Agregar a favoritos      Ayuda      Português      Ingles     

El plano cartesiano




Partes: 1, 2, 3

  1. Teoría
  2. Propuestas de actividades
  3. Bibliografía

Teoría

El plano cartesiano:

EL PLANO CARTESIANO.  

El plano cartesiano está formado por dos rectas numéricas, una horizontal y otra vertical que se cortan en un punto. La recta horizontal es llamada eje de las abscisas o de las equis (x), y la vertical, eje de las ordenadas o de las yes, (y); el punto donde se cortan recibe el nombre de origen.

El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados. Las coordenadas se forman asociando un valor del eje de las "X" y uno de las "Y", respectivamente, esto indica que un punto se puede ubicar en el plano cartesiano con base en sus coordenadas, lo cual se representa como:

         P (x, y)

 Para localizar puntos en el plano cartesiano se debe llevar a cabo el siguiente procedimiento:

1. Para localizar la abscisa o valor de x, se cuentan las unidades correspondientes hacia la derecha si son positivas o hacia a izquierda si son negativas, a partir del punto de origen, en este caso el cero.

2. Desde donde se localiza el valor de x, se cuentan las unidades correspondientes hacia arriba si son positivas o hacia abajo, si son negativas y de esta forma se localiza cualquier punto dadas sus coordenadas.

Ejemplos:

Localizar el punto A ( -4, 5 ) en el plano cartesiano. Este procedimiento también se emplea cuando se requiere determinar las coordenadas de cualquier punto que esté en el plano cartesiano.

 Determinar las coordenadas del punto M.

Las coordenadas del punto M son (3,-5).

 De lo anterior se concluye que:

Para determinar las coordenadas de un punto o localizarlo en el plano cartesiano, se encuentran unidades correspondientes en el eje de las x hacia la derecha o hacia la izquierda y luego las unidades del eje de las y hacia arriba o hacia abajo, según sean positivas o negativas, respectivamente.

    Doña Lupe  nos ha dicho que su farmacia  está dentro del centro de la ciudad . Supongamos que deseamos saber la ubicación  exacta de la farmacia de Doña Lupe Una vez  que ya estamos  en  el centro le preguntamos a un policía para que nos oriente. El policía nos ha dicho que caminemos 5 cuadras hacía el este y 6 cuadras hacía el norte para llegar a la farmacia.La cantidad de cuadras que tenemos que caminar  las podemos entender como coordenadas en un plano cartesiano.

Lo anterior lo podemos expresar en un plano cartesiano de la siguiente manera:

Para el problema planteado , el origen del plano será el punto de partida que es en donde le preguntamos al policía sobre la ubicación de la farmacia.

Funciones lineales:

Esta clase de funciones tienen dos características esenciales:

  • Las variaciones entre dos valores de la variable  independiente y la de sus correspondientes de la variable dependiente son uniformes.
  • Todos los puntos de su gráfica están alineados.

Funciones de proporcionalidad directa:

Si en todos los pares de valores de una función de proporcionalidad directa dividimos la ordenada por la abscisa, obtenemos siempre el mismo número. Ese valor se llama constante de proporcionalidad, y se escribe habitualmente k.

Funciones de proporcionalidad inversa:

Si en todos los pares de valores de una función de proporcionalidad inversa multiplicamos la ordenada por la abscisa, obtenemos siempre el mismo número, que es la constante de proporcionalidad, y habitualmente se escribe k.

Propuestas de Actividades

Pág. 41

Act. 37

Ignacio participa en el triatlón de su ciudad, que consiste en tres trayectos: el primero es de carrera pedestre, el segundo es de nado en una laguna y el último es de mountain-bike.

Observen la gráfica, que muestra la altura con respecto al nivel de la laguna que se encuentra Ignacio en cada momento de la competencia, y respondan a las preguntas.

a)       ¿Cuánto tiempo tardó en alcanzar la altura máxima?


Partes: 1, 2, 3

Página siguiente 

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda