso-res vivió en una época en que ni la tecnología ni las necesidades estaban al nivel de permitir la materialización de sus ideas.

· En 1822 diseñó su máquina diferencial para el cálculo de polinomios. Esta máquina se utilizó con éxito para el cálculo de tablas de navegación y artillería lo que permitió a Babbage conseguir una subvención del gobierno para el desarrollo de una segunda y mejor versión de la máquina.

· Durante 10 años Babbage trabajó infructuosamente en una segunda máquina sin llegar a conseguir completarla y en 1833 tuvo una idea mejor.

· Mientras que la máquina diferencial era un aparato de proceso único Babbage decidió construir una máquina de propósito general que pudiese resolver casi cualquier problema matemático. Todas estas máquinas eran por supuesto mecánicas movidas por vapor. De todas formas la velocidad de cálculo de las máquinas no era tal como para cambiar la naturaleza del cálculo además la ingeniería entonces no estaba lo suficientemente desarrollada como para permitir la fabricación de los delicados y complejos mecanismos requeridos por el ingenio de Babbage. La sofisticado organización de esta segunda máquina la máquina diferencial según se la llamó es lo que hace que muchos consideren a Babbage padre de la informática actual.

· Como los modernos computadores la máquina de Babbage tenía un mecanismo de entrada y salida por tarjetas perforadas una memoria una unidad de control y una unidad aritmético-lógica. Preveía tarjetas separadas para programa y datos. Una de sus característi-cas más importantes era que la máquina podía alterar su secuencia de operaciones en base al resultado de cálculos anteriores algo fundamental en los ordenadores modernos. la máquina sin embargo nunca llegó a construirse. Babbage no pudo conseguir un contrato de investigación y pasó el resto de su vida inventando piezas y diseñando esquemas para conseguir los fondos para construir la máquina. Murió sin conseguirlo.

· Aunque otros pocos hombres trataron de construir autómatas o calculadoras siguiendo los esquemas de Babbage su trabajo quedo olvidado hasta que inventores modernos que desarrollaban sus propios proyectos de computadores se encontraron de pronto con tan extraordinario precedente.

· Otro inventor digno de mención es Herman Hollerith. A los 19 años. en 1879 fue contratado como asistente en las oficinas del censo norteamericano que por aquel entonces se disponía a realizar el recuento de la población para el censo de 1880. Este tardó 7 años y medio en completarse manualmente. Hollerith fue animado por sus superiores a desarrollar un sistema de cómputo automático para futuras tareas.

· El sistema inventado por Hollerith utilizaba tarjetas perforadas en las que mediante agujeros se representaba el sexo la edad raza etc En la máquina las tarjetas pasaban por un juego de contactos que cerraban un circuito eléctrico activándose un contador y un mecanismo de selección de tarjetas. Estas se leían a ritmo de 50 a 80 por minuto.

· Desde 1880 a 1890 la población subió de 5O a 63 millones de habitantes aun así el censo de 1890 se realizó en dos años y medio gracias a la máquina de Hollerith.

· Ante las posibilidades comerciales de su máquina Hollerith dejó las oficinas del censo en 1896 para fundar su propia Compañía la Tabulating Machine Company. En 1900 había desarrollado una máquina que podía clasificar 300 tarjetas por minuto una perforadora de tarjetas y una máquina de cómputo semiautomática.

· En 1924 Hollerith fusionó su compañía con otras dos para formar la Internacional Bussines Machines hoy mundialmente conocida como IBM.

· El nacimiento del ordenador actual.

· Ante la necesidad de agilizar el proceso de datos de las oficinas del censo se contrató a James Powers un estadístico de Nueva Jersey para desarrollar nuevas máquinas para el censo de 1.910. Powers diseñó nuevas máquinas para el censo de 1.910 y de modo similar a Hollerith decidió formar su propia compañía en 1.911; la Powers Accounting Machine Company que fue posteriormente adquirida por Remington Rand la cual a su vez se fusionó con la Sperry Corpora-tion formando la Sperry Rand Corporation. · John Vincent Atanasoft nació en 1903 su padre era un ingeniero eléctrico emigrado de Bulgaria y su madre una maestra de escuela con un gran interés por las matemáticas que transmitió a su hijo. · Atanasoff se doctoró en física teórica y comenzó a dar clases en lowa al comienzo de los años 30. Se encontró con lo que por entonces eran dificultades habituales para muchos físicos y técnicos; los problemas que tenían que resolver requerían una excesiva cantidad de cálculo para los medios de que disponían. Aficionado a la electrónica y conocedor de la máquina de Pascal y las teorías de Babbage Atanasoff empezó a considerar la posibilidad de construir un calculador digital. Decidió que la máquina habría de operar en sistema binario hacer los cálculos de modo totalmente distinto a como los realizaban las calculadoras mecánicas e incluso concibió un dispositivo de memoria mediante almacenamiento de carga eléctrica. Durante un año maduró el proyecto y finalmente solicitó una ayuda económica al Consejo de Investigación del Estado de lowa. Con unos primeros 650 dólares contrató la cooperación de Clifford Berry estudiante de ingeniería y los materiales para un modelo experimental. Posteriormente recibieron otras dos donaciones que sumaron 1460 dólares y otros 5000 dólares de una fundación privada. Este primer aparato fue conocido como ABC Atanasoff- Berry-Computer.

· En diciembre de 1940 Atanasoff se encontró con John Mauchly en la American Association for the Advancement of Science (Asociación Americana para el Avance de la Ciencia) abreviadamente AAAS. Mauchly que dirigía el departamento de física del Ursine College cerca de Filadelfia se había encontrado con los mismos problemas en cuanto a velocidad de cálculo que Atanasoff y estaba convencido de que habría una forma de acelerar el cálculo por medios electróni-cos. Al carecer de medios económicos construyó un pequeño calcula-dor digital y se presentó al congreso de la AAAS para presentar un informe sobre el mismo.

A raíz de aquello Atanasoff y Maunchly tuvieron un intercambio de ideas que muchos años después ha desembocado en una disputa entre ambos sobre la paternidad del computador digital.

· En 1941 Maunchly se matriculo en unos cursos sobre ingeniería eléctrica en la escuela Moore de Ingeniería donde conoció a un instructor de laboratorio llamado J. Presper Eckert.. Entre ambos surgió una compenetración que les llevaría a cooperar en un interés común: el desarrollo de un calculador electrónico. El entusiasmo que surgió entre ambos llegarón a Maunchly a escribir a Atanasoff solicitándole su cooperación para construir un computador como el ABC en la escuela Moore.

· Atanasoff prefirió guardar la máquina en un cierto secreto hasta poder patentarla; sin embargo nunca llegó a conseguirlo. Maunchiy fue más afortunado. La escuela Moore trabajaba entonces en un proyecto conjunto con el ejército para realizar unas tablas de tiro para armas balísticas.

· La cantidad de cálculos necesarios era inmensa tardándose treinta días en completar una tabla mediante el empleo de una máquina de cálculo analógica. Aun así esto era unas 50 veces más rápido de lo que tardaba un hombre con una sumadora de sobremesa.

· El 9 de abril de 1943 se autorizó a los dos hombres a iniciar el desarrollo del proyecto. Se le llamó ENIAC (Electronic Numerical integrator and Computer). El presupuesto inicial era de 150.000 dólares) cuando la máquina estuvo terminada el costo total había sido de 486.804 22 dólar.

· El ENIAC tenía unos condensadores 70 000 resistencias 7.500 interruptores y 17.000 tubos de vacío de 16 tipos distintos funcionando todo a una frecuencia de reloj de 100.000 Hz. Pesaba unas 30 toneladas y ocupaba unos 1.600 metros cuadrados. Su consumo medio era de unos 100.000 vatios (lo que un bloque de 50 viviendas) y necesitaba un equipo de aire acondicionado a fin de disipar el gran calor que producía.

· Tenía 20 acumuladores de 10 dígitos era capaz de sumar restar multiplicar y dividir; además tenía tres tablas de funciones. La entrada y la salida de datos se realizaba mediante tarjetas perforadas.

· En un test de prueba en febrero de 1946 el Eniac resolvió en 2 horas un problema de física nuclear que previamente habría requerido 100 años de trabajo de un hombre. Lo que caracterizaba al ENIAC como a los ordenadores modernos no era simplemente su velocidad de cálculo sino el hecho de que combinando operaciones permitía realizar tareas que antes eran imposibles.

· Entre 1939 y 1944 Howard Aiken de la universidad de Harvard en colaboración con IBM desarrolló el Mark 1 también conocido como calculador Automático de Secuencia Controlada. Este fue un computador electromecánico de 16 metros de largo y más de dos de alto. Tenía 700.000 elementos móviles y varios centenares de kilómetros de cables. Podía realizar las cuatro operaciones básicas y trabajar con información almacenada en forma de tablas.

· Operaba con números de hasta 23 dígitos y podía multiplicar tres números de 8 dígitos en 1 segundo. El Mark 1 y las versiones que posteriormente se realizaron del mismo tenían el mérito de asemejarse considerablemente al tipo de máquina ideado por Babbage aunque trabajaban en código decimal y no binario. El avance que estas máquinas electromecánicas supuso fue rápidamente ensombrecido por el Eniac con sus circuitos electrónicos.

· En 1946 el matemático húngaro John Von Neumann propuso una versión modificada del Eniac; el Edvac (Electronic Discrete Variable Automatic Computer) que se construyó en 1952. Esta máquina presentaba dos importantes diferencias respecto al Eniac: En primer lugar empleaba aritmética binaria lo que simplificaba enormemente los circuitos electrónicos de cálculo.

· En segundo lugar permitía trabajar con un programa almacenado. El Eniac se programaba enchufando centenares de clavijas y activando un pequeno numero de interruptores. Cuando había que resolver un problema distinto era necesario cambiar todas las conexiones proceso que llevaba muchas horas.

· Von Neumann propuso cablear una serie de instrucciones y hacer que éstas se ejecutasen bajo un control central. Además propuso que los códigos de operación que habían de controlar las operaciones se almacenasen de modo similar a los datos en forma binaria.

· De este modo el Edvac no necesitaba una modificación del cableado para cada nuevo programa pudiendo procesar instrucciones tan deprisa como los datos. Además el programa podía modificarse a sí mismo ya que las instrucciones almacenadas como datos podían ser manipuladas aritméticamente.

· Eckert y Mauchly tras abandonar la universidad fundaron su propia compañía la cual tras diversos problemas fue absorbida por Remington Rand. El 14 de junio de 1951 entregaron su primer ordenador a la Oficina del Censo el Univac-I.
· Posteriormente aparecería el Univac-II con memoria de núcleos magnéticos lo que le haría claramente superior a su antecesor pero por diversos problemas esta máquina no vio la luz hasta 1957 fecha en la que había perdido su liderazgo en el mercado frente al 705 de IBM.

· En 1953 IBM fabricó su primer computador para aplicaciones científicas el 701. Anteriormente había anunciado una máquina para aplicaciones comerciales el 702 pero esta máquina fue rápidamente considerada inferior al Univac-I. Para compensar esto IBM lanzó al mercado una máquina que resultó arrolladora el 705 primer ordenador que empleaba memorias de núcleos de ferrita IBM superó rápidamente a Sperry en volumen de ventas gracias una eficaz política comercial que actualmente la sigue manteniendo a la cabeza de todas las compañías de informática del mundo en cuanto a ventas.

· A partir de entonces fueron apareciendo progresivamente más y más maquinas. Veamos las etapas que diferencian unas máquinas de otras según sus características. Cada etapa se conoce con el nombre de generación.

· La primera generación.

· El Univac 1 viene a marcar el comienzo de lo que se llama la primera generación. Los ordenadores de esta primera etapa se caracterizan por emplear el tubo de vacío como elemento fundamental de circuito. Son máquinas grandes pesadas y con unas posibilidades muy limitadas. El tubo de vacío es un elemento que tiene un elevado consumo de corriente genera bastante calor y tiene una vida media breve. Hay que indicar que a pesar de esto no todos los ordenadores de la primera generación fueron como el Eniac las nuevas técnicas de fabricación y el empleo del sistema binario llevaron a máquinas con unos pocos miles de tubos de vacío.

· La segunda generación

· En 1958 comienza la segunda generación cuyas máquinas empleaban circuitos transistorizados. El transistor es un elemento electróni-co que permite reemplazar al tubo con las siguientes ventajas: su consumo de corriente es mucho menor con lo que también es menor su producción de calor. Su tamaño es también mucho menor. Un transis-tor puede tener el tamaño de una lenteja mientras que un tubo de vacío tiene un tamaño mayor que el de un cartucho de escopeta de caza. Esto permite una drástica reducción de tamaño. Mientras que las tensiones de alimentación de los tubos estaban alrededor de los 300 voltios las de los transistores vienen a ser de 10 voltios con lo que los demás elementos de circuito también pueden ser de menor tamaño al tener que disipar y soportar tensiones mucho menores. El transistor es un elemento constituido fundamentalmente por silicio o germanio. Su vida media es prácticamente ilimitada y en cualquier caso muy superior a la del tubo de vacío. Como podemos ver el simple hecho de pasar del tubo de vacío al transistor supone un gran paso en cuanto a reducción de tamaño y consumo y aumento de fiabilidad. Las máquinas de la segunda generación emplean además algunas técnicas avanzadas no sólo en cuanto a electrónica sino en cuanto a informática y proceso de datos como por ejemplo los lenguajes de alto nivel.

· La tercera generación

· En 1964 la aparición del IBM 360 marca el comienzo de la tercera generación. Las placas de circuito impreso con múltiples componen-tes pasan a ser reemplazadas por los circuitos integrados. Estos elementos son unas plaquitas de silicio llamadas chips sobre cuya superficie se depositan por medios especiales unas impurezas que hacen las funciones de diversos componentes electrónicos. Así pues un puñado de transistores y otros componentes se integran ahora en una plaquita de silicio. Aparentemente esto no tiene nada de especial salvo por un detalle; un circuito integrado con varios centenares de componentes integrados tiene el tamaño de una moneda.

· Así pues hemos dado otro salto importante en cuanto a la reducción de tamaño. El consumo de un circuito integrado es también menor que el de su equivalente en transistores resistencias y demás componen-tes. Además su fiabilidad es también mayor.

· En la tercera generación aparece la multiprogramación el teleproceso se empieza a generalizar el uso de minicomputadores en los negocios y se usan cada vez más los lenguajes de alto nivel como Cobol y Fortran.

· La cuarta generación

· La aparición de una cuarta generación de ordenadores hacia el comienzo de los años setenta no es reconocida como tal por muchos profesionales del medio para quienes ésta es sólo una variación de la tercera. Máquinas representativas de esta generación son el IBM 370 y el Burroughs. Las máquinas de esta cuarta generación se caracterizan por la utilización de memorias electrónicas en lugar de las de núcleos de ferrita.

· Estas representan un gran avance en cuanto a velocidad y en especial en cuanto a reducción de tamaño. En un chip de silicio no mayor que un centímetro cuadrado caben 64.000 bits de información. En núcleos de ferrita esa capacidad de memoria puede requerir cerca de un litro en volumen.

· Se empieza a desechar el procesamiento batch o por lotes en favor del tiempo real y el proceso interactivo. Aparecen innumerables lenguajes de programación. Las capacidades de memoria empiezan a ser enormemente grandes. En esta etapa cobran gran auge los minicomputadores. Estos son maquinas con un procesador de 16 bits una memoria de entre 16 32 KB y un precio de unos pocos millones.
· La quinta generación: los microprocesadores

· Posteriormente hacia finales de los setenta aparece la que podría ser la quinta generación de ordenadores. Se caracteriza por la aparición de los microcomputadores y los ordenadores de uso personal. Estas máquinas se caracterizan por llevar en su interior un microprocesador circuito integrado que reúne en un sólo chip de silicio las principales funciones de un ordenador.

· Los ordenadores personales son equipos a menudo muy pequeños no permiten multiproceso y suelen estar pensados para uso doméstico o particular. Los microcomputadores si bien empezaron tímidamente como ordenadores muy pequeñitos rápidamente han escalado el camino superando a lo que hace 10 años era un minicomputador. Un microcom-putador actual puede tener entre 4Mb y 32Mb de memoria discos con capacidades del orden del Gigabyte y pueden permitir la utilización simultánea del equipo por varios usuarios.

¡Una información importantísima!

3000 a de C.  Ábaco (Asia oriental) El ábaco, primer  dispositivo de cálculo de la historia, es utilizado en Oriente desde la Antigüedad. Permite efectuar las cuatro operaciones fundamentales a una velocidad de tres a cinco veces mayor que el cerebro humano . Muy utilizado aún en China y Japón.

La Historia que Llevó a Construir la Primera Computadora

 Por siglos los hombres han tratado de usar fuerzas y artefactos de diferente tipo para realizar sus trabajos, para hacerlos mas simples y rápidos. La historia conocida de los artefactos que calculan o computan, se remonta a muchos años antes de Jesucristo.

Dos principios han coexistido con la humanidad en este tema. Uno es usar cosas para contar, ya sea los dedos, piedras, semillas, etc. El otro es colocar esos objetos en posiciones determinadas. Estos principios se reunieron en el ábaco, instrumento que sirve hasta el día de hoy, para realizar complejos cálculos aritméticos con enorme rapidez y precisión.

 El Ábaco Quizá fue el primer dispositivo mecánico de contabilidad que existió. Se ha calculado que tuvo su origen hace al  menos 5.000 años y su efectividad ha soportado la prueba del tiempo.

Desde que el hombre comenzó a acumular riquezas y se fue asociando con otros hombres, tuvo la necesidad de inventar un sistema para poder contar, y por esa época, hace unos miles de años, es por donde tenemos que comenzar a buscar los orígenes de la computadora, allá por el continente asiático en las llanuras del valle Tigris.

Esa necesidad de contar, que no es otra cosa que un término más sencillo y antiguo que computar, llevo al hombre a la creación del primer dispositivo mecánico conocido, diseñado por el hombre para ese fin, surgió la primera computadora el ABACO o SOROBAN.

El ábaco, en la forma en que se conoce actualmente fue inventado en China unos 2.500 años AC, más o menos al mismo tiempo que apareció el soroban, una versión japonesa del ábaco.
En general el ábaco, en diferentes versiones era conocido en todas las civilizaciones de la antigüedad. En China y Japón, su construcción era de alambres paralelos que contenían las cuentas encerrados en un marco, mientras en Roma y Grecia consistía en una tabla con surcos grabados.

A medida que fue avanzando la civilización, la sociedad fue tomando una forma más organizada y avanzada, los dispositivos para contar se desarrollaron, probablemente presionados por la necesidad, y en diferentes países fueron apareciendo nuevos e ingeniosos inventos cuyo destino era calcular.

 Leonardo da Vinci (1452-1519). Trazó las ideas para una sumadora mecánica, había hecho anotaciones y diagramas sobre una máquina calculadora que mantenía una relación de 10:1 en cada una de sus ruedas registradoras de 13 dígitos. 

 John Napier (1550-1617). En el Siglo XVII en occidente se encontraba en uso la regla de cálculo, calculadora basada en el invento de Napier, Gunther y Bissaker. John Napier descubre la relación entre series aritméticas y geométricas, creando tablas que él llama logaritmos. Edmund Gunter se encarga de marcar los logaritmos de Napier en líneas. Bissaker por su parte coloca las líneas de Napier y Gunter sobre un pedazo de madera, creando de esta manera la regla de cálculo. Durante más de 200 años, la regla de cálculo es perfeccionada, convirtiéndose en una calculadora de bolsillo, extremadamente versátil. Por el año 1700 las calculadoras numéricas digitales, representadas por el ábaco y las calculadoras análogas representadas por la regla de cálculo, eran de uso común en toda Europa.

 Blas Pascal (1623-1662). El honor de ser considerado como el "padre" de la computadora le correspondió al ilustre filósofo y científico francés quien siglo y medio después de Leonardo da Vinci inventó y construyó la primera máquina calculadora automática utilizable, precursora de las modernas computadoras. Entre otras muchas cosas, Pascal desarrolló la teoría de las probabilidades, piedra angular de las matemáticas modernas. La pascalina funciona en base al mismo principio del odómetro (cuenta kilómetros) de los automóviles, que dicho sea de paso, es el mismo principio en que se basan las calculadoras mecánicas antecesoras de las electrónicas, utilizadas no hace tanto tiempo. En un juego de ruedas, en las que cada una contiene los dígitos, cada vez que una rueda completa una vuelta, la  rueda siguiente avanza un décimo de vuelta.

A pesar de que Pascal fue enaltecido por toda Europa debido a sus logros, la Pascalina, resultó un desconsolador fallo financiero, pues para esos momentos, resultaba más costosa que la labor humana para los cálculos aritméticos.

 Gottfried W. von Leibnitz (1646-1717). Fué el siguiente en avanzar en el diseño de una máquina calculadora mecánica. Su artefacto se basó en el principio de la suma repetida y fue construida en 1694. Desarrolló una máquina calculadora automática con capacidad superior a la de Pascal, que permitía no solo sumar y restar, sino también multiplicar, dividir y calcular raíces cuadradas. La de Pascal solo sumaba y restaba. Leibnitz mejoro la máquina de Pascal al añadirle un cilindro escalonado cuyo objetivo era representar los dígitos del 1 al 9. Sin embargo, aunque el merito no le correspondía a él (pues se considera oficialmente que se inventaron más tarde), se sabe que antes de decidirse por el cilindro escalonado Leibnitz consideró la utilización de engranajes con dientes retráctiles y otros mecanismos técnicamente muy avanzados para esa época. Se le acredita el haber comenzado el estudio formal de la lógica, la cual es la base de la programación y de la operación de las computadoras.

Joseph-Marie Jackard (1753-1834). El primer evento notable sucedió en el 1801 cuando el francés, Joseph Jackard, desarrolló el telar automático. Jackard tuvo la idea de usar tarjetas perforadas para manejar agujas de tejer, en telares mecánicos. Un conjunto de tarjetas constituían un programa, el cual creaba diseños textiles.
Aunque su propósito no era realizar cálculos, contribuyó grandemente al desarrollo de las computadoras. Por primera vez se controla una máquina con instrucciones codificadas, en tarjetas perforadas, que era fácil de usar y requería poca intervención humana; y por primera vez se utiliza un sistema de tarjetas perforadas para crear el diseño deseado en la tela mientras esta se iba tejiendo. El telar de Jackard opera de la manera siguiente: las  tarjetas se perforan estratégicamente y se acomodan en cierta secuencia para indicar un diseño de tejido en particular. Esta máquina fue considerada el primer paso significativo para la automatización binaria.

 Charles Babbage (1793-1871). Profesor de matemáticas de la Universidad de Cambridge, Inglaterra, desarrolla en 1823 el concepto de un artefacto, que él denomina "máquina diferencial". La máquina estaba concebida para realizar cálculos, almacenar y seleccionar información, resolver problemas y entregar resultados impresos. Babbage imaginó su máquina compuesta de varias otras, todas trabajando armónicamente en conjunto: los receptores recogiendo información; un equipo transfiriéndola; un elemento almacenador de datos y operaciones; y finalmente una impresora entregando resultados. Pese a su increíble concepción, la máquina de Babbage, que se parecía mucho a una computadora, no llegó jamás a construirse. Los planes de Babbage fueron demasiado ambiciosos para su época. Este avanzado concepto, con respecto a la simple calculadora, le valió a Babbage ser considerado como el precursor de la computadora.

La novia de Babbage, Ada Augusta Byron, luego Condesa de Lovelace, hija del poeta inglés Lord Byron, que le ayuda en el desarrollo del concepto de la Máquina Diferencial, creando programas para la máquina analítica, es reconocida y respetada, como el primer programador de computadoras. La máquina tendría dos secciones fundamentales: una parte donde se realizarían todas las operaciones y otra donde se almacenaría toda la información necesaria para realizar los cálculos, así como los resultados parciales y finales. El almacén de datos consistiría de mil registradoras con un número de 50 dígitos cada una; estos números podrían utilizarse en los cálculos, los resultados se podrían guardar en el almacén y los números utilizados podrían transferirse a otras ubicaciones.

La máquina controlaría todo el proceso mediante la utilización de tarjetas perforadas similares a las inventadas por Jackard para la creación de diseños de sus telares, y que hasta hace muy poco se utilizaban regularmente.
Babbage no pudo lograr su sueño de ver construida la máquina, que había tomado 15 años de su vida entre los dos modelos, pero vio un equipo similar desarrollado por un impresor sueco llamado George Scheutz, basado en su máquina diferencial.

Babbage colaboró con Scheutz en la fabricación de su máquina e inclusive influyó todo lo que pudo, para que esta ganara la Medalla de Oro Francesa en 1855.

 George Boole   Trabajo sobre las bases sentadas por Leibnitz, quien preconizó que todas las verdades de la razón se conducían a un tipo de cálculo, para desarrollar en 1854, a la edad de 39 años, su teoría que redujo la lógica a un tipo de álgebra extremadamente simple. Esta teoría de la lógica construyó la base del desarrollo de los circuitos de conmutación tan importantes en telefonía y en el diseño de las computadoras electrónicas.

En su carrera como matemático, Boole tiene a su crédito también haber descubierto algo que se considera que fue indispensable para el desarrollo de la teoría de la relatividad de Einstein: las magnitudes constantes. Los descubrimientos matemáticos de George Boole, que llevaron al desarrollo del sistema numérico binario (0 y 1) constituyeron un hito incuestionable a lo largo del camino hacia las modernas computadoras electrónicas. Pero además de la lógica, el álgebra de Boole tiene otras aplicaciones igualmente importantes, entre ellas la de ser el álgebra adecuada para trabajar con la teoría combinatoria de la operación de unión e intersección. También, siempre en este campo, al considerar la idea del número de elementos de un conjunto, el álgebra de Boole constituye la base de la Teoría de las Probabilidades.

Claude Elwood Shanon A él se debe el haber podido aplicar a la electrónica - y por extensión a las computadoras - los conceptos de la teoría de Boole. Shanon hizo sus planteamientos en 1937 en su tesis de grado para la Maestría en Ingeniería Eléctrica en el MIT, uno de los planteles de enseñanza científica y tecnológica más prestigiosos del mundo.

En su tesis, Shanon sostenía que los valores de verdadero y falso planteados en el álgebra lógica de Boole, se correspondían con los estados 'abierto' y 'cerrado' de los circuitos eléctricos. Además, Shanon definió la unidad de información, et bit, lo que consecuentemente constituyó la base para la utilización del sistema binario de las computadoras en lugar del sistema decimal.

William Burroughs Nació el 28 de enero de 1857. La monotonía del trabajo y la gran precisión que se necesitaba en los resultados de los cálculos fue lo que decidió a William Burroughs a intentar construir una máquina calculadora precisa y rápida. Sus primeros pasos en este sentido los dio en 1882, pero no fue hasta casi veinte años después que su esfuerzo se vio coronado por el éxito.

Las primeras máquinas compradas por los comerciantes tuvieron que recogerse rápidamente, puesto que todas, presentaban defectos en el funcionamiento. Este nuevo fracaso fue el paso final antes de perfeccionar definitivamente su modelo al cual llamó Maquina de sumar y hacer listas.

A pesar de otro sin número de dificultades en promoción y mercado de su nueva máquina, poco a poco este modelo se fue imponiendo, de modo que luego de dos años ya se vendían a razón de unas 700 unidades por año. William Burroughs, fue el primer genio norteamericano que contribuyó grandemente al desarrollo de la computadora

Herman Hollerith Las tarjetas perforadas. Uno de los hitos más importantes en el proceso paulatino del desarrollo de una máquina que pudiera realizar complejos cálculos en forma rápida, que luego llevaría a lo que es hoy la moderna computadora, lo constituyó la introducción de tarjetas perforadas como elemento de tabulación. Este histórico avance se debe a la inventiva de un ingeniero norteamericano de ascendencia alemán: Herman Hollerith. La idea de utilizar tarjetas perforadas realmente no fue de Hollerith, sino de John Shaw Billings, su superior en el Buró del Censo, pero fue Hollerith quien logró poner en práctica la idea que revolucionaría para siempre el cálculo mecanizado. El diseñó un sistema mediante el cual las tarjetas eran perforadas para representar la información del censo.  Las tarjetas eran insertadas en la máquina tabuladora y ésta calculaba la información recibida. Hollerith no tomó la idea de las tarjetas perforadas del invento de Jackard, sino de la "fotografía de perforación" Algunas líneas ferroviarias de la época expedían boletos con descripciones físicas del pasajero; los conductores hacían orificios en los boletos que describían el color de cabello, de ojos y la forma de nariz del pasajero. Eso le dio a Hollerith la idea para hacer la fotografía perforada de cada persona que se iba a tabular. Hollertih fundó la Tabulating Machine Company y vendió sus productos en todo el mundo. La demanda de sus máquinas se extendió incluso hasta Rusia. El primer censo llevado a cabo en Rusia en 1897, se registró con el Tabulador de Hollerith. En 1911, la Tabulating Machine Company, al unirse con otras Compañías, formó la Computing-Tabulating-Recording-Company.

Konrad Zuse  Nació en Berlín, Alemania, en 1910. EN 1938, Zuse ya había desarrollado una notación binaria que aplicó a los circuitos de rieles electromagnéticos que utilizaría más tarde en su serie de computadoras. El primer modelo construido por Konrad Zuse en 1939, fabricado por completo en la sala de su casa sin ayuda por parte de ninguna agencia gubernamental o privada, era un equipo completamente mecánico. Este modelo fue bautizado con el nombre de V-1 (V por Versuchmodel o Modelo Experimental). La intención principal de Zuse al tratar de desarrollar estos equipos era proporcionar una herramienta a los científicos y técnicos para resolver la gran cantidad de problemas matemáticos involucrados en todas las ramas científicas y técnicas.

En 1939 Konrad Zuse fue reclutado por el ejército alemán, pero pronto fue licenciado (al igual que la mayoría de los ingenieros en aquella época) y asignado a trabajar en el cuerpo de ingeniería que desarrollaba los proyectos del ejército, en el Instituto Alemán de Investigación Aérea.

Al mismo tiempo que prestaba sus servicios en el citado instituto, Zuse continúo sus trabajos en la sala de su casa y desarrolló una versión más avanzada de su V-1 a la cual denominó V-2. Este modelo lo construyó Zuse con la ayuda de un amigo y estudiante del mismo Instituto Técnico donde Zuse había estudiado, Helmut Schreyer había hecho su carrera en la rama de las telecomunicaciones y fue él quién consiguió los rieles electromagnéticos con que funcionaba este nuevo modelo, y quien sugirió a Zuse su utilización.

Alfred Teichmann, uno de los principales científicos que prestaba servicios en el Instituto Alemán de Investigaciones Aéreas, tuvo conocimiento de los trabajos de Zuse con respecto a las computadoras en una visita que hizo a la casa de éste. Allí vio por primera vez el modelo V-2 y quedó inmediatamente convencido de que máquinas como esa eran las que se necesitaban para resolver algunos de los problemas más graves que se estaban presentado en el diseño de los aviones.

Con la ayuda de Teichmann, Zuse logró conseguir fondos que le permitieron continuar con sus investigaciones un poco más holgadamente, aunque siempre en la sala de su casa, y así surgió, con la colaboración activa de Schreyer, la V-3, la primera computadora digital controlada por programas y completamente operacional. Este modelo constaba con 1.400 rieles electromagnéticos en la memoria, 600 para el control de las operaciones aritméticas y 600 para otros propósitos.

Durante la Segunda Guerra Mundial Wernher von Braun, eminente científico alemán, desarrolló un tipo de bombas cohete denominadas V-1 y V-2, muy celebres sobre todo por el papel que jugaron en los ataques alemanes contra el puerto de Amberes (Bélgica) y Londres (Inglaterra). Para evitar confusión con estas bombas, Zuse determinó cambiar la denominación de sus computadoras que, en adelante, pasaron a conocerse como Z-1, Z-2, Z-3, etc.

El modelo Z-3 desarrollado a finales de 1941 como una computadora de propósito general, fue parcialmente modificada por Zuse con el objetivo de apoyar el esfuerzo bélico alemán. La nueva versión se denominó Z-4 y se utilizó como elemento de teledirección de una bomba volante desarrollada por la compañía Henschel Aircraft Co.,

para la Luftwaffe. (Zuse niega que la Z-4 haya sido diseñada para este propósito).

La bomba volante alemana era una especie de avión no tripulado que era transportado por un bombardero. Cuando el piloto del bombardero determinaba el blanco, lanzaba la bomba que era dirigida mediante la Z-4 por la tripulación del bombardero. En sus aplicaciones de diseño, la Z-4 estaba destinada a medir las inexactitudes en las dimensiones de las piezas de los aviones y a calcular la desviación que éstas ocasionarían en la trayectoria de  los aviones que se construyeran con ellas.

En 1944, mientras Zuse trabajaba en la terminación de la Z-4, se enteró de la presentación en Estados Unidos de la Mark I de Aiken, la primera computadora digital programable norteamericana.

Al finalizar la guerra, con la caída del régimen nazi, Zuse abandono Berlín llevando consigo todos los elementos de su computadora Z-4 (todos los modelos previos fueron destruidos en los bombardeos a Berlín). Ayudado por un amigo de Wernher von Braun, a quien había conocido en su huida de Berlín, Walter Robert Dornberger, Zuse y von Braun abandonaron Alemania, y Zuse se radicó en la pequeña población Alpina de Suiza, Hinterstein. Allí continúo trabajando en su proyecto, desarrollado su computadora.

En 1947, la Z-4 tenía una capacidad de 16 palabras en la memoria, en 1949 la capacidad había aumentado hasta 64 palabras y en la década de los 50, la memoria de la Z-4 podía contener 1024 palabras de 32 bits. Además podía multiplicar en un segundo y extraer raiz cuadrada en 5 segundos.

Además de sus trabajos en la computadora, Konrad Zuse desarrolló un idioma prototipo al cual llamó Plankalkul, en el cual anticipó y resolvió varios de los problemas que se abarcan hoy en el contexto de la teoría de los algoritmos, programación estructurada y estructura de la programación de idiomas para computadoras.
Poco después de terminada la guerra, ya establecido en suelo suizo, Konrad Zuse estableció su propia compañía a la que denomino Zuse KG. Después de varios años construyendo su serie Z y de no haber logrado interesar lo suficiente a IBM para respaldar su producción, Remington Rand decidió ayudar a comercializar en Suiza algunos de los modelos fabricados por Zuse. Finalmente, la firma Siemens AG adquirió los derechos sobre la compañía de Zuse y éste quedó como consultor semi-retirado de la misma. Hoy se reconoce a Konrad Zuse como el creador de la primera computadora digital programable completamente operacional.

 Atanasoff Y Berry Una antigua patente de un dispositivo que mucha gente creyó que era la primera computadora digital electrónica, se invalidó en 1973 por orden de un tribunal federal, y oficialmente se le dio el crédito a John V. Atanasoff como el inventor de la computadora  digital electrónica. El Dr. Atanasoff, catedrático de la Universidad Estatal de Iowa, desarrolló la primera computadora digital electrónica entre los años de 1937 a 1942. Llamó a su invento la computadora Atanasoff-Berry, ó solo ABC (Atanasoff Berry Computer). Un estudiante graduado, Clifford Berry, fue una útil ayuda en la construcción de la computadora ABC.

En el edificio de Física de la Universidad de Iowa aparece una placa con la siguiente leyenda: "La primera computadora digital electrónica de operación automática del mundo, fue construida en este edificio en 1939 por John Vincent Atanasoff, matemático y físico de la Facultad de la Universidad, quien concibió la idea, y por Clifford Edward Berry, estudiante graduado de física."

MARK I (1944) Marca la fecha del la primera computadora, que se pone en funcionamiento. Es el Dr. Howard Aiken en la Universidad de Harvard, Estados Unidos, quien la presenta con el nombre de Mark I. Es esta la primera máquina procesadora de información. La Mark I funcionaba eléctricamente, las instrucciones e información se introducen en ella por medio de tarjetas perforadas. Los componentes trabajan basados en principios electromecánicos. Este impresionante equipo medía 16 mts. de largo y 2,5 mts. de alto, contenía un aproximado de 800.000 piezas y más de 800 Km. de cablerío eléctrico, pero los resultados obtenidos eran igualmente impresionantes para la época. Mark I tenía la capacidad de manejar números de hasta 23 dígitos, realizando sumas en menos de medio segundo, multiplicaciones en tres segundos y operaciones logarítmicas en poco más de un minuto. Ahora sí se había hecho por fin realidad el sueño de Pascal, Leibnitz, Babbage, Hollerith y muchos otros: la computadora era una realidad.

A pesar de su peso superior a 5 toneladas y su lentitud comparada con los equipos actuales, fue la primera máquina en poseer todas las características de una verdadera computadora.

 ENIAC (1946) La primera computadora electrónica fue terminada de construir en 1946, por J.P.Eckert y J.W.Mauchly en la Universidad de Pensilvania, U.S.A. y se le llamó ENIAC (Electronic Numerical Integrator And Computer), ó Integrador numérico y calculador electrónico. La ENIAC construida para aplicaciones de la Segunda Guerra mundial, se terminó en 30 meses por un equipo de científicos que trabajaban bajo reloj. La ENIAC, mil veces más veloz que sus predecesoras electromecánicas, irrumpió como un importante descubrimiento en la tecnología de la computación. Pesaba 30 toneladas y ocupaba un espacio de 450 mts cuadrados, llenaba un cuarto de 6 mts x 12 mts y contenía 18.000 bulbos, tenía que programarse manualmente conectándola a 3 tableros que contenían más de 6000 interruptores. Ingresar un nuevo programa era un proceso muy tedioso que requería días o incluso semanas. A diferencia de las computadoras actuales que operan con un sistema binario (0,1) la ENIAC operaba con uno decimal (0, 1,2...9) La ENIAC requería una gran cantidad de electricidad. La ENIAC poseía una capacidad, rapidez y flexibilidad muy superiores a la Mark I. Comenzaba entonces la tenaz competencia en la naciente industria,  IBM desarrolló en 1948 su computadora SSEC (Calculadora Electrónica de Secuencia Selectiva) superior a la ENIAC.

Para 1951, la compañía Remington Rand, otra de las líderes en este campo, presento al mercado su modelo denominado Univac, que ganó el contrato para el censo de 1951 por su gran capacidad, netamente superior a todas las demás desarrolladas hasta el momento.

Pero para la recia personalidad de Thomas J. Watson,  se le hacia difícil aceptar que su compañía no fuera la principal en este campo, así que en respuesta al desarrollo de la Univac, hizo que IBM construyera su modelo 701, una computadora científica con una capacidad superior 25 veces a la SSEC y muy superior también a la Univac.

A la 701 siguieron otros modelos cada vez más perfeccionados en cuanto a rapidez, precisión y capacidad, los cuales colocaron a IBM como el líder indiscutible de la naciente industria de las computadoras. Aunque en la actualidad es  difícil mencionar a una firma determinada como la primera en este campo, es un hecho irrefutable que IBM continua siendo una de las principales compañías en cuanto a desarrollo de computadoras se refiere.

  • Con ella se inicia una nueva era, en la cual la computadora pasa a ser el centro del desarrollo tecnológico, y de una profunda modificación en el comportamiento de las sociedades.

EDVAC (1947)  (Eletronic Discrete-Variable Automatic Computer, es decir computadora automática electrónica de variable discreta) Desarrollada por Dr. John W. Mauchly, John Presper Eckert Jr. y John Von Neumann. Primera computadora en utilizar el concepto de almacenar información.  Podía almacenar datos e instrucciones usando un código especial llamado notación binaria. Los programas almacenados dieron a las computadoras una flexibilidad y confiabilidad tremendas, haciéndolas más rápidas y menos sujetas a errores que los programas mecánicos. Una computadora con capacidad de programa almacenado podría ser utilizada para varias aplicaciones cargando y ejecutando el programa apropiado. Hasta este punto, los programas y datos podían ser ingresados en la computadora sólo con la notación binaria, que es el único código que las computadoras "entienden". El siguiente desarrollo importante en el diseño de las computadoras fueron los programas intérpretes, que permitían a las personas comunicarse con las computadoras utilizando medios distintos a los números binarios. En 1952 Grace Murray Hoper una oficial de la Marina de EE.UU., desarrolló el primer compilador, un programa que puede traducir enunciados parecidos al inglés en un código binario comprensible para la maquina llamado COBOL (COmmon Business-Oriented Languaje).

EDSAC (1949) Desarrollada por Maurice Wilkes.  Primera computadora capaz de almacenar programas electrónicamente.

 LA ACE PILOT (1950) Turing tuvo listos en 1946 todos los planos de lo que posteriormente seria conocido como ACE Pilot (Automatic Calculating Engine) que fue presentado públicamente en 1950. La ACE Pilot estuvo considerada por mucho tiempo como la computadora más avanzada del mundo, pudiendo realizar

operaciones tales como suma y multiplicación en cuestión de microsegundos.

 UNIVAC I (1951) Desarrollada por Mauchly y Eckert para la Remington-Rand Corporation.  Primera computadora comercial utilizada en las oficinas del censo de los Estados Unidos.  Esta máquina se encuentra actualmente en el "Smithsonian Institute".  En 1952 fue utilizada para predecir la victoria de Dwight D. Eisenhower en las elecciones presidenciales de los Estados Unidos. 

El Software

 Durante las tres primeras décadas de la Informática, el principal desafío era el desarrollo del hardware de las computadoras, de forma que se redujera el costo de procesamiento y almacenamiento de datos.

La necesidad de enfoques sistemáticos para el desarrollo y mantenimiento de productos de software se patentó en la década de 1960. En ésta década aparecieron las computadoras de la tercera generación y se desarrollaron técnicas de programación como la multiprogramación y de tiempo compartido. Y mientras las computadoras estaban haciéndose más complejas, resultó obvio que la demanda por los productos de software creció en mayor cantidad que la capacidad de producir y mantener dicho software. Estas nuevas capacidades aportaron la tecnología necesaria para el establecimiento de sistemas computacionales interactivos, de multiusuario, en línea y en tiempo real; surgiendo nuevas aplicaciones para la computación, como las reservaciones aéreas, bancos de información médica, etc.

Fue hasta el año 1968 que se convocó una reunión en Garmisch, Alemania Oriental estimulándose el interés hacia los aspectos técnicos y administrativos utilizados en el desarrollo y mantenimiento del software, y fue entonces donde se utilizó el término "Ingeniería del Software".

A lo largo de la década de los ochenta, los avances en microelectrónica han dado como resultado una mayor potencia de cálculo a la vez que una reducción de costo. Hoy el problema es diferente. El principal desafío es mejorar la calidad y reducir el costo.

Las personas encargadas de la elaboración  del software se han enfrentado a problemas muy comunes: unos debido a la exigencia cada vez mayor en la capacidad de resultados del software, debido al permanente cambio de condiciones lo que aumenta su complejidad y obsolescencia; y otros, debido a la carencia de herramientas adecuadas y estándares de tipo organizacional encaminados al mejoramiento de los procesos en el desarrollo del software.

Una necesidad sentida en nuestro medio es el hecho de que los productos de software deben ser desarrollados con base en la implementación de estándares mundiales, modelos , sistemas métricos, capacitación del recurso humano y otros principios y técnicas de la ingeniería de software que garanticen la producción de software de calidad y competitividad a nivel local e internacional.

Con el acelerado avance tecnológico de la información, la cantidad y la complejidad de los productos de software se están incrementando considerablemente, así como también la exigencia en su funcionalidad y confiabilidad; es por esto que la calidad y la productividad se están constituyendo en las grandes preocupaciones tanto de gestores como para desarrolladores de software.

En los primeros años del software, las actividades de elaboración de programas eran realizadas por una sola persona utilizando lenguajes de bajo nivel y ajustándose a un computador en especial, que generaban programas difíciles de entender, aun hasta para su creador, después de algún tiempo de haberlo producido. Esto implicaba tener que repetir el mismo proceso para desarrollar el mismo programa para otras máquinas.

Por consiguiente, la confiabilidad, facilidad de mantenimiento y cumplimiento no se garantizaban y la productividad era muy baja.

Posteriormente, con la aparición de técnicas estructuradas y con base en las experiencias de los programadores se mejoró la productividad del software. Sin embargo, este software seguía teniendo fallas, como por ejemplo: documentación inadecuada, dificultad para su correcto funcionamiento, y por su puesto, insatisfacción del cliente.

Conforme se incrementaba la tecnología de los computadores, también crecía la demanda de los productos de software, pero mucho más lentamente, tanto que hacia 1990 se decía que las posibilidades del software estaban retrasadas respecto a las del hardware en un mínimo de dos generaciones de procesadores y que la distancia continuaba aumentando.

En la actualidad  muchos de estos problemas subsisten en el desarrollo de software, con una dificultad adicional relacionada  con la incapacidad para satisfacer totalmente la gran demanda y exigencias por parte de los clientes.

El elemento básico del software es el programa. Un programa es un grupo de instrucciones destinadas a cumplir una tarea en particular. Un programa puede estar conformado por varios programas más sencillos.

El software se puede clasificar en tres grupos: sistemas operativos, lenguajes de programación y aplicaciones.  

Sistema Operativo

 El sistema operativo es un conjunto de programas que coordinan el equipo físico de la computadora y supervisan la entrada, la salida, el almacenamiento y las funciones de procesamiento. Incluye comandos internos y externos. Los comandos internos se encuentran en la memoria de la computadora y los comandos externos, generalmente, están en la unidad de disco.  Para usar los comandos externos, se necesitan sus archivos.  

El sistema operativo es una colección de programas diseñados para facilitarle al usuario la creación y manipulación de archivos, la ejecución de programas y la operación de otros periféricos conectados a la computadora.  Ejemplo de algunos comandos son: abrir un archivo, hacer una copia impresa de lo que hay en la pantalla y copiar un archivo de un disco a otro.

En las décadas de los 70 y 80 la mayor parte de las computadoras utilizaban su propio sistema operativo, o sea, que aquellas aplicaciones creadas para un sistema operativo no se podían usar en otro.  Debido a este problema, los vendedores de sistemas operativos decidieron concentrarse en aquellos sistemas más utilizados. Ellos visualizaron que las dos compañías más grandes de microcomputadoras se unirían para crear mayor compatibilidad y esto es un hecho.

Toda computadora tiene algún tipo de sistema operativo, el cual debe ser activado cuando la computadora se enciende.  Si el sistema operativo está grabado en la ROM o presente en el disco duro de la computadora, el sistema operativo, generalmente, se activa automáticamente cuando la computadora se enciende.  Si no, se inserta un disco que contenga el sistema operativo para activarlo.

Un sistema operativo provee un programa o rutina para preparar los discos ("formatting a disk"), copiar archivos o presentar un listado del directorio del disco.

El sistema operativo del disco de una computadora personal de IBM (IBM-PC) es una colección de programas diseñados para crear y manejar archivos, correr programas y utilizar los dispositivos unidos al sistema de la computadora.  Microsoft (compañía de programas) desarrolló PC-DOS para IBM y MS-DOS para IBM compatibles. Los dos sistemas operativos son idénticos.  DOS dicta cómo los programas son ejecutados en IBM y compatibles.

El DOS ("Disk Operating System") es el sistema operativo del disco.  Es el conjunto de instrucciones del programa que mantiene un registro de las tareas requeridas para la operación de la computadora, o sea, es una colección de programas diseñados para crear y manejar archivos, correr programas y utilizar los dispositivos unidos al sistema de la computadora.  

Entre las tareas que realiza un SO tenemos:

  • Si es un sistema multitarea: asignar y controlar los recursos del sistema, definir qué aplicación y en qué orden deben ser ejecutadas.
  • Manejar la memoria del sistema que comparten las múltiples aplicaciones.
  • Manejar los sistemas de entrada y salida, incluidos discos duros, impresoras y todo tipo de puertos.
  • Envío de mensajes de estado a las aplicaciones, al administrador de sistema o al propio usuario, sobre cualquier    error o información necesaria para el trabajo estable y uniforme del sistema.
  • Asume tareas delegadas de las propias aplicaciones, como impresión en background y procesamiento por lotes, con el fin de que éstas ganen en eficiencia y tiempo.
  • Administra, de existir, el procesamiento en paralelo. 

Tipos de sistemas operativos

  • El "Character based": DOS dice si está listo para recibir un comando presentando un símbolo ("prompt") en la pantalla: C:\>. El usuario responde escribiendo una instrucción para ser ejecutada, caracter por caracter mediante el uso del teclado.    
  • El "Graphic User Interface": Hace uso de un "mouse" como un dispositivo de puntero y permite que se apunte a iconos (pequeños símbolos o figuras que representan alguna tarea a realizarse) y oprimir el botón del "mouse" para ejecutar la operación o tarea seleccionada. El usuario puede controlar el sistema operativo seleccionando o manipulando iconos en el monitor.

 Ejemplos de sistemas operativos

PC-DOS (Personal Computer DOS)
      MS-DOS (Microsoft DOS)
      OS/2 (IBM Operating System 2)
      DR DOS 5.0 (Digital Research DOS)
      UNIX

Linux
      Windows para sistemas operativos DOS
      Windows NT

Redes

 Sistemas Paralelos 

  • Sistemas Paralelos: Sistemas de múltiples procesadores con mas de un procesador con comunicación entre ellos.
  • Sistema Fuertemente Acoplado: Los procesadores comparten memoria y reloj; la comunicación usualmente se realiza mediante memoria compartida.

        Ventajas:

?         Incremento de throughput

?         Económica

?         Incremento en la confiabilidad

1990 - 2000

  • Cómputo Paralelo (Teraflops).
  • PC?s poderosas (1.5 GigaHertz), Computadoras Multimedia.
  • Redes de Comunicación de distancia mundial, con envío de imágenes, grandes cantidades de datos, audio y video.
  • World Wide Web.
  • Notebooks utilizando tecnologías de comunicación inalámbrica: Cómputo Móvil.
  • Cómputo Embebido y Robótica.

Partes: 1, 2, 3, 4


 Página anterior Volver al principio del trabajoPágina siguiente 

Comentarios


Trabajos relacionados

Ver mas trabajos de General

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.