Agregar a favoritos      Ayuda      Português      Ingles     

¿Qué es la inteligencia artificial

Enviado por osiris



Indice
1. ¿Qué es la inteligencia artificial?
2. ¿Qué es una técnica de IA?
3. El algoritmo.
4. Criterios de determinación del éxito.
5. Redes Neuronales
6. Robótica

1. ¿Qué es la inteligencia artificial?

Estudia como lograr que las máquinas realcen tareas que, por el momento, son realizadas mejor por los seres humanos. La definición es efímera porque hace referencia al estado actual de la informática. No incluye áreas que potencialmente tienen un gran impacto tales como aquellos problemas que no pueden ser resueltos adecuadamente ni por los seres humanos ni por las máquinas.

Problemas de la IA.
Al principio se hizo hincapié en las tareas formales como juegos y demostración de teoremas, juegos como las damas y el ajedrez demostraron interés.
La geometría fue otro punto de interés y se hizo un demostrador llamado: El demostrador de Galenter. Sin embargo la IA pronto se centró en problemas que aparecen a diario denominados de sentido común (commonsense reasoning).
Se enfocaron los estudios hacia un problema muy importante denominado Comprensión del lenguaje natural. No obstante el éxito que ha tenido la IA se basa en la creación de los sistemas expertos, y de hecho áreas en donde se debe tener alto conocimiento de alguna disciplina se han dominado no así las de sentido común.

Ahora bien en la introducción se habló cuestiones importantes de la IA que son:
-¿Cuáles son nuestras suposiciones fundamentales sobre la inteligencia?
-¿Qué tipo de técnicas son las mas adecuadas para resolver los problemas de la IA?
-¿A qué nivel de detalle, si es que no por completo, se puede intentar modelar la inteligencia humana?
-¿Cómo se puede saber cuando se ha tenido éxito en la construcción de programa inteligente?

Aplicaciones de laIA.
Tareas de la vida diaria:
Percepción
Visión
Habla
Lenguaje natural
Comprensión
Generación
Traducción
Sentido común
Control de un robot

Tareas formales:
Juegos
Ajedrez
Backgmmon
Damas
Go
Matemáticas
Geometría
Lógica
Cálculo Integral
Demostración de las propiedades de los programas

Tareas de los expertos:
Ingeniería
Diseño
Detección de fallos
Planificación de manufacturación
Análisis científico
Diagnosis médica
Análisis financiero
Suposiciones subyacentes.
En 1976 Newell y Simon hablan acerca de la Hipótesis del sistema de símbolos físicos (physical symbol hipótesis)

Se define a un sistema de símbolos físicos como un conjunto de entidades llamadas símbolos, que son patrones físicos que pueden funcionar como componentes de otro tipo de entidad llamada expresión (o estructura de símbolos). Una estructura de símbolos está formada por un número de instancias (señales o tokens) de símbolos relacionados de alguna forma física. En algún instante el sistema contendrá una colección de esas estructuras de símbolos.

El sistema contiene también una colección de procesos que operan sobre expresiones para producir otras expresiones: procesos de creación, modificación, reproducción y destrucción. Un sistema de símbolos físicos es una máquina que produce a lo largo del tiempo una colección evolutiva de estructuras de símbolos. Este sistema existe en un mundo de objetos tan extenso como sus propias expresiones simbólicas.

La hipótesis de sistema de símbolos físicos es: Un sistema de símbolos físicos posee los medios necesarios y suficientes para realizar una acción inteligente y genérica.

Las evidencias que apoyan la hipótesis del sistema de símbolos físicos no han venido solo de áreas como juegos sino de otras áreas como la percepción visual donde es más atractivo esperar la influencia de procesos subsimbólicos. Sin embargo procesos subsimbólicos como las redes neuronales están cuestionando los simbólicos como tareas de bajo nivel. Quizá entonces los sistemas de símbolos físicos solo sean capaces de modelar algunos aspectos de la inteligencia humana y no otros.

La importancia de la hipótesis de sistema de símbolos físicos es doble. Es una teoría significativa de la naturaleza de la inteligencia humana y también es de gran interés para los psicólogos.

2. ¿Qué es una técnica de IA?

Uno de los más rápidos y sólidos resultados que surgieron en las tres primeras décadas de las investigaciones de la IA fue que la inteligencia necesita conocimiento.

Para compensar este logro imprescindible el conocimiento posee algunas propiedades poco deseables como:
Es voluminoso
Es difícil caracterizarlo con exactitud
Cambia constantemente
Se distingue de los datos en que se organiza de tal forma que se corresponde con la forma en que va a ser usado.

Con los puntos anteriores se concluye que una técnica de IA es un método que utiliza conocimiento representado de tal forma que:
El conocimiento represente las generalizaciones. En otra palabras no es necesario representar de forma separada cada situación individual. En lugar de esto se agrupan las situaciones que comparten propiedades importantes. Si el conocimiento no posee esta propiedad, puede necesitarse demasiada memoria.
Si no se cumple esta propiedad es mejor hablar de "datos" que de conocimiento.
Debe ser comprendido por las personas que lo proporcionan. Aunque en mucho programas, los datos pueden adquirirse automáticamente (por ejemplo, mediante lectura de instrumentos), en muchos dominios de la IA, la mayor parte del conocimiento que se suministra a los programas lo proporcionan personas haciéndolo siempre en términos que ellos comprenden.
Puede modificarse fácilmente para corregir errores y reflejar los cambios en el mundo y en nuestra visión del mundo.
Puede usarse en gran cantidad de situaciones aún cuando no sea totalmente preciso o completo.
Puede usarse para ayudar a superar su propio volumen, ayudando a acotar el rango de posibilidades que normalmente deben ser consideradas.

Es posible resolver problemas de IA sin utilizar Técnicas de IA (si bien estas situaciones no suelen ser muy adecuadas). También es posible aplicar técnicas de IA para resolver problemas ajenos a la IA. Esto parece ser adecuado para aquellos problemas que tengan muchas de las características de los problemas de IA.

Los problemas al irse resolviendo tienen entre las características de su solución:
Complejidad
El uso generalizado
La claridad de su conocimiento
La facilidad de su extensión
Tres en raya.

Este problema se enuncia inicialmente así:
El tablero se representa por un vector de nueve componentes, donde las componentes del vector se corresponden con las posiciones del tablero de la siguiente forma:
1 2 3
4 5 6
7 8 9

Este es solo la tercera de las soluciones del libro pero es la más efectiva:
Posición una estructura que contiene un vector de nueve componentes
Tablero que representa al tablero, una lista de posiciones del tablero que podría ser el siguiente movimiento, y un número que representa una estimación de la probabilidad de que la jugada lleve a la victoria al jugador que mueve.

3. El algoritmo.

Para decidirla siguiente jugada, se debe tener en cuenta las posiciones del tablero que resultarán de cada posible movimiento. Decidir que posición es la mejor, realizar la jugada que corresponda a esa posición, y asignar la clasificación de mejor movimiento a la posición actual.

Para decidir cuál de todas las posibles posiciones es mejor, se realiza para cada una de ellas la siguiente:
- Ver si se produce la victoria. Si ocurre catalogarla como la mejor dándole el mejor puesto en la clasificación.
- En caso contrario, considerar todos los posibles movimientos que el oponente puede realizar en la siguiente jugada. Mirar cual de ellos es pero para nosotros (mediante una llamada recursiva a este procedimiento). Asumir que el oponente realizará este movimiento. Cualquier puesto que tenga la jugada, asignarla al nodo que está considerando.
- El mejor nodo es el que resulte con un puesto mas alto.

Este algoritmo inspecciona varias secuencias de movimientos para encontrar aquella que lleva a la victoria. Intenta maximizar la probabilidad de victoria. Mediante la suposición de que el oponente intentará minimizar dicha probabilidad. Este algoritmo se denomina mínimax.

El programa necesita mucho más tiempo que otras soluciones debido a que debe realizar una búsqueda en un árbol que representa todas las posibles secuencias de jugada antes de realizar un movimiento. Sin embargo es superior a los demás programas en algo importante: podría ser ampliado para manipular juegos mas complicados que las tres en raya, cualidad en que otras soluciones fracasan.

La anterior solución es un ejemplo de 1 uso de una técnica de IA. Para problemas muy pequeños, es menos eficiente que los métodos más directos. Sin embargo puede usarse en aquellas situaciones en las que fallen los métodos tradicionales.

Respuesta a preguntas.
En este problema se aborda la solución de un texto escrito en español, de hecho son preguntas que deben ser respondidas.
Si embargo es más difícil delimitar formalmente y con precisión en qué consiste el problema y que constituye una solución correcta para él.

En esta parte del capítulo el problema tal vez más interesante es:
María fue a comprar un abrigo nuevo. Ella encontró uno rojo que le gustaba de verdad. Cuando ella lo llevó a casa, ella descubrió que hacia juego perfectamente con su vestido favorito.

Se intenta responder a las preguntas siguientes:
¿Qué fue a comprar María?
¿Qué encontró que a ella le gustaba?
¿Compró María algo?

Nuevamente como en el problema anterior solo se mostrará la tercera de las soluciones:
Se transforma el texto de entrada en una forma estructurada que contiene frases del texto y se combina con otras formas estructuradas que describen conocimiento previo sobre los objetos y situaciones que aparecen en el texto.

Se usa una estructura para construir Textointegrado a partir del texto de entrada. Este tipo de conocimiento almacenado sobre acciones típicas se denomina guión. (script). En este caso por ejemplo, M es un abrigo y M' es un abrigo rojo.

Ir de compras:
Roles: C (cliente), V (vendedor)
Props: M (productos), D (dólares)
Ubicación: L (tienda)

1. C entra en L
2. C empieza a curiosear.
3. C busca un M en particular 4. C busca cualquier M interesante
5. C pide ayuda a V
7. C encuentra M'
8. C no encuentra M
9. C sale de L 10. C compra M' 11. C sale de L 12. Vuelta al paso 2
13. C sale de L
14. C se lleva M'

En la solución del problema se hace una representación estructurada acerca del conocimiento contenido en el texto de entrada pero cambiando ahora con una recopilación de conocimiento relacionado.

La pregunta de entrada en forma de caracteres.

El algoritmo.

Se estructura la entrada del programa utilizando tanto el conocimiento como el modelo del mundo. El número de posibles estructuras será bastante grande. Aunque algunas veces, sin embargo, es posible considerar menos posibilidades utilizando el conocimiento adicional para filtrar las alternativas.

Con la última solución las preguntas si se pueden contestar.

El guión para ir de compras se instancia, y debido a la última frase se forma la representación de este texto usando el paso 14 del guión. Cuando el guión es instanciado, es seguro que M' representa en la estructura el abrigo rojo (ya que el guión indica que M' es lo que se lleva a casa y el texto rojo indica que el abrigo rojo es lo que se lleva a casa)

Esta solución es más potente que otras debido a que utiliza más conocimiento. De hecho estas son técnicas de IA. Sin embargo son necesarias ciertas advertencias. Las técnicas utilizadas en la última solución no son las adecuadas para responder adecuadamente a todas las preguntas del español. El aspecto más importante que no aparece en esta solución es un mecanismo de razonamiento general (inferencia) para poder usarlo creando la respuesta pedida no aparece explícitamente en la entrada del texto y sin embargo la respuesta se deduce lógicamente del conocimiento que allí se encuentra.

Así que se puede concluir que el objetivo de las técnicas de IA es apoyar el uso eficaz del conocimiento.
En las soluciones en las que se usan técnicas de IA se ponen de manifiesto tres que so muy importantes:
Búsqueda. – Proporciona una forma de resolver problemas en los que no se dispone de un método más directo tan bueno como una estructura en la que empotrar algunas técnicas directas existentes.
Uso del conocimiento. – Proporciona una forma de resolver problemas complejos explotando las estructuras de los objetos involucrados.
Abstracción. – Proporciona una forma de separar aspectos y variaciones importantes de aquellos otros sin importancia y que en caso contrario podrían colapsar un proceso.

El nivel del Modelo o en otras palabras: Modelar de una computadora a similitud del hombre:
Los esfuerzos dedicado a construir programas que lleven a cabo tareas de la misma forma que el hombre, se dividen en dos clases: Los programas de la primera clase se encargan de problemas que no se adecuan mucho con muestra definición de tarea perteneciente a IA; son aquellos problemas que una computadora puede resolver fácilmente, pero cuya resolución implica el uso de mecanismos de los que no dispone el hombre.

La segunda clase de programas que intentan modelar lo humano, son aquellos que intentan realizar tareas que se adecuan claramente con nuestra definición de tareas de IA. Hay cosas que no son triviales para una computadora.

Entre las razones para modelar la forma de trabajar humana están:
- Verificar las teorías psicológicas de la actuación humana.
- Capacitar a las computadoras para comprender el razonamiento humano.
- Capacitar a la gente para comprender a las computadoras.
- Explotar el conocimiento que se puede buscar en el hombre.

4. Criterios de determinación del éxito.

Una pregunta importante a resolver en toda investigación científica o de ingeniería es: ¿Cómo sabremos si hemos tenido éxito?
La inteligencia artificial formula la pregunta: ¿Cómo sabemos si hemos construido una máquina inteligente?.
En 1950 Alan Turing propuso un método para determinar si una máquina es capaz de pensar. Este método es conocido como el test de Turing. Para realizarlo se necesitan dos personas y la máquina que se desea avaluar. Una de las personas actúa como entrevistador y se encuentra en una habitación, separado de la computadora y de la otra persona. El entrevistador hace preguntas tanto a la persona como a la computadora mecanografiando las cuestiones y recibe las respuestas de igual forma.

El entrevistador solo las conoce por A y B y, debe tratar de determinar quien es la persona y quien es la máquina. El objetivo de la máquina es hacer creer al entrevistador que es una persona, si lo consigue, se concluye que la máquina piensa.

Sin embargo mucha gente piensa que habrá que pasar mucho tiempo para que una máquina pueda superar el test de Turing. Algunos piensan que nunca lo harán.

Diferencias entre el cerebro y una computadora

Cerebro

Computadora

Sistema capaz de múltiple propósito capaz de tratar gran cantidad de información en poco tiempo pero no necesariamente con exactitud.

Sistemas altamente especializados con capacidad para procesar información muy concreta, siguiendo unas instrucciones dadas.

La frecuencia de los impulsos nerviosos puede variar.

La frecuencia de transmisión es inalterable y esta dada por el reloj interno de la máquina.

Las llamadas sinapsis cumple en el cerebro la función simultánea de varias compuertas (and, or, not,etc.)

Las compuertas lógicas tienen una función perfectamente determinada e inalterable.

La memoria es del tipo asociativo y no se sabe dónde quedará almacenada.

La información se guarda en posiciones de memoria de acceso directo por su dirección.

Los impulsos fluyen a 30 metros por segundo.

En el interior de la computadora los impulsos fluyen a la velocidad de la luz.

Similitudes entre el cerebro y una computadora.

Ambos codifican la información en impulsos digitales.

Tanto el cerebro como la computadora tienen compuertas lógicas.

Existen distintos tipos de memoria.

Los dos tienen aproximadamente el mismo consumo de energía

APLICACIONES DE LA IA

5. Redes Neuronales

- Las redes neuronales son dispositivos inspirados en la funcionalidad de las neuronas biológicas, aplicados al reconocimiento de patrones que las convierten aptas para modelar y efectuar predicciones en sistemas muy complejos.

-

Es un conjunto de técnicas matemáticas para modelar las conexiones y relaciones entre un conjunto de datos.

- Las Redes Neuronales surgieron del movimiento conexionista, que nació junto con la IA simbólica o tradicional. La IA simbólica se basa en que todo conocimiento se puede representar mediante combinaciones de símbolos, derivadas de otras combinaciones que representan verdades incuestionables o axiomas. Así pues, la IA tradicional asume que el conocimiento es independiente de la estructura que maneje los símbolos, siempre y cuando la ‘máquina’ realice algunas operaciones básicas entre ellos.

- Una Red Neuronal: el Perceptrón unicapa
- Es un conjunto de neuronas no unidas entre sí, de manera que cada una de las entradas del sistema se conectan a cada neurona, produciendo cada una de ellas su salida individual.
- Existen tres métodos de aprendizaje para un Perceptrón:
- Aprendizaje supervisado: se presentan al Perceptrón unas entradas con las correspondientes salidas que se quiere que sean aprendidas.
- Aprendizaje no supervisado: solo se presenta al Perceptrón las entradas, y para esas entradas, la red debe dar una salida parecida.
- Aprendizaje por esfuerzo: se combinan los dos anteriores, y cada cierto tiempo se presenta a la red una valoración global de cómo lo está haciendo.
- Podría parecer que el Perceptrón tiene una potencia ilimitada para aprender, pero Minsky y Paper pusieron graves deficiencias del Perceptrón en su libro "Perceptroms". Según ellos el Perceptrón unicapa era incapaz de aprender las funciones que no fuesen linealmente separables.
- Las redes neuronales todavía se han de desarrollar mucho. Aún se debe estudiar para que sirven realmente, conocer en que tareas pueden resultar realmente útiles, ya que por ejemplo es difícil saber cuánto tiempo necesita una red para aprender cierta tarea, cuántas neuronas necesitamos como mínimo para realizar cierta tarea, etc...
- En la Robótica, las redes neuronales también parecen prometer mucho, sobre todo en su senorización.

6. Robótica

- Son unas máquinas controladas por ordenador y programadas para moverse, manipular objetos y realizar trabajos a la vez que interaccionan con su entorno. Los robots son capaces de realizar tareas repetitivas de forma más rápida, barata y precisa que los seres humanos.

- El diseño de un manipulador robótico se inspira en el brazo humano. Las pinzas están diseñadas para imitar la función y estructura de la mano humana. Muchos robots están equipados con pinzas especializadas para agarrar dispositivos concretos.

-Las articulaciones de un brazo robótico suelen moverse mediante motores eléctricos. Una computadora calcula los ángulos de articulación necesarios para llevar la pinza a la posición deseada.
- En 1995 funcionaban unos 700.000 robots en el mundo. Más de 500.000 se empleaban en Japón, unos 120.000 en Europa Occidental y unos 60.000 en Estados Unidos. Muchas aplicaciones de los robots corresponden a tareas peligrosas o desagradables para los humanos. En los laboratorios médicos, los robots manejan materiales que conlleven posibles riesgos, como muestras de sangre u orina. En otros casos, los robots se emplean en tareas repetitivas en las que el rendimiento de una persona podría disminuir con el tiempo. Los robots pueden realizar estas operaciones repetitivas de alta precisión durante 24 horas al día.
- Uno de los principales usuarios de robots es la industria del automóvil. La empresa General Motors utiliza aproximadamente 16.000 robots para trabajos como soldadura, pintura, carga de máquinas, transferencia de piezas y montaje. El montaje industrial exige una mayor precisión que la soldadura o la pintura y emplea sistemas de censores de bajo coste y computadoras potentes y baratas. Los robots se usan por ejemplo en el montaje de aparatos electrónicos, para montar microchips.
- Se emplean robots para ayudar a los cirujanos a instalar cadenas artificiales, y ciertos robots especializados de altísima precisión pueden ayudar en operaciones quirúrgicas delicadas en los ojos. La investigación en tecnología emplea robots controlados de forma remota por cirujanos expertos; estos robots podrían algún día efectuar operaciones en campos de batalla distantes.
- Los robots crean productos manufacturados de mayor calidad y menor costo. Sin embargo, también pueden provocar la pérdida de empleos, especialmente en cadenas de montaje industriales.
- Las máquinas automatizadas ayudarán cada vez más a los humanos en la fabricación de nuevos productos, el mantenimiento de las infraestructuras y el cuidado de hogares y empresas. Los robots podrían fabricar nuevas autopistas, construir estructuras para edificios, limpiar corrientes subterráneas o cortar el césped.
- Puede que los cambios más espectaculares en los robots del futuro provengan de su capacidad de razonamiento cada vez mayor. El campo de la inteligencia artificial está pasando rápidamente de los laboratorios universitarios a la aplicación práctica en la industria, y se están desarrollando máquinas capaces de realizar tareas cognitivas como la planificación estratégica o el aprendizaje por experiencia. El diagnóstico de fallos en aviones o satélites, el mando en un campo de batalla o el control de grandes fabricas correrán cada vez más a cargo de ordenadores inteligentes.

Glosario.
Artificial. - Hecho por el hombre. Carente de naturalidad.
Instancia. - Memorial, solicitud. Por la primera vez. El primer ímpetu.
Inteligencia. - Facultad intelectiva. Capacidad de conocimiento. Comprensión, acto de entendimiento. Sentido en que se puede interpretar una expresión o sentencia.
Modelo. - Ejemplar, forma, que se propone quien ejecuta una obra, artística o de otra índole. Lo que se debe imitar por su perfección, en lo intelectual o moral.
Técnica. - conjunto de procedimientos de una ciencia o arte. Habilidad para usar procedimientos y recursos.

 

 

Autor:


Osiris Toquero Ramos

Universidad tecnológica de México, campus cuitlahuac
Estudiante ingeniería en sistemas computacionales


Comentarios


Trabajos relacionados

  • Tecnología

    Prehistoria. Edad Antigua. Edad Media. Edad Moderna. Edad Contemporánea. Arado, Escritura, Fuego, Rueda, Herramientas d...

  • El nuevo milenio

    El progreso técnico y científico. La revolución de las comunicaciones. Un Mundo Global. Los problemas del comienzo del n...

  • Recipientes de almacenamiento

    Almacenamiento de líquidos. Almacenamiento de gases. Tanques atmosféricos. Tanques elevados, abiertos. Tejados flotantes...

Ver mas trabajos de Tecnologia

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda