Agregar a favoritos      Ayuda      Português      Ingles     
 Página anterior Volver al principio del trabajoPágina siguiente 

Enrutadores inalámbricos (página 2)




Partes: 1, 2, 3


Otros cambios también mejorar la fiabilidad, como los procesadores redundantes de control con estado de fallos, y que usan almacenamiento que tiene partes no móviles para la carga de programas. Mucha fiabilidad viene de las técnicas operacionales para el funcionamiento de los enrutadores críticos como del diseño de enrutadores en si mismo. Es la mejor práctica común, por ejemplo, utilizar sistemas de alimentación ininterrumpida redundantes para todos los elementos críticos de la red, con generador de copia de seguridad de las baterías o de los suministros de energía.

Router

Monografias.com

En español, enrutador o encaminador. Dispositivo de hardware para interconexión de redes de las computadoras que opera en la capa tres (nivel de red. Dispositivo externo que me permite interconectar computadoras -la del imagen es un router inalámbrico- y a al vez nos permite proteger a las mismas ya que en estos dispositivos -aclaro algunos- traen un software que sirve para proteger la red.

El router es un dispositivo hardware o software de interconexión de redes de ordenadores que opera en la capa 3 (nivel de red) del modelo OSI.

• Este dispositivo interconecta segmentos de red o redes enteras.

Hace pasar paquetes de datos entre redes tomando como base la información de la capa de red.

• El router toma decisiones lógicas con respecto a la mejor ruta para el envío de datos a través de una red interconectada y luego dirige los paquetes hacia el segmento y el puerto de salida adecuados.

Monografias.com

Un router o switch no puede funcionar sin un sistema operativo, y para eso utiliza Cisco IOS, que es su sistema operativo.

Cisco IOS brinda los siguientes servicios de red:

-Funciones básicas de enrutamiento y conmutación

-Acceso confiable y seguro a los recursos de la red

-Escalabilidad de la red

El software Cisco IOS usa una interfaz de línea de comando (CLI) como entorno de consola tradicional

Para iniciar una sesión de CLI:

-Desde un PC o terminal a la conexión de consola del router

-Mediante una conexión de acceso telefónico, con un módem o módem nulo conectado al puerto AUX del router.

-Establecer una conexión Telnet con el router

CLI

-Usa una estructura jerárquica

-Debe ingresar al modo de configuración de interfaces, todo cambio de configuración que se realice, tendrá efecto únicamente en esa interfaz en particular.

-El IOS suministra un servicio de intérprete de comandos, denominado comando ejecutivo (EXEC).

-Como característica de seguridad, el software Cisco IOS divide las sesiones

EXEC en dos niveles de acceso. Usuario y privilegiado (ENABLE).

USUARIO:

-Cantidad limitada de comandos de monitoreo básicos, no permite ningún comando que pueda cambiar la configuración del router, se reconoce el nivel por el símbolo ">".

PRIVILEGIADO:

-Da acceso a todos los comandos del router, se puede habilitar una contraseña o pedir id del usuario, se reconoce el nivel por el símbolo # Para acceder al modo privilegiado se debe usar el comando ENABLE. Si se ha configurado con contraseña, pues la pedirá para dar acceso al modo privilegiado

El Cisco Software Advisor es una herramienta interactiva que suministra la información más actualizada y permite la selección de opciones que satisfagan los requisitos de la red.

Cuanto mas reciente sea la version IOS, mas memoria y recursos solicitara el router y para saber la informacion del router se usa el comando show versión

El funcionamiento normal de un router requiere el uso de la imagen completa del software Cisco IOS tal como se guarda en la memoria flash.

-El comando copy tftp flash copia una imagen del Cisco IOS almacenada en un servidor TFTP, en la memoria flash del router.

-El comando show flash se usa para verificar si el sistema tiene la memoria suficiente para cargar una nueva imagen del software Cisco IOS.

Un router se activa con la ejecución de tres elementos:

-el bootstrap (le dice que debe cargar)

-el sistema operativo

-y un archivo de configuración

Si el router no puede encontrar un archivo de configuración, entra en el modo de configuración inicial (setup) o por defecto

Monografias.com

Los routers tienen LEDS para indicar el estado. Si esta apagado es que no esta en funcionamiento y si esta encendido es que funciona.

El LED OK verde a la derecha del puerto AUX se enciende luego de que el sistema se ha inicializado correctamente

Monografias.com

Todos los routers Cisco incluyen un puerto de consola serial asíncrono TIA/EIA-232 (RJ-45). (Cable azul claro)

Una terminal de consola es una terminal ASCII o un PC que ejecuta un software de emulación de terminal como, por ejemplo, HyperTerminal.

Para conectar un PC que ejecuta un software de emulación de terminal al puerto de consola, use un cable transpuesto RJ-45 a RJ-

45 con un adaptador hembra RJ-45 a DB-9.

Los parámetros por defecto para el puerto de consola son

-9600 baudios,

-8 bits de datos,

-sin paridad,

-1 bit de parada,

-sin control de flujo en hardware.

El puerto de consola no permite control de flujo en hardware.

Monografias.com

La interfaz de usuario incluye un modo de edición ampliado que suministra un conjunto de funciones de teclas de edición que permiten que el usuario edite una línea de comando a medida que se la escribe.

Se habilita automáticamente aunque se puede deshabilitar con el comando terminal no editing

Monografias.com

La interfaz de usuario proporciona un historial o registro de los comandos que se han introducido.

Para cambiar la cantidad de líneas de comando que el sistema recuerda durante una sesión de terminal, utilice el comando terminal history size (tamaño del historial de terminal) o el comando history size. La cantidad máxima de comandos es 256. El símbolo ^ aparece cuando se ha introducido un comando incorrecto.

Monografias.com

Tipos de routers

Hay varios tipos de routers, a destacar:

  • Si usamos un PC con Windows 98 o superior para compartir una conexión a Internet, ese PC estará haciendo una funcionalidad de router básico. Tan solo se encargará de ver si los paquetes de información van destinados al exterior o a otro PC del grupo.

  • Los routers algo más sofisticados, y de hecho los más utilizados, hacen algo más, entre otras cosas protegen nuestra red del tráfico exterior, y son capaces de manejar bastante más tráfico. Es por ello que son la opción más tipica en pequeñas redes, e incluso, en usuarios domésticos.

  • Los routers más potentes, que se están repartidos por todo internet para gestionar el tráfico, manejan un volumen de millones de paquetes de datos por segundo y optimizan al máximo los caminos entre origen y destino.

En internet, como hemos mencionado, hay miles de routers que trabajan, junto con el nuestro, para buscar el camino más rápido de un punto a otro. Si tenemos un router en nuestra conexión a Internet, este buscará el router óptimo para llegar a un destinatario, y ese router óptimo, buscará a su vez el siguiente óptimo para llegar al destinatario. Digamos que es un gran trabajo en equipo.

Para ver cuantos routers intervienen entre nosotros y por ejemplo, la Web de 34Telecom (donde se encuentra este documento) existe una sencilla herramienta que podemos utilizar. Sencillamente vamos a una ventana de DOS y tecleamos "tracert www.34t.com" y nos aparecerá una lista de los routers que han intervenido para que podamos conectar con la web de www.34t.com. También nos indicará el tiempo que ha tardado cada router en "pensar" el paso siguiente de la ruta a seguir.

Tanto los routers medianos como los más sofisticados permiten configurar que información deseamos que pueda entrar o salir de nuestro PC o red. En caso de que deseemos ampliar las posibilidades de control deberemos añadir un dispositivo llamado Firewall (cortafuegos).

¿ Como funciona un router ?

La primera función de un router, la más básica, es, como ya hemos indicado, saber si el destinatario de un paquete de información está en nuestra propia red o en una remota. Para determinarlo, el router utiliza un mecanismo llamado "máscara de subred". La máscara de subred es parecida a una dirección IP (la identificación única de un ordenador en una red de ordenadores, algo así como su nombre y apellido) y determina a que grupo de ordenadores pertenece uno en concreto. Si la máscara de subred de un paquete de información enviado no se corresponde a la red de ordenadores de por ejemplo, nuestra oficina, el router determinará, lógicamente que el destino de ese paquete está en alguna otra red.

A diferencia de un Hub o un switch del tipo layer 2, un router inspecciona cada paquete de información para tomar decisiones a la hora de encaminarlo a un lugar a otro. Un switch del tipo "layer 3" si tiene también esta funcionalidad.

Cada PC conectado a una red (bien sea una local o a la red de redes - Internet-) tiene lo que llamamos una tarjeta de red. La tarjeta de red gestiona la entrada salida de información y tiene una identificación propia llamada identificación MAC. A esta identificación MAC la podríamos llamar identificación física, sería como las coordenadas terrestres de nuestra casa. Es única, real y exacta. A esta identificación física le podemos asociar una identificación lógica, la llamada IP. Siguiendo con el ejemplo de la casa, la identificación física (MAC) serian sus coordenadas terrestres, y su identificación lógica sería su dirección (Calle Pepe nº3). La identificación lógica podría cambiar con el tiempo (por ejemplo si cambian de nombre a la calle) pero la identificación física no cambia.

Pues bien, el router asocia las direcciones físicas (MAC) a direcciones lógicas (IP). En comunicaciones informáticas, una dirección física (Mac) puede tener varias direcciones lógicas (IP). Podemos conocer las direcciones Mac e IP de nuestro PC tecleando, desde una ventana de DOS, "winipcfg" (en Windows 98) o "ipconfig" (en Windows 2000 / XP).

Una vez nos identificamos en internet por nuestras direcciones lógicas, los routers entre nosotros y otros puntos irán creando unas tablas que, por decirlo de algún modo localizan donde estamos. Es como si estamos en un cruce de carreteras, y vemos que los coches de Francia siempre vienen del desvío del norte, pues lo memorizamos, y cuando un coche nos pregunte como se va a Francia le diremos que por el desvió del norte (espero que los entendidos me perdonen esta simplificación). Los routers crean unas tablas de como se suele ir a donde. Si hay un problema, el router prueba otra ruta y mira si el paquete llega al destino, si no es así, prueba otra, y si esta tiene éxito, la almacena como posible ruta secundaria para cuando la primera (la más rápida no funcione). Todo esta información de rutas se va actualizando miles de veces por segundo durante las 24 horas del día.

Switch

. Monografias.com

El switch (palabra que significa "conmutador") es un dispositivo que permite la interconexión de redes sólo cuando esta conexión es necesaria. Para entender mejor que es lo que realiza, pensemos que la red está dividida en segmentos por lo que, cuando alguien envía un mensaje desde un segmento hacia otro segmento determinado, el switch se encargará de hacer que ese mensaje llegue única y exclusivamente al segmento requerido.

De esta manera, el switch opera en la capa 2 del modelo OSI, que es el nivel de enlace de datos, y tienen la particularidad de aprender y almacenar las direcciones (los caminos) de dicho nivel, por lo que siempre irán desde el puerto de origen directamente al de llegada, para evitar los bucles (habilitar mas de un camino para llegar a un mismo destino). Asimismo, tiene la capacidad de poder realizar las conexiones con velocidades diferentes en sus ramas, variando entre 10 Mbps y 100 Mbps.

Se puede decir que es una versión mejorada del hub ya que, si bien tienen la misma función, el switch lo hace de manera más eficiente: se encargará de encaminar la conexión hacia el puerto requerido por una única dirección y, de esta manera, produce la reducción del tráfico y la disminución de las coaliciones notablemente, funciones fundamentales por las cuales se originó este dispositivo.

Este dispositivo externo que me permite interconectar computadoras y también nos sirve para expande la red, es decir en el ultimo conector -entrada- de este dispositivo nos permite conectar otra red que halla en el sitio, en pocas palabras sirve para interconectar computadoras y a su vez redes. Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola. Al igual que los puentes, dado que funcionan como un filtro en la red, mejoran el rendimiento y la seguridad de las LANs (Local Area Network- Red de Área Local).

Un Switch es un dispositivo de Networking situado en la capa 2 del modelo de referencia OSI (no confundir con ISO: Organización Internacional para la Normalización).

En esta capa además se encuentran las NIC (Netwok Interface Card; Placa de Red) pueden ser inalámbricas y los Bridges (Puentes).

Monografias.comMonografias.com

Comunes (PCI) Para conexión con medios físicos (cables) e inalámbricas.

Monografias.comMonografias.com

Placas para puerto PMCIA (Para computadoras portátiles), para medios físicos e inalámbricosLa capa 2 del modelo de referencia OSI es la capa de Enlace de datos, esta capa proporciona un tránsito de datos confiable a través de un enlace físico. Al hacerlo, la capa de enlace de datos se ocupa del direccionamiento físico (comparado con el lógico), la topología de red, el acceso a la red, la notificación de errores, entrega ordenada de tramas y control de flujo.Un switch, al igual que un puente, es un dispositivo de la capa 2. De hecho, el switch se denomina puente multipuerto, así como el hub se denomina repetidor multipuerto. La diferencia entre el hub y el switch es que los switches toman decisiones basándose en las direcciones MAC y los hubs no toman ninguna decisión. Como los switches son capaces de tomar decisiones, así hacen que la LAN sea mucho más eficiente. Los switches hacen esto "conmutando" datos sólo desde el puerto al cual está conectado el host correspondiente. A diferencia de esto, el hub envía datos a través de todos los puertos de modo que todos los hosts deban ver y procesar (aceptar o rechazar) todos los datos. Esto hace que la LAN sea más lenta.A primera vista los switches parecen a menudo similares a los hubs. Tanto los hubs como los switches tienen varios puertos de conexión (pueden ser de 8, 12, 24 o 48, o conectando 2 de 24 en serie), dado que una de sus funciones es la concentración de conectividad (permitir que varios dispositivos se conecten a un punto de la red).

La diferencia entre un hub y un switch está dada por lo que sucede dentro de cada dispositivo.El propósito del switch es concentrar la conectividad, haciendo que la transmisión de datos sea más eficiente. Por el momento, piense en el switch como un elemento que puede combinar la conectividad de un hub con la regulación de tráfico de un puente en cada puerto. El switch conmuta paquetes desde los puertos (las interfaces) de entrada hacia los puertos de salida, suministrando a cada puerto el ancho de banda total.Básicamente un Switch es un administrador inteligente del ancho de banda.

Diferentes tipos de Switch

 Diferentes Switchs Netgear de 4 puertos y Linksys de 8 puertos

Monografias.comMonografias.com

Cisco de 8 puertos y Linksys de 16 puertos

Monografias.com

Linksys de 24 puertos.

Monografias.com

Cisco de 48 puertos.

Encapsulamiento

El encapsulamiento es el proceso por el cual los datos que se deben enviar a través de una red se deben colocar en paquetes que se puedan administrar y rastrear. Las tres capas superiores del modelo OSI (aplicación, presentación y sesión) preparan los datos para su transmisión creando un formato común para la transmisión.  La capa de transporte divide los datos en unidades de un tamaño que se pueda administrar, denominadas segmentos. También asigna números de secuencia a los segmentos para asegurarse de que los hosts receptores vuelvan a unir los datos en el orden correcto. Luego la capa de red encapsula el segmento creando un paquete. Le agrega al paquete una dirección dered destino y origen, por lo general IP.En la capa de enlace de datos continúa el encapsulamiento del paquete, con la creación de una trama. Le agrega a la trama la dirección local (MAC) origen y destino. Luego, la capa de enlace de datos transmite los bits binarios de la trama a través de los medios de la capa física. Cuando los datos se transmiten simplemente en una red de área local, se habla de las unidades de datos en términos de tramas, debido a que la dirección MAC es todo lo que se necesita para llegar desde el host origen hasta el host destino. Pero si se deben enviar los datos a otro host a través de una red interna o Internet, los paquetes se transforman en la unidad de datos a la que se hace referencia. Esto se debe a que la dirección de red del paquete contiene la dirección destino final del host al que se envían los datos (el paquete) . Las tres capas inferiores (red, enlace de datos, física) del modelo OSI son las capas principales de transporte de los datos a través de una red interna o de Internet. La excepción principal a esto es un dispositivo denominado gateway. Este es un dispositivo que ha sido diseñado para convertir los datos desde un formato, creado por las capas de aplicación, presentación y sesión, en otro formato. De modo que el gateway utiliza las siete capas del modelo OSI para hacer esto.

Flujo de paquetes a través de los dispositivos de Capa 2:Es importante recordar que los paquetes se ubican dentro de tramas, de modo que para comprender la forma en que viajan los paquetes en los dispositivos de la Capa 2, es necesario trabajar con la forma en que se encapsulan los paquetes, que es la trama. Cualquier cosa que le suceda a la trama también le sucede al paquete.Las NIC, los puentes y los switches involucran el uso de la información de la dirección de enlace de datos (MAC) para dirigir las tramas. Las NIC son el lugar donde reside la dirección MAC exclusiva. La dirección MAC se utiliza para crear la trama.Los puentes examinan la dirección MAC de las tramas entrantes. Si la trama es local (con una dirección MAC en el mismo segmento de red que el puerto de entrada del puente), entonces la trama no se envía a través del puente. Si la trama no es local (con una dirección MAC que no está en el puerto de entrada del puente), entonces se envía al segmento de red siguiente. El puente toma una trama, la remueve, examina la dirección MAC y luego envía o no la trama, según lo que requiera la situación. El switch es como un hub con puertos individuales que actúan como puentes. El switch toma una trama de datos, la lee, examina las direcciones MAC de la Capa 2 y envía las

Segmentación

Los switches son dispositivos de enlace de datos que, al igual que los puentes, permiten que múltiples segmentos físicos de LAN se interconecten para formar una sola red de mayor tamaño. De forma similar a los puentes, los switches envían e inundan el tráfico con base a las direcciones MAC. Dado que la conmutación se ejecuta en el hardware en lugar del software, es significativamente más veloz. Se puede pensar en cada puerto de switch como un micropuente; este proceso se denomina microsegmentación. De este modo, cada puerto de switch funciona como un puente individual y otorga el ancho de banda total del medio a cada host. Los switches de LAN se consideran puentes multipuerto sin dominio de colisión debido a la microsegmentación. Los datos se intercambian, a altas velocidades, haciendo la conmutación de paquetes hacia su destino. Al leer la información de Capa 2 de dirección MAC destino, los switches pueden realizar transferencias de datos a altas velocidades, de forma similar a los puentes. El paquete se envía al puerto de la estación receptora antes de que la totalidad del paquete ingrese al switch. Esto provoca niveles de latencia bajos y una alta tasa de velocidad para el envío de paquetes.Hay dos motivos fundamentales para dividir una LAN en segmentos. El primer motivo es aislar el tráfico entre segmentos, y obtener un ancho de banda mayor por usuario, al crear dominios de colisión más pequeños. Si la LAN no se divide en segmentos, las LAN cuyo tamaño sea mayor que un grupo de trabajo pequeño se congestionarían rápidamente con tráfico y colisiones y virtualmente no ofrecerían ningún ancho de banda.

Al dividir redes de gran tamaño en unidades autónomas, los puentes y los switches ofrecen varias ventajas. Un puente, o switch, reduce el tráfico que experimentan los dispositivos en todos los segmentos conectados ya que sólo se envía un determinado porcentaje de tráfico. Los puentes y los switches amplían la longitud efectiva de una LAN, permitiendo la conexión de estaciones distantes que anteriormente no estaban permitidas. Aunque los puentes y los switches comparten los atributos más importantes, todavía existen varias diferencias entre ellos. Los switches son significativamente más veloces porque realizan la conmutación por hardware, mientras que los puentes lo hacen por software y pueden interconectar las LAN de distintos anchos de banda. Una LAN Ethernet de 10 Mbps y una LAN Ethernet de 100 Mbps se pueden conectar mediante un switch. Estos pueden soportar densidades de puerto más altas que los puentes. Algunos switches soportan la conmutación por el método cut- through, que reduce la latencia y las demoras de la red mientras que los puentes soportan sólo la conmutación de tráfico de guardar y enviar (store-and-forward). Por último, los switches reducen las colisiones y aumentan el ancho de banda en los segmentos de red ya que suministran un ancho de banda dedicado para cada segmento de red.

Colisión

Uno de los problemas que se puede producir, cuando dos bits se propagan al mismo tiempo en la misma red, es una colisión. En una red pequeña y de baja velocidad es posible implementar un sistema que permita que sólo dos computadores envíen mensajes, cada uno por turnos. Esto significa que ambas pueden mandar mensajes, pero sólo podría haber un bit en el sistema. El problema es que en las grandes redes hay muchos computadores conectados, cada uno de los cuales desea comunicar miles de millones de bits por segundo. Recordar que los "bits" en realidad son paquetes que contienen muchos bits. Se pueden producir problemas graves como resultado del exceso de tráfico en la red. Si hay solamente un cable que interconecta todos los dispositivos de una red, o si los segmentos de una red están conectados solamente a través de dispositivos no filtrantes como, por ejemplo, los repetidores, puede ocurrir que más de un usuario trate de enviar datos a través de la red al mismo tiempo. Ethernet permite que sólo un paquete de datos por vez pueda acceder al cable. Si más de un nodo intenta transmitir simultáneamente, se produce una colisión y se dañan los datos de cada uno de los dispositivos. El área dentro de la red donde los paquetes se originan y colisionan, se denomina dominio de colisión, e incluye todos los entornos de medios compartidos. Por ejemplo, un alambre puede estar conectado con otro a través de cables de conexión, transceptores, paneles de conexión, repetidores e incluso hubs. Todas estas interconexiones de la Capa 1 forman parte del dominio de colisión.Cuando se produce una colisión, los paquetes de datos involucrados se destruyen, bit por bit. Para evitar este problema, la red debe disponer de un sistema que pueda manejar la competencia por el medio (contención).

Al igual que lo que ocurre con dos automóviles, que no pueden ocupar el mismo espacio, o la misma carretera, al mismo tiempo, tampoco es posible que dos señales ocupen el mismo medio simultáneamente.En general, se cree que las colisiones son malas ya que degradan el desempeño de la red. Sin embargo, una cantidad determinada de colisiones es una función natural de un entorno de medios compartidos (es decir, un dominio de colisión) ya que una gran cantidad de computadores intentan comunicarse entre sí simultáneamente, usando el mismo cable.

Los repetidores regeneran y retemporizan los bits, pero no pueden filtrar el flujo de tráfico que pasa por ellos. Los datos (bits) que llegan a uno de los puertos del repetidor se envían a todos los demás puertos. El uso de repetidor extiende el dominio de colisión, por lo tanto, la red a ambos lados del repetidor es un dominio de colisión de mayor tamaño.

Se puede reducir el tamaño de los dominios de colisión utilizando dispositivos inteligentes de networking que pueden dividir los dominios. Los puentes, switches y routers son ejemplos de este tipo de dispositivo de networking. Este proceso se denomina segmentación.

Un puente puede eliminar el tráfico innecesario en una red con mucha actividad dividiendo la red en segmentos y filtrando el tráfico basándose en la dirección de la estación. El tráfico entre dispositivos en el mismo segmento no atraviesa el puente, y afecta otros segmentos. Esto funciona bien, siempre y cuando el tráfico entre segmentos no sea demasiado. En caso contrario, el puente se puede transformar en un cuello de botella, y de hecho puede reducir la velocidad de la comunicación.La mejor solución para este problema es la utilización de switches para la correcta segmentación de una LAN

¿Que es un switch?

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Puntos que observamos del funcionamiento de los "switch":1. El "switch" conoce los ordenadores que tiene conectados a cada uno de sus puertos (enchufes). Cuando en la especificación del un "switch" leemos algo como "8k MAC address table" se refiere a la memoria que el "switch" destina a almacenar las direcciones. Un "switch" cuando se enchufa no conoce las direcciones de los ordenadores de sus puertos, las aprende a medida que circula información a través de él. Con 8k hay más que suficiente. Por cierto, cuando un "switch" no conoce la dirección MAC de destino envía la trama por todos sus puertos, al igual que un HUB ("Flooding", inundación). Cuando hay más de un ordenador conectado a un puerto de un "switch" este aprende sus direcciones MAC y cuando se envían información entre ellos no la propaga al resto de la red, a esto se llama filtrado.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

El tráfico entre A y B no llega a C. Como decía, esto es el filtrado. Las colisiones que se producen entre A y B tampoco afectan a C. A cada parte de una red separada por un "switch" se le llama segmento.

2. El "switch" almacena la trama antes de reenviarla. A este método se llama "store & forward", es decir "almacenar y enviar". Hay otros métodos como por ejemplo "Cut-through" que consiste en recibir los 6 primeros bytes de una trama que contienen la dirección MAC y a partir de aquí ya empezar a enviar al destinatario. "Cut-through" no permite descartar paquetes defectuosos. Un "switch" de tipo "store & forward" controla el CRC de las tramas para comprobar que no tengan error, en caso de ser una trama defectuosa la descarta y ahorra tráfico innecesario. El "store & forward" también permite adaptar velocidades de distintos dispositivos de una forma más cómoda, ya que la memoria interna del "switch" sirve de "buffer". Obviamente si se envía mucha información de un dispositivo rápido a otro lento otra capa superior se encargará de reducir la velocidad.

Finalmente comentar que hay otro método llamado "Fragment-free" que consiste en recibir los primeros 64 bytes de una trama porque es en estos donde se producen la mayoría de colisiones y errores. Así pues cuando vemos que un "switch" tiene 512KB de RAM es para realizar el "store & forward". Esta RAM suele estar compartida entre todos los puertos, aunque hay modelos que dedican un trozo a cada puerto.

3. Un "switch" moderno también suele tener lo que se llama "Auto-Negotation", es decir, negocia con los dispositivos que se conectan a él la velocidad de funcionamiento, 10 megabit ó 100, así como si se funcionara en modo "full-duplex" o "half-duplex". "Full-duplex" se refiere a que el dispositivo es capaz de enviar y recibir información de forma simultánea, "half-duplex" por otro lado sólo permite enviar o recibir información, pero no a la vez.

4. Velocidad de proceso: todo lo anterior explicado requiere que el "switch" tenga un procesador y claro, debe ser lo más rápido posible. También hay un parámetro conocido como "back-plane" o plano trasero que define el ancho de banda máximo que soporta un "switch". El "back plane" dependerá del procesador, del número de tramas que sea capaz de procesar. Si hacemos números vemos lo siguiente: 100megabits x 2 (cada puerto puede enviar 100 megabit y enviar 100 más en modo "full-duplex") x 8 puertos = 1,6 gigabit. Así pues, un "switch" de 8 puertos debe tener un "back-plane" de 1,6 gigabit para ir bien. Lo que sucede es que para abaratar costes esto se reduce ya que es muy improbable que se produzca la situación de tener los 8 puertos enviando a tope... Pero la probabilidad a veces no es cierta.

5. Si un nodo puede tener varias rutas alternativas para llegar a otro un "switch" tiene problemas para aprender su dirección ya que aparecerá en dos de sus entradas. A esto se le llama "loop" y suele haber una lucecita destinada a eso delante de los "switch". El protocolo de Spanning Tree Protocol IEEE 802.1d se encarga de solucionar este problema, aunque los "switch" domésticos no suelen tenerlo.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Hoy por hoy los "switch" domésticos han bajado tanto de precio que vale la pena comprarse uno en lugar de un HUB, sobre todo si queremos compartir una conexión ADSL con más de un ordenador y disfrutar de 100megabit entre los ordenadores ya que los routers ADSL suelen ser 10megabit.

Clasificación de Switches

Atendiendo al método de direccionamiento de las tramas utilizadas:

Store-and-Forward

Los switches Store-and-Forward guardan cada trama en un buffer antes del intercambio de información hacia el puerto de salida. Mientras la trama está en el buffer, el switch calcula el CRC y mide el tamaño de la misma. Si el CRC falla, o el tamaño es muy pequeño o muy grande (un cuadro Ethernet tiene entre 64 bytes y 1518 bytes) la trama es descartada. Si todo se encuentra en orden es encaminada hacia el puerto de salida.

Este método asegura operaciones sin error y aumenta la confianza de la red. Pero el tiempo utilizado para guardar y chequear cada trama añade un tiempo de demora importante al procesamiento de las mismas. La demora o delay total es proporcional al tamaño de las tramas: cuanto mayor es la trama, mayor será la demora.

Cut-Through

Los Switches Cut-Through fueron diseñados para reducir esta latencia. Esos switches minimizan el delay leyendo sólo los 6 primeros bytes de datos de la trama, que contiene la dirección de destino MAC, e inmediatamente la encaminan.

El problema de este tipo de switch es que no detecta tramas corruptas causadas por colisiones (conocidos como runts), ni errores de CRC. Cuanto mayor sea el número de colisiones en la red, mayor será el ancho de banda que consume al encaminar tramas corruptas.

Existe un segundo tipo de switch cut-through, los denominados fragment free, fue proyectado para eliminar este problema. El switch siempre lee los primeros 64 bytes de cada trama, asegurando que tenga por lo menos el tamaño mínimo, y evitando el encaminamiento de runts por la red.

Adaptative Cut-Through

Los switches que procesan tramas en el modo adaptativo soportan tanto store-and-forward como cut-through. Cualquiera de los modos puede ser activado por el administrador de la red, o el switch puede ser lo bastante inteligente como para escoger entre los dos métodos, basado en el número de tramas con error que pasan por los puertos.

Cuando el número de tramas corruptas alcanza un cierto nivel, el switch puede cambiar del modo cut-through a store-and-forward, volviendo al modo anterior cuando la red se normalice.

Los switches cut-through son mas utilizados en pequeños grupos de trabajo y pequeños departamentos. En esas aplicaciones es necesario un buen volumen de trabajo o throughput, ya que los errores potenciales de red quedan en el nivel del segmento, sin impactar la red corporativa.

Los switches store-and-forward son utilizados en redes corporativas, donde es necesario un control de errores.

Atendiendo a la forma de segmentación de las sub-redes:

Switches de Capa 2 o Layer 2 Switches

Son los switches tradicionales, que funcionan como puentes multi-puertos. Su principal finalidad es dividir una LAN en múltiples dominios de colisión, o en los casos de las redes en anillo, segmentar la LAN en diversos anillos. Basan su decisión de envío en la dirección MAC destino que contiene cada trama.

Los switches de nivel 2 posibilitan múltiples transmisiones simultáneas sin interferir en otras sub-redes. Los switches de capa 2 no consiguen, sin embargo, filtrar difusiones o broadcasts, multicasts (en el caso en que más de una sub-red contenga las estaciones pertenecientes al grupo multicast de destino), ni tramas cuyo destino aún no haya sido incluido en la tabla de direccionamiento.

Switches de Capa 3 o Layer 3 Switches

Son los switches que, además de las funciones tradicionales de la capa 2, incorporan algunas funciones de enrutamiento o routing, como por ejemplo la determinación del camino basado en informaciones de capa de red (capa 3 del modelo OSI), validación de la integridad del cableado de la capa 3 por checksum y soporte a los protocolos de routing tradicionales (RIP, OSPF, etc)

Los switches de capa 3 soportan también la definición de redes virtuales (VLAN's), y según modelos posibilitan la comunicación entre las diversas VLAN's sin la necesidad de utilizar un router externo.

Por permitir la unión de segmentos de diferentes dominios de difusión o broadcast, los switches de capa 3 son particularmente recomendados para la segmentación de redes LAN muy grandes, donde la simple utilización de switches de capa 2 provocaría una pérdida de rendimiento y eficiencia de la LAN, debido a la cantidad excesiva de broadcasts.

Se puede afirmar que la implementación típica de un switch de capa 3 es más escalable que un router, pues éste último utiliza las técnicas de enrutamiento a nivel 3 y encaminamiento a nivel 2 como complementos, mientras que los switches sobreponen la función de enrutamiento encima del encaminamiento, aplicando el primero donde sea necesario.

Dentro de los Switches Capa 3 tenemos:

Paquete-por-Paquete (Packet by Packet)

Básicamente, un switch Packet By Packet es un caso especial de switch Store-and-Forward pues, al igual que éstos, almacena y examina el paquete, calculando el CRC y decodificando la cabecera de la capa de red para definir su ruta a través del protocolo de enrutamiento adoptado.

Layer-3 Cut-through

Un switch Layer 3 Cut-Through (no confundir con switch Cut-Through), examina los primeros campos, determina la dirección de destino (a través de la información de los headers o cabeceras de capa 2 y 3) y, a partir de ese instante, establece una conexión punto a punto (a nivel 2) para conseguir una alta tasa de transferencia de paquetes.

Cada fabricante tiene su diseño propio para posibilitar la identificación correcta de los flujos de datos. Como ejemplo, tenemos el "IP Switching" de Ipsilon, el "SecureFast Virtual Networking de Cabletron", el "Fast IP" de 3Com.

El único proyecto adoptado como un estándar de hecho, implementado por diversos fabricantes, es el MPOA (Multi Protocol Over ATM). El MPOA, en desmedro de su comprobada eficiencia, es complejo y bastante caro de implementar, y limitado en cuanto a backbones ATM.

Además, un switch Layer 3 Cut-Through, a partir del momento en que la conexión punto a punto es establecida, podrá funcionar en el modo "Store-and-Forward" o "Cut-Through"

Switches de Capa 4 o Layer 4 Switches

Están en el mercado hace poco tiempo y hay una controversia en relación con la adecuada clasificación de estos equipos. Muchas veces son llamados de Layer 3+ (Layer 3 Plus).

Básicamente, incorporan a las funcionalidades de un switch de capa 3 la habilidad de implementar la políticas y filtros a partir de informaciones de capa 4 o superiores, como puertos TCP/UDP, SNMP, FTP, etc.

Historia del switch

En los inicios de la década de los años 80, con el crecimiento de la Industria, muchos centros de cómputos y salas de servidores, se encontraron con el inconveniente de tener docenas y en algunos casos cientos de monitores, teclados y ratones, ocupando mucho espacio en los Rack, incrementando innecesariamente la temperatura en el ambiente. Otro gran inconveniente fue la administración de los servidores, los técnicos necesitaban moverse de un servidor a otro, para realizar las tareas.

Actualmente existe una disputa sobre quién fabricó el primer Switch KVM. Probablemente el primer nombre asignado fue KV Switch. El ambiente gráfico y los ratones no eran muy comunes en esa época. El primer Switch solamente soportaba teclado y vídeo. Los primeros Switch tenían botones o perillas que conmutaban entre una y otra computadora, siendo luego actualizada por funciones "Hot-Key" y finalmente por funciones en pantalla.

Los Switch KVM permitían que un usuario pueda acceder a varios servidores o computadores, utilizando solamente un monitor, teclado y ratón. Además de mejorar el tiempo de administración, disminución en las emisiones de calor de los monitores y ahorrando espacio físico, se logra una reducción de costos y un ahorro en compras de monitores, teclados y ratones.

Hoy en día es muy común encontrarlo en las salas de servidores (Datacenters), en administración de varios equipos, e incluso en pequeñas empresas y hogares.

Bridge

Monografias.comMonografias.com

Un puente o bridge es un dispositivo de interconexión de redes de ordenadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI. Este interconecta dos segmentos de red (o divide una red en segmentos) haciendo el pasaje de datos de una red hacia otra, con base en la dirección física de destino de cada paquete.

Un bridge conecta dos segmentos de red como una sola red usando el mismo protocolo de establecimiento de red.

Funciona a través de una tabla de direcciones MAC detectadas en cada segmento a que está conectado. Cuando detecta que un nodo de uno de los segmentos está intentando transmitir datos a un nodo del otro, el bridge copia la trama para la otra subred. Por utilizar este mecanismo de aprendizaje automático, los bridges no necesitan configuración manual.

La principal diferencia entre un bridge y un hub es que el segundo pasa cualquier trama con cualquier destino para todos los otros nodos conectados, en cambio el primero sólo pasa las tramas pertenecientes a cada segmento. Esta característica mejora el rendimiento de las redes al disminuir el tráfico inútil.

Para hacer el bridging o interconexión de más de 2 redes, se utilizan los switch.

Se distinguen dos tipos de bridge:

  • Locales: sirven para enlazar directamente dos redes físicamente cercanas.

  • Remotos o de área extensa: se conectan en parejas, enlazando dos o más redes locales, formando una red de área extensa, a través de líneas telefónicas.

Bridge es un anglicismo (en español: puente) que puede significar:

  • Adobe Bridge, programa informático organizador de Adobe Systems.

  • Bridge, juego de cartas.

  • Bridge, patrón de diseño.

  • Bridge Carson, personaje fictício de los Power Rangers.

  • En telemática, bridge o puente de red es un dispositivo para interconexión de redes locales.

Concentrador o Hub

Monografias.com

Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.

Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto en el que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos. También se encarga de enviar una señal de choque a todos los puertos si detecta una colisión. Son la base para las redes de topología tipo estrella. Como alternativa existen los sistemas en los que los ordenadores están conectados en serie, es decir, a una línea que une varios o todos los ordenadores entre sí, antes de llegar al ordenador central. Llamado también repetidor multipuerto, existen 3 clases.

Dentro del modelo OSI el concentrador opera a nivel de la capa física, al igual que los repetidores, y puede ser implementado utilizando únicamente tecnología analógica. Simplemente une conexiones y no altera las tramas que le llegan.

Visto lo anterior podemos sacar las siguientes conclusiones:

  • El concentrador envía información a ordenadores que no están interesados. A este nivel sólo hay un destinatario de la información, pero para asegurarse de que la recibe el concentrador envía la información a todos los ordenadores que están conectados a él, así seguro que acierta.

  • Este tráfico añadido genera más probabilidades de colisión. Una colisión se produce cuando un ordenador quiere enviar información y emite de forma simultánea con otro ordenador que hace lo mismo. Al chocar los dos mensajes se pierden y es necesario retransmitir. Además, a medida que añadimos ordenadores a la red también aumentan las probabilidades de colisión.

  • Un concentrador funciona a la velocidad del dispositivo más lento de la red. Si observamos cómo funciona vemos que el concentrador no tiene capacidad de almacenar nada. Por lo tanto si un ordenador que emite a 100 megabit/segundo le trasmitiera a otro de 10 megabit/segundo algo se perdería del mensaje. En el caso del ADSL los routers suelen funcionar a 10 megabit/segundo, si lo conectamos a nuestra red casera, toda la red funcionará a 10 megabit/segundo, aunque nuestras tarjetas sean 10/100 megabit/segundo.

  • Un concentrador es un dispositivo simple, esto influye en dos características. El precio es barato. Añade retardos derivados de la transmisión del paquete a todos los equipos de la red (incluyendo los que no son destinatarios del mismo).

Los concentradores fueron muy populares hasta que se abarataron los switch que tienen una función similar pero proporcionan más seguridad contra programas como los sniffer. La disponibilidad de switches ethernet de bajo precio ha dejado obsoletos, pero aún se pueden encontrar en instalaciones antiguas y en aplicaciones especializadas.

Los concentradores también suelen venir con un BNC y/o un conector AUI para permitir la conexión a 10Base5, 10Base2 o segmentos de red.

Información técnica

Una red Ethernet se comporta como un medio compartido, es decir, sólo un dispositivo puede transmitir con éxito a la vez y cada uno es responsable de la detección de colisiones y de la retransmisión. Con enlaces 10BASE-T y 100Base-T (que generalmente representan la mayoría o la totalidad de los puertos en un concentrador) hay parejas separadas para transmitir y recibir, pero que se utilizan en modo half duplex el cual se comporta todavía como un medio de enlaces compartidos. (Ver 10BASE-T para las especificaciones de los pines).

Un concentrador, o repetidor, es un dispositivo de emisión bastante sencillo. Los concentradores no logran dirigir el tráfico que llega a través de ellos, y cualquier paquete de entrada es transmitido a otro puerto (que no sea el puerto de entrada). Dado que cada paquete está siendo enviado a través de cualquier otro puerto, aparecen las colisiones de paquetes como resultado, que impiden en gran medida la fluidez del tráfico. Cuando dos dispositivos intentan comunicar simultáneamente, ocurrirá una colisión entre los paquetes transmitidos, que los dispositivos transmisores detectan. Al detectar esta colisión, los dispositivos dejan de transmitir y hacen una pausa antes de volver a enviar los paquetes.

La necesidad de hosts para poder detectar las colisiones limita el número de centros y el tamaño total de la red. Para 10 Mbit/s en redes, de hasta 5 segmentos (4 concentradores) se permite entre dos estaciones finales. Para 100 Mbit/s en redes, el límite se reduce a 3 segmentos (2 concentradores) entre dos estaciones finales, e incluso sólo en el caso de que los concentradores fueran de la variedad de baja demora. Algunos concentradores tienen puertos especiales (y, en general, específicos del fabricante) les permiten ser combinados de un modo que consiente encadenar a través de los cables Ethernet los concentradores más sencillos, pero aun así una gran red Fast Ethernet es probable que requiera conmutadores para evitar el encadenamiento de concentradores.

La mayoría de los concentradores detectan problemas típicos, como el exceso de colisiones en cada puerto. Así, un concentrador basado en Ethernet, generalmente es más robusto que el cable coaxial basado en Ethernet. Incluso si la partición no se realiza de forma automática, un concentrador de solución de problemas la hace más fácil ya que las luces puede indicar el posible problema de la fuente. Asimismo, elimina la necesidad de solucionar problemas de un cable muy grande con múltiples tomas.

Concentradores de doble velocidad

Los concentradores sufrieron el problema de que como simple repetidores sólo podían soportar una única velocidad. Mientras que los PC normales con ranuras de expansión podrían ser fácilmente actualizados a Fast Ethernet con una nueva tarjeta de red, ordenadores con menos mecanismos de expansión comunes, como impresoras, puede ser costoso o imposible de actualizar. Por lo tanto, un compromiso entre un concentrador y un conmutador es conocido como un concentrador de doble velocidad.

Este tipo de dispositivos consistió fundamentalmente en dos concentradores (uno de cada velocidad) y dos puertos puente entre ellos. Los dispositivos estaban conectados a concentrador apropiado automáticamente, en función de su velocidad. Desde el puente sólo se tienen dos puertos, y sólo uno de ellos necesita ser de 100Mbps.

Usos

Históricamente, la razón principal para la compra de concentradores en lugar de los conmutadores era el precio. Esto ha sido eliminado en gran parte por las reducciones en el precio de los conmutadores, pero los concentradores aún pueden ser de utilidad en circunstancias especiales:

  • Un analizador de protocolo conectado a un conmutador no siempre recibe todos los paquetes desde que el conmutador separa a los puertos en los diferentes segmentos. La conexión del analizador de protocolos con un concentrador permite ver todo el tráfico en el segmento. (Los conmutadores caros pueden ser configurados para permitir a un puerto escuchar el tráfico de otro puerto. A esto se le llama puerto de duplicado. Sin embargo, estos costos son mucho más elevados).

  • Algunos grupos de computadoras o cluster, requieren cada uno de los miembros del equipo para recibir todo el tráfico que trata de ir a la agrupación. Un concentrador hará esto, naturalmente; usar un conmutador en estos casos, requiere la aplicación de trucos especiales.

  • Cuando un conmutador es accesible para los usuarios finales para hacer las conexiones, por ejemplo, en una sala de conferencias, un usuario inexperto puede reducir la red mediante la conexión de dos puertos juntos, provocando un bucle. Esto puede evitarse usando un concentrador, donde un bucle se romperá en el concentrador para los otros usuarios. (También puede ser impedida por la compra de conmutadores que pueden detectar y hacer frente a los bucles, por ejemplo mediante la aplicación de Spanning Tree Protocol.)

  • Un concentrador barato con un puerto 10BASE2 es probablemente la manera más fácil y barata para conectar dispositivos que sólo soportan 10BASE2 a una red moderna(no suelen venir con los puertos 10BASE2 conmutadores baratos).

El funcionamiento de un concentrador está dado por la repetición de un mismo paquete de datos en todos sus puertos, de manera que todos los puntos accedan a la misma información al mismo tiempo. El hub es fundamental para el tipo de redes en estrella.

Otra alternativa para este tipo de redes son los repetidores multipuerto. Un sistema en el que los ordenadores en comunicación se conectan en serie a una línea que los entre sí. Los repetidores multipuerto pueden ser pasivos (no necesitan energía eléctrica), activos (sí la necesitan), o inteligente (que incluyen un microprocesador y son llamados smart hubs).

Tradicionalmente, los concentradores sufrieron el problema de sólo podían soportar una única velocidad. Si los ordenadores de PC son fácilmente actualizables, otros ordenadores pueden ser difíciles de actualizar. Una relación entre un conmutador y un concentrador o hub se considera un concentrador de doble velocidad.

En competencia con un conmutador, el concentrador solía ser una opción de precio más económico. Si bien hoy en día los conmutadores también son accesibles, el concentrador sirve para ocasiones especiales. Por ejemplo, un hub es útil para analizar todo el tráfico de un segmento de redes. Otro caso es que con un conmutador es más fácil para un usuario inexperto provocar un bucle de datos en la red. En cambio, con un concentrador, es más difícil que esto ocurra.

Hardware

Algunos concentradores llevan integrado un display, otros tienen que estar, a la fuerza, conectados a un dispositivo visualizador, como por ejemplo un televisor. También hay que decir que algunos fabricantes han optado a fabricar un DMR con el visualizador integrado, como por ejemplo el AppleTV o el EVA8000. En algunos casos podemos encontrar la funcionalidad del concentrador integrada en algunos productos electrónicos, como por ejemplo videoconsolas (Xbox360), reproductores de DVD...

Historia

El Digital Media Receiver fue inventado por una compañía llamada SimpleDevices al 1999, pero la primera unidad al mercado se hizo esperar hasta el 2001. Esta primera serie, fue fabricada y desarrollada por SimpleDevices y Shipped. Este primer diseño estaba basado en el procesador Cirrus Arm-7 y la tecnología sin cables HomeRF, que era la predecesora del estándard 802.11b. Otros productos que aparecieron en el mercado a principios de 2000, incorporaban Ethernet y Rio Reveiver (red a través de la línea telefónica). Pero el concepto de concentrador digital, apareció en 2002 en el Intel Developer Forum. El DMR de Intel estaba basado en un procesador Xscale PXA210 y funcionaba sin hilos con el estándard 802.11b. También fueron los pioneros en integrar las funcionalidades de DVD, y abrieron el camino a otros fabricantes para competir en este sector.

En la actualidad, la videconsola Xbox360 ha sido la primera en incorporar la funcionalidad del concentrador. Con la Xbox360, Microsoft también introdujo el concepto de Windows Media Center Extender, que permite acceder al PC remotamente a través de la red. También en la actualidad, compañías como D-Link o HP han introducido la última generación de DMRs, que permite funcionalidades en alta definición.

Módem

Monografias.com

Un módem es un equipo que sirve para modular y demodular (en amplitud, frecuencia, fase u otro sistema) una señal llamada portadora mediante otra señal de entrada llamada moduladora. Se han usado modems desde los años 60 o antes del siglo XX, principalmente debido a que la transmisión directa de la señales electrónicas inteligibles, a largas distancias, no es eficiente. Por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción.


Partes: 1, 2, 3


 Página anterior Volver al principio del trabajoPágina siguiente 

Comentarios


Trabajos relacionados

  • Introducción Al Procamail

    Versiones del Procmail. Configuración Del Sistema Procmail; Archivo .procmailrc. A pesar de lo eficiente y atractivos q...

  • XML - Lenguaje de Marcas Extensible

    XML será el lenguaje que nos garantizará el intercambio de cualquier tipo de información, sin que ocasione problemas de ...

  • Aplicaciones del protocolo TCP/IP

    TELNET. FTP (File Transfer Protocol). FTP Offline. TFTP (Trivial File Transfer Protocol). SNMP (Simple Network Managemen...

Ver mas trabajos de Redes

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.