Agregar a favoritos      Ayuda      Português      Ingles     

Vibraciones Mecánicas

Enviado por Isaac Solis Rebollar



Partes: 1, 2, 3

  1. Introducción al estudio de las vibraciones mecánicas
  2. Análisis dinámico del sólido rígido, fuerzas y aceleración
  3. Movimiento plano de un sólido rígido: impulso y cantidad de movimiento
  4. Vibraciones mecánicas
  5. Balanceo dinámico
  6. Control de vibración
  7. Bibliografía

Introducción al estudio de las vibraciones mecánicas

La razón principal para analizar y diagnosticar el estado de una maquina es determinar las medidas necesarias para corregir la condición de vibración - reducir el nivel de las fuerzas vibratorias no deseadas y no necesarias. De manera que, al estudiar los datos, el interés principal deberá ser la identificación de las amplitudes predominantes de la vibración, la determinación de las causas, y la corrección del problema que ellas representan.

El siguiente material muestra los diferentes causas de vibración y sus consecuencias, lo cual nos ayudara enormemente para interpretar los datos que podamos obtener , determinado así el tipo de vibración que se presenta y buscar así la debida corrección de las mismas.

Teoría general de vibraciones

 El análisis de vibraciones es un tema muy amplio al cual se han dedicado estudios completos, esta introducción expone de forma resumida algunos aspectos teóricos de las vibraciones de los sistemas elásticos, que ayudarán a comprender los métodos de cálculo de la acción de los sismos sobre las estructuras basados en sus efectos dinámicos.

 El estudio de las vibraciones se refiere a los movimientos de los cuerpos y a las fuerzas asociadas con ellos. Todos los cuerpos que poseen masa y elasticidad, son capaces de vibrar. Una vibración mecánica es el movimiento de una partícula o cuerpo que oscila alrededor de una posición de equilibrio. La mayoría de las máquinas y estructuras experimentan vibraciones hasta cierto grado por lo que su diseño requiere la consideración de este efecto dinámico debido a que ocasiona un aumento en los esfuerzos y tensiones.

 Una vibración se produce cuando el sistema en cuestión es desplazado desde una posición de equilibrio estable, el sistema tiende a retornar a dicha posición, bajo la acción de fuerzas de restitución elástica o gravitacional, moviéndose de un lado a otro hasta alcanzar su posición de equilibrio. El intervalo de tiempo necesario para que el sistema efectúe un ciclo completo de movimiento se llama periodo de vibración, el número de ciclos por unidad de tiempo define la frecuencia y el desplazamiento máximo del sistema desde su posición de equilibrio se denomina amplitud de vibración.

 Los sistemas oscilatorios pueden clasificarse como lineales o no lineales. Para los sistemas lineales rige el principio de superposición y las técnicas matemáticas para su tratamiento están bien desarrolladas (Ley de Hooke). Por el contrario las técnicas para el análisis de sistemas no lineales son más complicadas y no muy conocidas.

 Existen dos clases de vibraciones, las libres y las forzadas. Cualquier sistema elástico puede tener una vibración libre a consecuencia de un impulso inicial, donde el movimiento es mantenido únicamente por las fuerzas de restitución inherentes al mismo. El sistema bajo vibración libre vibrará en una o más de sus frecuencias naturales, dependientes de la distribución de su masa y rigidez.

 Cuando al sistema se le aplica fuerzas perturbadoras externas, el movimiento resultante es una vibración forzada. Cuando la excitación es oscilatoria, ya sea periódica o no, como la de un sismo, el sistema es obligado a vibrar a la frecuencia de excitación, si ésta coincide con una de las frecuencias naturales del sistema se produce resonancia, en este estado tienen lugar oscilaciones peligrosamente grandes; así la falla por resonancia de estructuras como puentes o edificios es una dramática posibilidad que debe tenerse muy en cuenta. Por este motivo el cálculo de las frecuencias naturales de vibración es de gran importancia en el diseño sísmico de estructuras.

1.1.- VIBRACIONES MECÁNICAS DEFINICIONES, CLASIFICACIONES.

El estudio de las vibraciones mecánicas también llamado, mecánica de las vibraciones, es una rama de la mecánica, o más generalmente de la ciencia, estudia los movimientos oscilatorios de los cuerpos o sistemas y de las fuerzas asociadas con ella.

Vibración: es el movimiento de vaivén que ejercen las partículas de un cuerpo debido a una excitación.

Existe una relación entre el estudio de las vibraciones mecánicas del sonido, si un cuerpo sonoro vibra el sonido escuchado está estrechamente relacionado con la vibración mecánica, por ejemplo una cuerda de guitarra vibra produciendo el tono correspondiente al # de ciclos por segundo de vibración.

Para que un cuerpo o sistema pueda vibrar debe poseer características potenciales y cinéticas. Nótese que se habla de cuerpo y sistema si un cuerpo no tiene la capacidad de vibrar se puede unir a otro y formar un sistema que vibre; por ejemplo, una masa y resorte donde la masa posee características energéticas cinéticas, y el resorte, características energéticas potenciales.

Otro ejemplo de un sistema vibratorio es una masa y una cuerda empotrada de un extremo donde la masa nuevamente forma la parte cinética y el cambio de posición la parte potencial.

Partes: 1, 2, 3

Página siguiente 

Comentarios


Trabajos relacionados

Ver mas trabajos de Ingenieria

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda