Agregar a favoritos      Ayuda      Português      Ingles     

Funciones de dos y más variables, dominio y rango, y curva de nivel




Partes: 1, 2

  1. Función de dos variables
  2. Funciones de varias variables
  3. Método para hallar el Rango
  4. Curvas de nivel
  5. Bibliografía

Función de dos variables

Una función de dos variables es una regla de correspondencia que asigna a cada pareja de números reales (x, y) un y sólo un número real z.

El conjunto de parejas ordenadas para las cuales la regla de correspondencia dá un número real se llama dominio de la función. El conjunto de valores z que corresponden a los pares ordenados se llama imagen o contradominio.

Una función de dos variables se denota usualmente con la notación

z = f (x, y)

Las variables x, y se llaman variables independientes, y z se llama variable dependiente.

La gráfica de una función de dos variables es el conjunto de puntos con coordenadas (x, y, z) en donde (x, y) está en el dominio de f y z = f (x, y).

Este conjunto de puntos forma una superficie en el espacio tridimensional.

Monografias.com

Monografias.com

En consecuencia, la grafica de una función f de dos variables es una superficie que consta de todos los puntos del espacio tridimensional cuyas coordenadas cartesianas están determinadas por las ternas ordenadas de números reales (x, y, z). Como el dominio de f es un conjunto de puntos del plano x, y, y puesto que cada par ordenado (x, y) del dominio de f corresponde a solo un valor de z, ninguna recta perpendicular al plano x,y puede intersectar a la grafica de f en mas de un punto.

Ejemplo ilustrativo 1

La función f del ejemplo 1 es el conjunto de todos los pares ordenados de la forma (P, z) tales que

Monografias.com z=v25- x2 -y2

Por tanto, la grafica de f es la semiesfera en el plano x y por arriba de este cuyo centro es el origen y tiene radio 5. Esta semiesfera se muestra en la figura 1.

Monografias.com

Ejemplo 2: dibuje la grafica de la función

Sol/: la grafica de f es la superficie que tiene la ecuación z=x2 +y2 . La traza de la superficie en el plano x,y se obtiene al utilizar la ecuación z=0 simultáneamente con la ecuación de la superficie. Al hacerlo resulta x2 +y2=0 la cual representa el origen. Las trazas en los planos xz y yz se obtiene al emplear las ecuaciones z=x2 +y2. Estos trazos son las parábolas z= x2 y z= y2.

Monografias.com

Funciones de varias variables

El deseo de abordar problemas del mundo real, nos conduce a tomar en cuenta que, en general, cualquier situación o fenómeno requiere de más de una variable para su precisa descripción. Por ejemplo, el volumen de un cilindro depende del radio de la base y de su altura; la posición de un móvil en un momento determinado requiere para su exacta especiación, además del tiempo, de las tres coordenadas espaciales. Si adicionalmente se requiere la velocidad a la cual se desplaza, tendremos una función vectorial f que a cada vector de cuatro componentes (ubicación espacial y tiempo) le asigna la velocidad

V del móvil en ese punto y en ese instante:

f(x; y; z; t) = v

Observamos entonces que de acuerdo con la situación especifica que queramos describir, requerimos el tipo de función adecuada. Según si el dominio D y el rango R son subconjuntos de R; R2 o R3 las funciones se clasifican de la siguiente forma:

Función Nombre

Monografias.com

En cada caso, donde aparece R3 lo podemos sustituir por R2 y el nombre se conserva.

Las denominaciones escalar o vectorial se refieren a si la imagen de la función es un

numero o es un vector.

Ejemplo: la función g esta definida por

g (x, y, z) = x2+y2-z

entonces el paraboloide circular z= x2+y2, mostrado en la figura, es la superficie de nivel de g en 0. La superficie de nivel de g en el numero k tiene la ecuación z + k = x2 + y2 , un paraboloide circular cuyo vértice es el punto (0,0 –k) sobre el eje z. en al figura muestra las superficies de nivel para k igual a -4,-2, 0, 2 y 4


Partes: 1, 2

Página siguiente 

Comentarios


Trabajos relacionados

  • Pitagoras y el pitagorismo

    Biografía de pitagoras. Armonía de los contrarios. La comunidad pitagorica. Nació hacia el año 578 ac. En samos (rival ...

  • Filósofos de la naturaleza

    Sócrates. La Política. Enseñanzas. El juicio. Tales de Mileto. Platón: Obra; Teoría de las ideas; Teoría del conocimien...

  • Eutanasia

    Definición del término eutanasia. Eutanasia: ¿Existe un derecho a morir?. Formas de aplicación de la eutanasia. La batal...

Ver mas trabajos de Filosofia

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda