Monografias.com > Sin categoría
Descargar Imprimir Comentar Ver trabajos relacionados

Los reinos de la vida (página 3)



Partes: 1, 2, 3, 4, 5, 6

Poseen ojos compuestos, sus hormonas permiten mudas y metemofosis (el joven no se parece en forma a la adulta). Puede ser completa o parcial, cuando falta una estructura. Tienen sentido social, ya que forman agrupaciones para defenderse por numero: enjambres, colonias, etc. Se clasifican en : trilohitatas: artropodos primitivos y extintos en el mesozoico; crustáceos: con cefalotórax, patas y antenas, como el camarón, langosta, jaiba, cangrejo, algunos tienen quelas (pinzas); arácnidos: con abdomen blando, glándulas ponzoñosas y capacidad de hilación (baba que se solidifica con el aire), 8 patas con el primer par transformado en quelicero (pinzas de rujeción), alacranes, escorpiones y arañas; labiados: miriapodos y exápodos (6 pies como los insectos).

Relación con el Hombre.

Se usan en estudios, sus beneficios están en producir productos como la miel, ácido fórmico, seda y que se comen o se explotan comercialmente, además de que se usan sus partes como ornato en las costas. Los daños son plagas que pueden terminar con cosechas. Provocan y vinculan con enfermedades pudren alimentos y pueden ser venenosos.

EQUINODERMOS.

Son bilaterales cuando son larvas. Radiados triblásticos en adultos, con un esqueleto calcareo con placas y espículas grandes o pequeñas. Son unisexuales de fecundación externa y óvulos aleatos. Tienen una boca ventral on peristoma y unas pinzas calcareas que se interdigitan para evitar abrirse llamadas linterna de Aristóteles, además de un ano apical. Alrededor de la boca el sistema nervioso es un anillo peribucal. Tienen pies ambulocíales para moverse y un aparato acuífero con madre porita, placa junto al ano apical. Alrededor del orificio de donde parten otras placas. Ejemplo: erizo, estrella y pepino de mar.

Relación con el Hombre: Marinos, ornamentales. Los erizos pueden provocar malestares y son comestibles (en chile, por ejemplo).

CORDADOS SUPERIORES.

Agnatha.

Sin cabeza, sin mandíbula, con ventosa oral, sin dientes, sin cuello, cuerpo desnudo, sin sangre, primordio de cuerpo, impulsor, sistema digestivo abierto con ciegos, con hepatopáncreas, aparato respiratorio elemental, forma de saco, sin miembros para desplazamiento (sin movimiento):

Condricties.

Con cabeza, con mandíbula, sin ventosa oral, con dientes, sin cuello, cuerpo con escamas, con sangre fría, corazón de 2 cavidades, sistema digestivo abierto con ciegos, con hepatopáncreas, respiración branquial, sin vejiga natatoria, aplanados dorso ventralmente, con aletas dorsal, caudal y laterales para nadar.

Osteodrictes.

Con cabeza, con mandíbula, sin ventosa oral, con dientes, sin cuello, cuerpo con escamas, con sangre fría, corazón de 2 cavidades, sistema digestivo abierto con ciegos, con hepatopáncreas, respiración branquial, con vejiga (nadan todo el tiempo), pisciformes, con aletas dorsal, caudal y laterales para nadar.

Anfibia.

Con cabeza, con mandíbula, sin ventosa oral, con dientes algunos, sin cuello, cuerpo desnudo, sangre fría (la rana con glóbulos rojos nucleados), corazón de 3 cavidades, sistema digestivo abierto con ciegos y glándulas separadas (hígado y pancréas), respiración branquial en jóvenes y pulmonar en adultos,alargados o triángulares, con patas ( 2 anteriores y 2 posteriores mas largas) para nadar, correr y saltar.

Réptiles.

Con cabeza, con mandíbula, sin ventosa oral, con dientes, con cuello, cuerpo con escamas, sangre fría, corazón de 3 cavidades (caimanesy cocodrilos tienen 4), sistema digestivo abierto con ciegos y glándulas separadas, respiración pulmonar, forma variable, 4 patas cortas o sin patas, reptan.

Aves.

Con cabeza, con mandíbula, sin ventosa oral, sin dientes, con cuello, cuerpo con plumas, sangre caliente, corazón de 4 cavidades, sistema digestivo abierto con ciegos y glándulas separadas, respiración pulmonar, forma variable, 2 patas posteriores y alas (las anteriores) para volar, nadar, correr.

Mamíferos.

Con cabeza, con mandíbula, sin ventosa oral, con dientes, con cuello, cuerpo con pelos, sangre caliente, corazón de 4 cavidades, sistema digestivo abierto con ciegos y glándulas separadas, respiración pulmonar, forma variable, 4 patas y todo tipo de movimiento.

Una propuesta presentada por el científico Juan Bautista Monet y Caballero de Lamarck, tomo en cuenta los siguientes criterios de clasificación:

  • Presencia o ausencia de huesos

  • Aparato digestivo, respiratorio, circulatorio y sistema nervioso.

  • Presencia o ausencia de celoma (cavidad interna protegida por tejido epitelial).

Características de los Animales

1.- Protozoarios.- son animales unicelulares, acuáticos, algunos son parásitos medios de locomoción, según su especie y se clasifican en:

  • Ciliados.- se desplaza o se mueven con cilios.

  • Flagelados.- con flagelos

  • Rizopooss.- se desplazan por medio de falsos pies.

  • 1. Poríferos

  • 2. Celenterados

  • 3. Platelmintos

  • 4. Invertebrados Nematelmintos

  • 5. Artrópodos

  • 6. Moluscos

  • 7. Equinodermos

  • 8. Anfibios

  • 9. Reptiles

  • 10. Vertebrados Peces

  • 11. Aves

  • 12. Mamíferos

Invertebrados

Son animales que carecen de huesos se clasifican en:

Poríferos.- Animales acuáticos, su cuerpo es cubierto por poros, viven adheridos en el fondo del mar. Ejemplo: esponjas.

Celenterados.- Animales acuáticos en aguas dulces y marinas, viven en colonias, a cada individuo se le llama zooide. Presentan células urticantes. Ejemplos: corales, medusas, aguas malas.

Ejemplo: duela del carnero.

Platelmintos.- Son gusanos planos, libres o parásitos, hermafroditas, se reproducen por medio de huevecillos y algunas parásitan al hombre.

Nematelmintos.- Son gusanos redondos y lisos, unisexuales, su aparato digestivo es completo y abierto, todos son parásitos. Ejemplo: lombriz intestinal, filaria, triquina.

Anélidos.- Son gusanos redondos y segmentados, a cada segmento se le llama metalero, pueden ser acuáticos o terrosos, construyen galerías son hermafroditas con fecundación cruzada. Y se reproducen por medio de huevo. Ejemplo: lombriz, sanguijuela.

Artrópodos.

Son animales que ya presentan su cuerpo dividido en cabeza, tórax, abdomen y patas articuladas. Su clasifican en cuatro grupos que son:

Insectos.- Animales que presentan 3 pares de patas, 2 antena, 2 o 4 alas y sufren metamorfosis. Ejemplo: mosca, mariposa.

Arácnidos.- presentan dos pedí-palpos que son estructuras para capturar a sus presas, tienen 4 pares de patas, su cabeza esta unida al tórax y viven en las regiones áridas. Ejemplo: araña, escorpión.

Crustáceos.- Su cuerpo esta cubierto por una cabeza, tienen 4 pares de patas y 2 pares de antenas, se reproducen por medio de huevos. Ejemplo: camarón, cangrejo.

Miriápodos.- Son animales de cuerpo aplanado y divididos en segmentos, presentan un par de patas en cada segmento. Ejemplo: ciempiés, tijerillas.

Moluscos.- Animales acuáticos o terrestre, su cuerpo es blando, algunos tienen conema y algunos otros poseen tentáculos. Se reproducen por medio de huevo. Ejemplo: pulpo, caracol, ostión.

Ejemplo: estrella de mar, erizó.

Equinodermos.- Son acuáticos y marinos, su cuerpo presenta cinco ejes, viven en el fondo del mar y pueden adherirse a las rocas.

Vertebrados: Son animales pluricelulares que ya poseen columna vertebral, se clasifican en:

Anfibios.- Viven en 2 medios, tienen 4 extremidades que terminan en 4 o 5 dedos cada unas, su piel esta cubierta por viscosidad, son unisexuales, ovíparos y sufren metamorfosis. Ejemplo: rana, sapo, salamandra.

Reptiles.- Su cuerpo cubierto de escamas o caparazón, sus patas son muy cortas o carecen de ellas, por esta razón se arrastran, su respiración es pulmonar, son ovíparos, algunos son venenosos o inyectan ponzoña al hombre. Ejemplo: víbora, camaleón.

Peces.- Son acuáticos, su cuerpo cubierto por escamas, sus extremidades se llaman aletas, su respiración es bronquial, acrecen de párpados, presentan vejiga natatoria que permite su estabilidad. Ejemplo: atún, caballitos de mar, huachinango.

Aves.- Su cuerpo cubierto de plumas, sus maxilares se llaman pico, sus huesos de las alas son huecos, sus patas están adaptadas al caminar, nadar, a la carrera. Su respiración es pulmonar y todos son ovíparos. Ejemplo: Aguila, tucán.

Mamíferos.- cuerpo cubierto de pelo, presentan glándulas mamarias que en los hombres producen leche para alimentar a sus crías, es vivíparo, su respiración es pulmonar, sus extremidades: uña, pezuña, garra; su alimentación es variada, pueden ser acuáticos y terrestres y son los seres mas evolucionados. Ejemplo: murciélago, jaguar, ballena, hombre.

Los mamíferos en 13 ordenes que son:

  • Monotremas Ornitorrinco

  • Marsupiales Canguro

  • Insectívoros Topo

  • Quirópteros Murciélago

  • Primates Mono Hombre

  • Endentados Oso Hormiguero

  • Roedores Castor

  • Cetáceos Ballena

  • Carnívoro Lobo

  • Proboscidios Elefante

  • Sirenios Manatí

  • Perisodocilos Caballo

  • Antidáctilos Camello

Los animales vertebrados que presentan columna vertebral como eje esquelético del cuerpo se agrupan en cinco grandes grupos:

Peces: es el grupo más numeroso de vertebrados, tienen hábitos acuáticos, respiración branquial, corazón de dos cavidades, poikilodermos (temperatura corporal cambia con el ambiente), cuerpo cubierto de escamas, extremidades transformadas en aletas para nadar

Anfibios: presentan piel desnuda, poikilodermos, con extremidades, respiración branquial en fase lavaria y luego en el estado adulto con respiración pulmonar o cutánea; son ovíparos. Son las ranas, sapos, etc.

Reptiles: tienen el cuerpo cubierto de escamas, son poikilodermos, con un corazón de tres cavidades, respiración pulmonar y nacen de huevos. Lagartos, serpientes, tortugas, etc.

Aves: tienen plumas, pico y alas, son homotermos (temperatura corporal constante), respiración pulmonar, corazón de cuatro cavidades, son ovíparos. Gallinas, pericos, gavilanes, etc.

Mamíferos: sistema nervioso muy desarrollado, homotermos, cuerpo cubierto de pelos, corazón de cuatro cavidades, respiración pulmonar. Se clasifican en Proterios (nacen de huevos): ornitorrinco; Metaterios (desarrollan bola materna): canguros; y Euterios o mamíferos placentarios, que a su vez se agrupan en órdenes: Insectívora (topos, musarañas), Chiroptera (murciélagos), Carnívora (perros, gatos), Edentaria (osos hormigueros, armadillos), Rodentaria (ardillas, ratas), Lagomorpha (conejos), Primates (monos, humanos), Perisodactyla (caballos, cebras), Artiodactyla (cerdos, venados, jirafas), Proboscidia (elefantes), Sirenia (manatíes), Cetácea (ballenas, delfines).

Especies en extinción

El hombre por su expansión demográfica y debido a la gran cantidad de actividades que realiza (aumento de los terrenos para cultivo, aumento de la ganadería, deforestación, incendios forestales, alteración de las cuencas hidrológicas, aumento de desperdicios industriales, uso irresponsable de químicos, introducción casual o intencional de especies exóticas, cacería, etc.) contribuye a poner en peligro de extinción o lleva a la extinción a muchas especies.

  • Selvas tropicales.- 50 y 90 por ciento de todos los seres vivos; anualmente se talan 17 millones de hectáreas; en 30 años habrán desaparecido.

  • 60 mil de 240 mil especies de plantas se encuentran en posible extinción.

  • Islas Galápagos.- Especies de plantas endémicas y 60% en peligro de extinción.

  • Islas Azores.- 42% de plantas endémicas en peligro de extinción.

  • Islas Canarias.- 75% de plantas endémicas en peligro de extinción.

  • Arrecifes coralinos, manglares y bosques; cortan 12 y 15 millones de hectáreas. anuales. En Africa se ha perdido el 85%; en Asia el 70% y en América Latina un 50%.

  • Lista roja de animales amenazados en 1990 en peligro de extinción:

  • 618 especies de mamíferos

  • 1,047 especies de aves

  • 191 especies de reptiles

  • 63 especies de anfibios

  • 762 especies de peces y

  • 2250 de invertebrados.

  • La mayor parte de las especies no han sido aún descritas y muchas desaparecerán antes de que la ciencia las conozca.

  • Rinoceronte negro (Africa) 65,000 — 4,500

  • Pájaro bobo 300,000 — 170,006

  • Elefante 3,000,000 — 1,050,000

  • Paloma rosada 30 — 15

  • Rinoceronte blanco 1,500 — 17

  • Especies en extinción en México:

  • Jaguar o tigre americano

  • Ocelote

  • Oso pardo americano

  • Conejo de los volcanes, tepango o sacabuche endémico

  • Berrendo

  • Cocodrilo americano

  • Sapo verde de Sonora

  • Perrito mexicano de las praderas

  • Loro o papagayo de pico grueso

  • Tortuga acuática y tortuga del desierto.

IMPORTANCIA:

La clasificación de los seres vivos en los Reinos Biológicos es de gran importancia porque facilita el estudio de la especies y mantiene organizados los conocimientos sobre las criaturas, agrupándolas según sus características generales. Debemos tomar en cuenta que el primer y mas grande depredador del planeta tierra es el hombre, ya que destruye todo lo que le da la vida, como ejemplo, el ambiente y por la teoría del desarrollo armónico e integral, perjudicamos a los demás seres vivos del planeta sin respetar su hábitat natural y por ende su lugar de vida, causando una alteración biológica y a la naturaleza.

La clasificación de las especies ha sido objeto de estudio desde tiempos inmemorables en el afán del ser humano por tratar de comprender el ambiente que lo rodea y esta organización de los seres vivos logra muy su objetivo, dándonos una división precisa. En pocas palabras nos define y nos clasifícale origen de la vida y del desarrollo o evolución de los mismo durante todo el tiempo de existencia del planeta por lo que nos da el escalafón de validez de la vida y de nuestra descendencia molecular o de formación durante millones de años, y por ende, poder así definirnos y diferenciarnos de los demás seres vivos del planeta. Por lo que podemos dividir gráficamente los reinos de la siguiente forma:

Monografias.com

Monografias.com

Monografias.com

Asi mismo debemos aprender el origen de la palabra, por lo que ls seres vivos son los que tienen vida. Ello significa que realizan una serie de actividades que les permiten vivir y adaptarse al medio. Estas actividades se llaman funciones vitales y son las siguientes:

  • Reproducción: todos los seres vivos originan, mediante procedimientos diferentes, nuevos seres parecidos a ellos.

  • Nutrición: se alimentan para conseguir la energía suficiente para crecer, moverse y vivir.

  • Relación: reaccionan ante las informaciones que reciben del entorno que les rodea.

  • Mueren; fin de su ciclo de vida, propagándose en la tierra para forma parte de otros cuerpos mas pequeños,

También responden ante los estímulos de otros seres vivos.

Los seres vivos se dividen en tres reinos:

  • Reino animal

  • Reino vegetal

  • Reino de los hongos

Monografias.com

Monografias.com

CAPITULO II:

Las bacterias

Son seres generalmente unicelulares que pertenecen al grupo de los protistos inferiores. Son células de tamaño variable cuyo límite inferior está en las 0,2m y el superior en las 50m ; sus dimensiones medias oscilan entre 0,5 y 1m . Las bacterias tienen una estructura menos compleja que la de las células de los organismos superiores: son células procariotas (su núcleo está formado por un único cromosoma y carecen de membrana nuclear). Igualmente son muy diferentes a los virus, que no pueden desarrollarse más dentro de las células y que sólo contienen un ácido nucleico.

Las bacterias juegan un papel fundamental en la naturaleza y en el hombre: la presencia de una flora bacteriana normal es indispensable, aunque gérmenes son patógenos. Análogamente tienen un papel importante en la industria y permiten desarrollar importantes progresos en la investigación, concretamente en fisiología celular y en genética. El examen microscópico de las bacterias no permite identificarlas, ya que existen pocos tipos morfológicos, cocos (esféricos), bacilos (bastón), espirilos (espiras) y es necesario por lo tanto recurrir a técnicas que se detallarán más adelante. El estudio mediante la microscopia óptica y electrónica de las bacterias revela la estructura de éstas.

Estructura y fisiología de las bacterias.

Estructura de superficie y de cubierta.

砌a cápsula no es constante. Es una capa gelatinomucosa de tamaño y composición variables que juega un papel importante en las bacterias patógenas.

砌os cilios, o flagelos, no existen más que en ciertas especies. Filamentosos y de longitud variable, constituyen los órganos de locomoción. Según las especies, pueden estar implantados en uno o en los dos polos de la bacteria o en todo su entorno. Constituyen el soporte de los antígenos "H". En algunos bacilos gramnegativos se encuentran pili, que son apéndices más pequeños que los cilios y que tienen un papel fundamental en genética bacteriana.

砌a pared que poseen la mayoría de las bacterias explica la constancia de su forma. En efecto, es rígida, dúctil y elástica. Su originalidad reside en la naturaleza química del compuesto macromolecular que le confiere su rigidez. Este compuesto, un mucopéptido, está formado por cadenas de acetilglucosamina y de ácido murámico sobre las que se fijan tetrapéptidos de composición variable. Las cadenas están unidas por puentes peptídicos. Además, existen constituyentes propios de las diferentes especies de la superficie.

La diferencia de composición bioquímica de las paredes de dos grupos de bacterias es responsable de su diferente comportamiento frente a un colorante formado por violeta de genciana y una solución yodurada (coloración Gram). Se distinguen las bacterias grampositivas (que tienen el Gram después de lavarlas con alcohol) y las gramnegativas (que pierden su coloración).

Se conocen actualmente los mecanismos de la síntesis de la pared. Ciertos antibióticos pueden bloquearla. La destrucción de la pared provoca una fragilidad en la bacteria que toma una forma esférica (protoplasto) y estalla en medio hipertónico (solución salina con una concentración de 7 g. de NaCI por litro).

砌a membrana citoplasmática, situada debajo de la pared, tiene permeabilidad selectiva frente a las sustancias que entran y salen de la bacteria. Es soporte de numerosas enzimas, en particular las respiratorias. Por último, tiene un papel fundamental en la división del núcleo bacteriano. Los mesosomas, repliegues de la membrana, tienen una gran importancia en esta etapa de la vida bacteriana.

Estructuras internas.

砅l núcleo lleva el material genético de la bacteria; está formado por un único filamento de ácido desoxirribonucleico (ADN) apelotonado y que mide cerca de 1 mm de longitud (1000 veces el tamaño de la bacteria).

砌os ribosomas son elementos granulosos que se hallan contenidos en el citoplasma bacteriano; esencialmente compuestos por ácido ribonucleico, desempeñan un papel principal en la síntesis proteica.

砅l citoplasma, por último, contiene inclusiones de reserva.

La división celular bacteriana.

La síntesis de la pared, el crecimiento bacteriano y la duplicación del ADN regulan la división celular. La bacteria da lugar a dos células hijas. La división empieza en el centro de la bacteria por una invaginación de la membrana citoplasmática que da origen a la formación de un septo o tabique transversal. La separación de las dos células va acompañada de la segregación en cada una de ellas de uno de los dos genomas que proviene de la duplicación del ADN materno.

Espora bacteriana.

Ciertas bacterias grampositivas pueden sintetizar un órgano de resistencia que les permite sobrevivir en condiciones más desfavorables, y se transforma de nuevo en una forma vegetativa cuando las condiciones del medio vuelven a ser favorables. Esta espora, bien estudiada gracias a la microscopia electrónica, contiene la información genética de la bacteria la cual está protegida mediante dos cubiertas impermeables. Se caracteriza por su marcado estado de deshidratación y por la considerable reducción de actividades metabólicas, lo que contrasta con su riqueza enzimática. La facultad de esporular está sometida a control genético y ciertos gérmenes pueden perderla. La germinación de las esporas es siempre espontánea. Da lugar al nacimiento de una bacteria idéntica al germen que había esporulado.

Nutrición y crecimiento bacterianos.

Las bacterias necesitan de un aporte energético para desarollarse.

砓e distinguen distintos tipos nutricionales según la fuente de energía utilizada: las bacterias que utilizan la luz son fotótrofas y las que utilizan los procesos de oxirreducción son quimiótrofas. Las bacterias pueden utilizar un sustrato mineral (litótrofas) u orgánico (organótrofas). Las bacterias patógenas que viven a expensas de la materia orgánica son quimioorganótrofas.

砌a energía en un sustrato orgánico es liberada en la oxidación del mismo mediante sucesivas deshidrogenaciones. El aceptor final del hidrógeno puede ser el oxígeno: se trata entonces de una respiración. Cuando el aceptor de hidrógeno es una sustancia orgánica (fermentación) o una sustancia inorgánica, estamos frente a una anaerobiosis.

码demás de los elementos indispensables para la síntesis de sus constituyentes y de una fuente de energía, ciertas bacterias precisan de unas sustancias específicas: los factores de crecimiento. Son éstos unos elementos indispensables para el crecimiento de un organismo incapaz de llevar a cabo su síntesis. Las bacterias que precisan de factores de crecimiento se llaman "autótrofas". Las que pueden sintetizar todos sus metabolitos se llaman "protótrofas". Ciertos factores son específicos, tal como la nicotinamida (vitamina B,) en Proteus. Existen unos niveles en la exigencia de las bacterias. Según André Lwoff, se pueden distinguir verdaderos factores de crecimiento, absolutamente indispensables, factores de partida, necesarios al principio del crecimiento y factores estimulantes. El crecimiento bacteriano es proporcional a la concentración de los factores de crecimiento. Así, las vitaminas, que constituyen factores de crecimiento para ciertas bacterias, pueden ser dosificadas por métodos microbiológicos (B12 y Lactobacillus lactis Doraren).

Se puede medir el crecimiento de las bacterias siguiendo la evolución a lo largo del tiempo del número de bacterias por unidad de volumen. Se utilizan métodos directos como pueden ser el contaje de gérmenes mediante el microscopio o el contaje de colonias presentes después de un cultivo de una dilución de una muestra dada en un intervalo de tiempo determinado. Igualmente se utilizan métodos indirectos (densidad óptica más que técnicas bioquímicas).

Existen seis fases en las curvas de crecimiento. Las más importantes son la fase de latencia (que depende del estado fisiológico de los gérmenes estudiados) y la fase exponencial, en la que la tasa de crecimiento es máxima. El crecimiento se para como consecuencia del agotamiento de uno o varios alimentos, de la acumulación de sustancias nocivas, o de la evolución hacia un pH desfavorable: se puede obtener una sincronización en la división de todas las células de la población, lo que permite estudiar ciertas propiedades fisiológicas de los gérmenes.

Genética bacteriana.

Por la rapidez en su multiplicación, se eligen las bacterias como material para los estudios genéticos. En un pequeño volumen forman enormes poblaciones cuyo estudio evidencia la aparición de individuos que tienen propiedades nuevas. Se explica este fenómeno gracias a dos procesos comunes a todos los s o, traducidas por la aparición brusca eres vivos: las variaciones del genotipo de un carácter transmisible a la descendencia, y las variaciones fenotípicas, debidas al medio, no transmisibles y de las que no es apropiado hablar en genética. Las variaciones del genotipo pueden provenir de mutaciones, de transferencias genéticas y de modificaciones extracromosómicas.

Las mutaciones.

Todos los caracteres de las bacterias pueden ser objeto de mutaciones y ser modificados de varias maneras. Las mutaciones son raras: la tasa de mutación oscila entre 10 y 100. Las mutaciones aparecen en una sola vez, de golpe. Las mutaciones son estables: un carácter adquirido no puede ser perdido salvo en caso de mutación reversible cuya frecuencia no es siempre idéntica a las de las mutaciones primitivas. Las mutaciones son espontáneas:no son inducidas, sino simplemente reveladas por el agente selectivo que evidencia los mutantes. Los mutantes, por último, son específicos: la mutación de un carácter no afecta a la de otro.

El estudio de las mutaciones tiene un interés fundamental. En efecto, tiene un interés especial de cara a la aplicación de dichos estudios a los problemas de resistencia bacteriana a los antibióticos. Análogamente tiene una gran importancia en los estudios de fisiología bacteriana.

Transferencias genéticas.

Estos procesos son realizados mediante la transmisión de caracteres hereditarios de una bacteria dadora a una receptora. Existen varios mecanismos de transferencia genética. A lo largo de la transformación, la bacteria receptora adquiere una serie de caracteres genéticos en forma de fragmento de ADN. Esta adquisición es hereditaria. Este fenómeno fue descubierto en los pneumecocos en 1928. En la conjugación, el intercambio de material genético necesita de un contacto entre la bacteria dadora y la bacteria receptora. La cualidad de dador está unida a un factor de fertilidad (F) que puede ser perdido. La transferencia cromosómica se realiza generalmente con baja frecuencia. No obstante, en las poblaciones F+, existen mutantes capaces de transferir los genes cromosómicos a muy alta frecuencia.

La duración del contacto entre bacteria dadora y bacteria receptora condiciona la importancia del fragmento cromosómico transmitido. El estudio de la conjugación ha permitido establecer los mapas cromosómicos de ciertas bacterias. Ciertamente, la conjugación juega un papel en la aparición en las bacterias de resistencia a los antibióticos. La transducción es una transferencia genética obtenida mediante introducción en una bacteria receptora de genes bacterianos inyectados por un bacteriófago. Se trata de un virus que infecta ciertas bacterias sin destruirlas y cuyo ADN se integra en el cromosoma bacteriano. La partícula fágica transducida a menudo ha perdido una parte de su genoma que es sustituida por un fragmento de gene de la bacteria huésped, parte que es así inyectada a la bacteria receptora. Según el tipo de transducción, todo gen podrá ser transferido o, por el contrario, lo serán un grupo de genes determinados.

Variaciones extracromosómicas.

Además de por mutaciones y transferencias genéticas, la herencia bacteriana pude ser modificada por las variaciones que afectan ciertos elementos extracromosómicos que se dividen con la célula y son responsables de caracteres transmisibles: son los plasmidios y episomas entre los cuales el factor de transferencia de residencia múltiple juega un papel principal en la resistencia a los antibióticos.

Origen y evolución de las bacterias:

Los seres vivos se dividen actualmente en tres dominios: bacterias (Bacteria), arqueas (Archaea) y eucariontes (Eukarya). En los dominios Archaea y Bacteria se incluyen los organismos procariotas, esto es, aquellos cuyas células no tienen un núcleo celular diferenciado, mientras que en el dominio Eukarya se incluyen las formas de vida más conocidas y complejas (protistas, animales, hongos y plantas).

El término "bacteria" se aplicó tradicionalmente a todos los microorganismos procariotas. Sin embargo, la filogenia molecular ha podido demostrar que los microorganismos procariotas se dividen en dos dominios, originalmente denominados Eubacteria y Archaebacteria, y ahora renombrados como Bacteria y Archaea,25 que evolucionaron independientemente desde un ancestro común. Estos dos dominios, junto con el dominio Eukarya, constituyen la base del sistema de tres dominios, que actualmente es el sistema de clasificación más ampliamente utilizado en bacteriología.

El término Mónera, actualmente en desuso, en la antigua clasificación de los cinco reinos significaba lo mismo que procariota, y así sigue siendo usado en muchos manuales y libros de texto.

Los antepasados de los procariotas modernos fueron los primeros organismos (las primeras células) que se desarrollaron sobre la tierra, hace unos 3.800-4.000 millones años. Durante cerca de 3.000 millones de años más, todos los organismos siguieron siendo microscópicos, siendo probablemente bacterias y arqueas las formas de vida dominantes. Aunque existen fósiles bacterianos, por ejemplo los estromatolitos, al no conservar su morfología distintiva no se pueden emplear para estudiar la historia de la evolución bacteriana, o el origen de una especie bacteriana en particular. Sin embargo, las secuencias genéticas sí se pueden utilizar para reconstruir la filogenia de los seres vivos, y estos estudios sugieren que arqueas y eucariontes están más relacionados entre sí que con las bacterias.

En la actualidad se discute si los primeros procariotas fueron bacterias o arqueas. Algunos investigadores piensan que Bacteria es el dominio más antiguo con Archaea y Eukarya derivando a partir de él, mientras que otros consideran que el dominio más antiguo es Archaea. Se ha propuesto que el ancestro común más reciente de bacterias y arqueas podría ser un hipertermófilo que vivió entre 2.500 y 3.200 millones de años atrás. En cambio, otros científicos sostienen que tanto Archaea como Eukarya son relativamente recientes (de hace unos 900 millones de años) y que evolucionaron a partir de una bacteria Gram-positiva (probablemente una Actinobacteria), que mediante la sustitución de la pared bacteriana de peptidoglicano por otra de glicoproteína daría lugar a un organismo Neomura.

Las bacterias también han estado implicadas en la segunda gran divergencia evolutiva, la que separó Archaea de Eukarya. Se considera que las mitocondrias de los eucariontes proceden de la endosimbiosis de una proteobacteria alfa. En este caso, el antepasado de los eucariontes, que posiblemente estaba relacionado con las arqueas (el organismo Neomura), ingirió una proteobacteria que, al escapar a la digestión, se desarrolló en el citoplasma y dio lugar a las mitocondrias. Éstas se pueden encontrar en todos los eucariontes, aunque a veces en formas muy reducidas, como en los protistas amitocondriales. Después, e independientemente, una segunda endosimbiosis por parte de algún eucarionte mitocondrial con una cianobacteria condujo a la formación de los cloroplastos de algas y plantas. Se conocen incluso algunos grupos de algas que se han originado claramente de acontecimientos posteriores de endosimbiosis por parte de eucariotas heterótrofos que, tras ingerir algas eucariotas, se convirtieron en plastos de segunda generación.

Monografias.com

Morfología bacteriana

Las bacterias presentan una amplia variedad de tamaños y formas. La mayoría presentan un tamaño diez veces menor que el de las células eucariotas, es decir, entre 0,5 y 5 孮 Sin embargo, algunas especies como Thiomargarita namibiensis y Epulopiscium fishelsoni llegan a alcanzar los 0,5 mm, lo cual las hace visibles al ojo desnudo. En el otro extremo se encuentran bacterias más pequeñas conocidas, entre las que cabe destacar las pertenecientes al género Mycoplasma, las cuales llegan a medir solo 0,3 孬 es decir, tan pequeñas como los virus más grandes.

La forma de las bacterias es muy variada y, a menudo, una misma especie adopta distintos tipos morfológicos, lo que se conoce como pleomorfismo. De todas formas, podemos distinguir tres tipos fundamentales de bacterias:

Coco (del griego kókkos, grano): de forma esférica.

Diplococo: cocos en grupos de dos.

Tetracoco: cocos en grupos de cuatro.

Estreptococo: cocos en cadenas.

Estafilococo: cocos en agrupaciones irregulares o en racimo.

Bacilo (del latín baculus, varilla): en forma de bastoncillo.

Formas helicoidales:

Vibrio: ligeramente curvados y en forma de coma, judía o cacahuete.

Espirilo: en forma helicoidal rígida o en forma de tirabuzón.

Espiroqueta: en forma de tirabuzón (helicoidal flexible).

Algunas especies presentan incluso formas tetraédricas o cúbicas. Esta amplia variedad de formas es determinada en última instancia por la composición de la pared celular y el citoesqueleto, siendo de vital importancia, ya que puede influir en la capacidad de la bacteria para adquirir nutrientes, unirse a superficies o moverse en presencia de estímulos.

A continuación se citan diferentes especies con diversos patrones de asociación:

Neisseria gonorrhoeae en forma diploide (por pares).

Streptococcus en forma de cadenas.

Staphylococcus en forma de racimos.

Actinobacteria en forma de filamentos. Dichos filamentos suelen rodearse de una vaina que contiene multitud de células individuales, pudiendo llegar a ramificarse, como el género Nocardia, adquiriendo así el aspecto del micelio de un hongo.

Rango de tamaños que presentan las células procariotas en relación a otros organismos y biomoléculas.

Las bacterias presentan la capacidad de anclarse a determinadas superficies y formar un agregado celular en forma de capa denominado biopelícula o biofilme, los cuales pueden tener un grosor que va desde unos pocos micrómetros hasta medio metro. Estas biopelículas pueden congregar diversas especies bacterianas, además de protistas y arqueas, y se caracterizan por formar un conglomerado de células y componentes extracelulares, alcanzando así un nivel mayor de organización o estructura secundaria denominada microcolonia, a través de la cual existen multitud de canales que facilitan la difusión de nutrientes. En ambientes naturales tales como el suelo o la superficie de las plantas, la mayor parte de las bacterias se encuentran ancladas a las superficies en forma de biopelículas.49 Dichas biopelículas deben ser tenidas en cuenta en las infecciones bacterianas crónicas y en los implantes médicos, ya que las bacterias que forman estas estructuras son mucho más difíciles de erradicar que las bacterias individuales.

Por último, cabe destacar un tipo de morfología más compleja aún, observable en algunos microorganismos del grupo de las mixobacterias. Cuando estas bacterias se encuentran en un medio escaso en aminoácidos son capaces de detectar a las células de alrededor, en un proceso conocido como quorum sensing, en el cual todas las células migran hacia las demás y se agregan, dando lugar a cuerpos fructíferos que pueden alcanzar los 0,5 mm de longitud y contener unas 100.000 células. Una vez formada dicha estructura las bacterias son capaces de llevar a cabo diferentes funciones, es decir, se diferencian, alcanzando así un cierto nivel de organización pluricelular. Por ejemplo, entre una y diez células migran a la parte superior del cuerpo fructífero y, una vez allí, se diferencian para dar lugar a un tipo de células latentes denominadas mixosporas, las cuales son más resistentes a la desecación y, en general, a condiciones ambientales adversas.

Monografias.com

Estructura de la célula bacteriana

Las bacterias son organismos relativamente sencillos. Sus dimensiones son muy reducidas, unos 2 孠de ancho por 7-8 孠de longitud en la forma cilíndrica (bacilo) de tamaño medio; aunque son muy frecuentes las especies de 0,5-1,5 孮 Carecen de un núcleo delimitado por una membrana aunque presentan un nucleoide, una estructura elemental que contiene una gran molécula circular de ADN. El citoplasma carece de orgánulos delimitados por membranas y de las formaciones protoplasmáticas propias de las células eucariotas. En el citoplasma se pueden apreciar plásmidos, pequeñas moléculas circulares de ADN que coexisten con el nucleoide, contienen genes y son comúnmente usados por las bacterias en la conjugación. El citoplasma también contiene vacuolas (gránulos que contienen sustancias de reserva) y ribosomas (utilizados en la síntesis de proteínas). Una membrana citoplasmática compuesta de lípidos rodea el citoplasma y, al igual que las células de las plantas, la mayoría posee una pared celular, que en este caso está compuesta por peptidoglicano (mureína). Algunas bacterias, además, presentan una segunda membrana lipídica (membrana externa) rodeando a la pared celular. El espacio comprendido entre la membrana citoplasmática y la pared celular (o la membrana externa si esta existe) se denomina espacio periplásmico. Algunas bacterias presentan una cápsula y otras son capaces de desarrollarse como endosporas, estadios latentes capaces de resistir condiciones extremas. Entre las formaciones exteriores propias de la célula bacteriana destacan los flagelos y los pili.

Estructuras intracelulares

La membrana citoplasmática de las bacterias es similar a la de plantas y animales, si bien generalmente no presenta colesterol. La membrana citoplasmática bacteriana tiene una estructura similar a la de plantas y animales. Es una bicapa lipídica compuesta fundamentalmente de fosfolípidos en la que se insertan moléculas de proteínas. En las bacterias realiza numerosas funciones entre las que se incluyen las de barrera osmótica, transporte, biosíntesis, transducción de energía, centro de replicación de ADN y punto de anclaje para los flagelos. A diferencia de las membranas eucarióticas, generalmente no contiene esteroles (son excepciones micoplasmas y algunas proteobacterias), aunque puede contener componentes similares denominados hopanoides.

Muchas importantes reacciones bioquímicas que tienen lugar en las células se producen por la existencia de gradientes de concentración a ambos lados de una membrana. Este gradiente crea una diferencia potencial análoga a la de una batería eléctrica y permite a la célula, por ejemplo, el transporte de electrones y la obtención de energía. La ausencia de membranas internas en las bacterias significa que estas reacciones tienen que producirse a través de la propia membrana citoplasmática, entre el citoplasma y el espacio periplásmico. Puesto que las bacterias son procariotas no tienen orgánulos citoplasmáticos delimitados por membranas y por ello presentan pocas estructuras intracelulares. Carecen de núcleo celular, mitocondrias, cloroplastos y de los otros orgánulos presentes en las células eucariotas, tales como el aparato de Golgi y el retículo endoplasmático. Como excepción, algunas bacterias contienen estructuras intracelulares rodeadas por membranas que pueden considerarse primitivos orgánulos. Ejemplos son los tilacoides de las cianobacterias, los compartimentos que contienen amonio monooxigenasa en Nitrosomonadaceae y diversas estructuras en Planctomycetes.

Como todos los organismos vivos, las bacterias contienen ribosomas para la síntesis de proteínas, pero éstos son diferentes a los de eucariotas y arqueas. La estructura de los ribosomas de arqueas y bacterias es similar, pues ambos son de tipo 70S mientras que los ribosomas eucariotas son de tipo 80S. Sin embargo, la mayoría de las proteínas ribosomiales, factores de traducción y ARNt arqueanos son más parecidos a los eucarióticos que a los bacterianos. Muchas bacterias presentan vacuolas, gránulos intracelulares para el almacenaje de sustancias, como por ejemplo glucógeno, polifosfatos, azufre o polihidroxialcanoatos. Ciertas especies bacterianas fotosintéticas, tales como las cianobacterias, producen vesículas internas de gas que utilizan para regular su flotabilidad y así alcanzar la profundidad con intensidad de luz óptima y/o unos niveles de nutrientes óptimos.61 Otras estructuras presentes en ciertas especies son los carboxisomas (que contienen enzimas para la fijación de carbono) y los magnetosomas (para la orientación magnética).

Elementos del citoesqueleto de Caulobacter crescentus. En la figura, estos elementos procarióticos se relacionan con sus homólogos eucariotas y se hipotetiza su función celular. Debe tenerse en cuenta que las funciones en la pareja FtsZ-MreB se invirtieron durante la evolución al convertirse en tubulina-actina. Las bacterias no tienen un núcleo delimitado por membranas. El material genético está organizado en un único cromosoma situado en el citoplasma, dentro de un cuerpo irregular denominado nucleoide. La mayoría de los cromosomas bacterianos son circulares, si bien existen algunos ejemplos de cromosomas lineales, por ejemplo, Borrelia burgdorferi. El nucleoide contiene el cromosoma junto con las proteínas asociadas y ARN. El orden Planctomycetes es una excepción, pues una membrana rodea su nucleoide y tiene varias estructuras celulares delimitadas por membranas.

Anteriormente se pensaba que las células procariotas no poseían citoesqueleto, pero desde entonces se han encontrado homólogos bacterianos de las principales proteínas del citoesqueleto de los eucariontes. Estos incluyen las proteínas estructurales FtsZ (que se ensambla en un anillo para mediar durante la división celular bacteriana) y MreB (que determina la anchura de la célula). El citoesqueleto bacteriano desempeña funciones esenciales en la protección, determinación de la forma de la célula bacteriana y en la división celular.

Estructuras extracelulares

Las bacterias disponen de una pared celular que rodea a su membrana citoplasmática. Las paredes celulares bacterianas están hechas de peptidoglicano (llamado antiguamente mureína). Esta sustancia está compuesta por cadenas de polisacárido enlazadas por péptidos inusuales que contienen aminoácidos D. Estos aminoácidos no se encuentran en las proteínas, por lo que protegen a la pared de la mayoría de las peptidasas. Las paredes celulares bacterianas son distintas de las que tienen plantas y hongos, compuestas de celulosa y quitina, respectivamente. Son también distintas a las paredes celulares de Archaea, que no contienen peptidoglicano. El antibiótico penicilina puede matar a muchas bacterias inhibiendo un paso de la síntesis del peptidoglicano.

Paredes celulares bacterianas. Arriba: Bacteria Gram positiva. 1-membrana citoplasmática, 2-pared celular, 3-espacio periplásmico. Abajo: Bacteria Gram negativa. 4-membrana citoplasmática, 5-pared celular, 6-membrana externa, 7-espacio periplásmico.

Existen dos diferentes tipos de pared celular bacteriana denominadas Gram-positiva y Gram-negativa, respectivamente. Estos nombres provienen de la reacción de la pared celular a la tinción de Gram, un método tradicionalmente empleado para la clasificación de las especies bacterianas. Las bacterias Gram-positivas tienen una pared celular gruesa que contiene numerosas capas de peptidoglicano en las que se inserta ácido teicoico. En cambio, las bacterias Gram-negativas tienen una pared relativamente fina, consistente en unas pocas capas de peptidoglicano, rodeada por una segunda membrana lipídica (la membrana externa) que contiene lipopolisacáridos y lipoproteínas.

Las micoplasmas son una excepción, pues carecen de pared celular. La mayoría de las bacterias tienen paredes celulares Gram-negativas; solamente son Gram-positivas Firmicutes y Actinobacteria. Estos dos grupos eran antiguamente conocidos como bacterias Gram-positivas de contenido GC bajo y bacterias Gram-positivas de contenido GC alto, respectivamente. Estas diferencias en la estructura de la pared celular dan lugar a diferencias en la susceptibilidad antibiótica. Por ejemplo, la vancomicina puede matar solamente a bacterias Gram-positivas y es ineficaz contra patógenos Gram-negativos, tales como Haemophilus influenzae o Pseudomonas aeruginosa. Dentro del filo Actinobacteria cabe hacer una mención especial al género Mycobacterium, el cual, si bien se encuadra dentro de las Gram positivas, no parece serlo desde el punto de vista empírico, ya que su pared no retiene el tinte. Esto se debe a que presentan una pared celular poco común, rica en ácidos micólicos, de carácter hidrófobo y ceroso y bastante gruesa, lo que les confiere una gran resistencia. Helicobacter pylori visto al microscopio electrónico, mostrando numerosos flagelos sobre la superficie celular.

Muchas bacterias tienen una capa S de moléculas de proteína de estructura rígida que cubre la pared celular.71 Esta capa proporciona protección química y física para la superficie celular y puede actuar como una barrera de difusión macromolecular. Las capas S tienen diversas (aunque todavía no bien comprendidas) funciones. Por ejemplo, en el género Campylobacter actúan como factores de virulencia y en la especie Bacillus stearothermophilus contienen enzimas superficiales.

Los flagelos son largos apéndices filamentosos compuestos de proteínas y utilizados para el movimiento. Tienen un diámetro aproximado de 20 nm y una longitud de hasta 20 孮 Los flagelos son impulsados por la energía obtenida de la transferencia de iones. Esta transferencia es impulsada por el gradiente electroquímico que existe entre ambos lados de la membrana citoplasmática. Escherichia coli presenta unas 100-200 fimbrias que utiliza para adherirse a las células epiteliales o al tracto urogenital.

Las fimbrias son filamentos finos de proteínas que se distribuyen sobre la superficie de la célula. Tienen un diámetro aproximado de 2-10 nm y una longitud de hasta varios 孮 Cuando se observan a través del microscopio electrónico se asemejan a pelos finos. Las fimbrias ayudan a la adherencia de las bacterias a las superficies sólidas o a otras células y son esenciales en la virulencia de algunos patógenos. Los pili son apéndices celulares ligeramente mayores que las fimbrias y se utilizan para la transferencia de material genético entre bacterias en un proceso denominado conjugación bacteriana.

Estructuras extracelulares bacterianas: 1-cápsula, 2-glicocalix (capa mucosa), 3-biopelícula.

Muchas bacterias son capaces de acumular material en el exterior para recubrir su superficie. Dependiendo de la rigidez y su relación con la célula se clasifican en cápsulas y glicocalix. La cápsula es una estructura rígida que se une firmemente a la superficie bacteriana, en tanto que el glicocalix es flexible y se une de forma lasa. Estas estructuras protegen a las bacterias pues dificultan que sean fagocitadas por células eucariotas tales como los macrófagos. También pueden actuar como antígenos y estar implicadas en el reconocimiento bacteriano, así como ayudar a la adherencia superficial y a la formación de biopelículas. La formación de estas estructuras extracelulares depende del sistema de secreción bacteriano. Este sistema transfiere proteínas desde el citoplasma al periplasma o al espacio que rodea a la célula. Se conocen muchos tipos de sistemas de secreción, que son a menudo esenciales para la virulencia de los patógenos, por lo que son extensamente estudiados.

Clasificación de las bacterias.

La identificación de las bacterias es tanto más precisa cuanto mayor es el número de criterios utilizados. Esta identificación se realiza a base de modelos, agrupados en familias y especies en la clasificación bacteriológica. Las bacterias se reúnen en 11 órdenes:

– Las eubacteriales, esféricas o bacilares, que comprenden casi todas las bacterias patógenas y las formas fotótrofas.

– Las pseudomonadales, orden dividido en 10 familias entre las que cabe citar las Pseudomonae y las Spirillacae.

– Las espiroquetales (treponemas, leptospiras).

– Las actinomicetales (micobacterias, actinomicetes).

– Las rickettsiales.

– Las micoplasmales.

– Las clamidobacteriales.

– Las hifomicrobiales.

– Las beggiatoales.

– Las cariofanales.

– Las mixobacteriales.

Reproducción:

En las bacterias, el aumento en el tamaño de las células (crecimiento) y la reproducción por división celular están íntimamente ligados, como en la mayor parte de los organismos unicelulares. Las bacterias crecen hasta un tamaño fijo y después se reproducen por fisión binaria, una forma de reproducción asexual. En condiciones apropiadas, una bacteria Gram-positiva puede dividirse cada 20–30 minutos y una Gram-negativa cada 15–20 minutos, y en alrededor de 16 horas su número puede ascender a unos 5.000 millones (aproximadamente el número de personas que habitan la Tierra). Bajo condiciones óptimas, algunas bacterias pueden crecer y dividirse muy rápido, tanto como cada 9,8 minutos. En la división celular se producen dos células hijas idénticas. Algunas bacterias, todavía reproduciéndose asexualmente, forman estructuras reproductivas más complejas que facilitan la dispersión de las células hijas recién formadas. Ejemplos incluyen la formación de cuerpos fructíferos (esporangios) en las mixobacterias, la formación de hifas en Streptomyces y la gemación. En la gemación una célula forma una protuberancia que a continuación se separa y produce una nueva célula hija.

Por otro lado, cabe destacar un tipo de reproducción sexual en bacterias, denominada parasexualidad bacteriana. En este caso, las bacterias son capaces de intercambiar material genético en un proceso conocido como conjugación bacteriana. Durante el proceso una bacteria donante y una bacteria receptora llevan a cabo un contacto mediante pelos sexuales huecos o pili, a través de los cuales se transfiere una pequeña cantidad de ADN independiente o plásmido conjugativo. El mejor conocido es el plásmido F de E. coli, que además puede integrarse en el cromosoma bacteriano. En este caso recibe el nombre de episoma, y en la transferencia arrastra parte del cromosoma bacteriano. Se requiere que exista síntesis de ADN para que se produzca la conjugación. La replicación se realiza al mismo tiempo que la transferencia.

Monografias.com

Crecimiento:

El crecimiento bacteriano sigue tres fases. Cuando una población bacteriana se encuentra en un nuevo ambiente con elevada concentración de nutrientes que le permiten crecer necesita un período de adaptación a dicho ambiente. Esta primera fase se denomina fase de adaptación o fase lag y conlleva un lento crecimiento, donde las células se preparan para comenzar un rápido crecimiento, y una elevada tasa de biosíntesis de las proteínas necesarias para ello, como ribosomas, proteínas de membrana, etc. La segunda fase de crecimiento se denomina fase exponencial, ya que se caracteriza por el crecimiento exponencial de las células. La velocidad de crecimiento durante esta fase se conoce como la tasa de crecimiento k y el tiempo que tarda cada célula en dividirse como el tiempo de generación g. Durante esta fase, los nutrientes son metabolizados a la máxima velocidad posible, hasta que dichos nutrientes se agoten, dando paso a la siguiente fase. La última fase de crecimiento se denomina fase estacionaria y se produce como consecuencia del agotamiento de los nutrientes en el medio. En esta fase las células reducen drásticamente su actividad metabólica y comienzan a utilizar como fuente energética aquellas proteínas celulares no esenciales. La fase estacionaria es un período de transición desde el rápido crecimiento a un estado de respuesta a estrés, en el cual se activa la expresión de genes involucrados en la reparación del ADN, en el metabolismo antioxidante y en el transporte de nutrientes.

Monografias.com

Relaciones entre la bacteria y su huésped.

Ciertas bacterias viven independientes e otros seres vivos. Otras son parásitas. Pueden vivir en simbiosis con su huésped ayudándose mutuamente o como comensales (sin beneficio). Pueden ser patógenas, es decir, vivir de su huésped. La virulencia es la aptitud de un microorganismo para multiplicarse en los tejidos de su huésped (creando en ellos alteraciones). Esta virulencia puede estar atenuada (base del principio de la vacunación) o exaltada (paso de un sujeto a otro). La virulencia puede ser fijada por liofilización. Parece ser función del huésped (terreno) y del entorno (condiciones climáticas). La puerta de entrada de la infección tiene igualmente un papel considerable en la virulencia del germen.

El poder patógeno es la capacidad de un germen de implantarse en un huésped y de crear en él trastornos. Está ligada a dos causas:

– La producción de lesiones en los tejidos mediante constituyentes de la bacteria, como pueden ser enzimas que ella excreta y que atacan tejidos vecinos o productos tóxicos provenientes del metabolismo bacteriano.

– La producción de toxinas. Se puede tratar de toxinas proteicas (exotoxinas excretadas por la bacteria, transportadas a través de la sangre y que actúan a distancia sobre órganos sensibles) o de toxinas glucoproteicas (endotoxinas), estas últimas actuando únicamente en el momento de la destrucción de la bacteria y pudiendo ser responsables de choques infecciosos en el curso de septicemias provocadas por gérmenes gramnegativos en el momento en que la toxina es brutalmente liberada. A estas agresiones microbianas, el organismo opone reacciones defensivas ligadas a procesos de inmunidad, mientras que el conflicto huésped-bacteria se traduce por manifestaciones clínicas y biológicas de la enfermedad infecciosa.

Genética

La mayoría de las bacterias tienen un único cromosoma circular cuyo tamaño puede ir desde sólo 160.000 pares de bases en la bacteria endosimbionte Candidatus Carsonella ruddii106 a los 12.200.000 pares de bases de la bacteria del suelo Sorangium cellulosum. Las espiroquetas del género Borrelia (que incluyen, por ejemplo, a Borrelia burgdorferi, la causa de la enfermedad de Lyme) son una notable excepción a esta regla pues contienen un cromosoma lineal. Las bacterias pueden tener también plásmidos, pequeñas moléculas de ADN extra-cromosómico que pueden contener genes responsables de la resistencia a los antibióticos o factores de virulencia. Otro tipo de ADN bacteriano proviene de la integración de material genético procedente de bacteriófagos (los virus que infectan bacterias). Existen muchos tipos de bacteriófagos, algunos simplemente infectan y rompen las células huésped bacterianas, mientras que otros se insertan en el cromosoma bacteriano. De esta forma se pueden insertar genes del virus que contribuyan al fenotipo de la bacteria. Por ejemplo, en la evolución de Escherichia coli O157:H7 y Clostridium botulinum, los genes tóxicos aportados por un bacteriófago convirtieron a una inofensiva bacteria ancestral en un patógeno letal.

Las bacterias, como organismos asexuales que son, heredan copias idénticas de genes, es decir, son clones. Sin embargo, pueden evolucionar por selección natural mediante cambios en el ADN debidos a mutaciones y a la recombinación genética. Las mutaciones provienen de errores durante la réplica del ADN o por exposición a agentes mutagénicos. Las tasas de mutación varían ampliamente entre las diversas especies de bacterias e incluso entre diferentes cepas de una misma especie de bacteria.Los cambios genéticos pueden producirse al azar o ser seleccionados por estrés, en donde los genes implicados en algún proceso que limita el crecimiento tienen una mayor tasa de mutación. Las bacterias también pueden transferirse material genético entre células. Esto puede realizarse de tres formas principalmente. En primer lugar, las bacterias pueden recoger ADN exógeno del ambiente en un proceso denominado transformación. Los genes también se pueden transferir por un proceso de transducción mediante el cual un bacteriófago introduce ADN extraño en el cromosoma bacteriano. El tercer método de transferencia de genes es por conjugación bacteriana, en donde el ADN se transfiere a través del contacto directo (por medio de un pilus) entre células. Esta adquisición de genes de otras bacterias o del ambiente se denomina transferencia de genes horizontal y puede ser común en condiciones naturales. La transferencia de genes es especialmente importante en la resistencia a los antibióticos, pues permite una rápida diseminación de los genes responsables de dicha resistencia entre diferentes patógenos.

Importancia de las bacterias.

Existen bacterias en todos los sitios. Hemos visto el interés de su estudio para la comprensión de la fisiológica celular, de la síntesis de proteínas y de la genética. Aunque las bacterias patógenas parecen ser las más preocupantes, su importancia en la naturaleza es ciertamente menor. El papel de las bacterias no patógenas es fundamental. Intervienen en el ciclo del nitrógeno y del carbono, así como en los metabolismos del azufre, del fósforo y del hierro. Las bacterias de los suelos y del las aguas son indispensables para el equilibrio biológico. Por último, las bacterias pueden ser utilizadas en las industrias alimenticias y químicas: intervienen en la síntesis de vitaminas y de antibióticos. Las bacterias tienen, por lo tanto, un papel fundamental en los fenómenos de la vida, y todas las áreas de la biología han podido ser mejor comprendidas gracias a su estudio.

Reino hongos

Los hongos son organismos multicelulares, es decir que pueden ser unicelulares o pluricelulares, que se alimenta mediante la absorción, estos vegetales no pueden sintetizar su propios alimentos, viven sobre otros organismos es por ello que se dicen que son saprofitos o parásitos y forman líquenes. Los hongos son organismos sin clorofila, por lo que no pueden realizar la función de fotosíntesis, obtienen sus alimentos en forma directa o indirecta, almacenando sustancias sustancias nutritivas.

Los cuerpos de los hongos están formados por unos filamentos llamados hifas en la que podemos encontrar la materia orgánica donde crece llamada micelio nutritivo, estos son los llamados hongos parecidos a un paraguas, debido a que levantan en el aire o mecelio reproductivo. Son inmóviles pero con flujo protoplasmático en el micelio (Los micelios son masas de filamentos ramificados llamados hifas que constituyen el hongo). Su ciclo de reproducción es primordialmente sexual y asexual.

Sexual: Todos los hongos con excepción de los hongos imperfectos (Deuteromictos) poseen una reproducción sexual.

Asexual: esta reproducción ocurre solo en hongos inferiores acuáticos (ficomicetos)

Existen hongos perjudiciales, ya que atacan los alimentos, por otro lado también hay hongos de gran utilidad como lo son las levaduras, las cuales son usadas en la fabricación del pan, del vino y de la cerveza entre otros licores. También hay hongos comestibles (champignon). Igualmente, hay hongos utilizados en la medicina como el Penicillium y de otros hongos se extrae la penicilina y otros antibióticos, como también existen hongos que son extremadamente venenosos.

Los hongos pueden vivir en cualquier medio donde exista sustancias orgánicas, agua, aire y una adecuada temperatura. También pueden vivir como parásitos facultativos; es decir que el micelio destruye las células de las que se alimentarán más tarde. De forma parecida, pueden vivir como parásitos obligatorios cuando se alimentan de la materia viva o muerta del hospedador, viviendo en la superficie (extoparásito) o muy profundamente (endoparásitos). Por último, se les encuentra viviendo en simbiosis formando líquenes. Los hongos son de gran utilidad en la naturaleza, debido a que desintegran las sustancias orgánicas y de modo este modo preparan el medio para otros organismos como lo son las plantas autótrofas.

Los hongos se dividen en cuatro grandes clases:

  • Ascomicetos: son de gran utilidad en la industria y la medicina. A los ascomicetos están repartidos por diversos medios: en el agua, en el suelo, en vegetales y animales en descomposición, en sustancias azucaradas, en el que llevan una vida parasitaria causando serias enfermedades a plantas cultivadas. Este tipo de hongos también pueden ser saprofitos, los cuales tienen muchas aplicaciones de gran valor; son utilizados en la fabricación de queso, para ciertas fermentaciones y los del género Penicillium son los utilizados para producir antibióticos.

  • Ficomicetos: Son los hongos llamados moho del pan y de las frutas y en algunos casos es parásito del repollo.

  • Deuteromictos: Son cuando los hongos forman los líquenes, los cuales tienen una gran distribución en la superficie de la tierra, se pueden ver en las selvas, en la corteza de los árboles, en los desiertos y aun sobre las rocas y lugares nevados.

  • Basidiomicetos: Son los populares hongos de sombrerito y oreja de palo (que son los aparecen en los en los trocos de los árboles). Los hongos de sombrerito son de un gran valor económico, ya que son comestibles, pero existen algunas especies que son altamente venenosos.

Los hongos no son plantas ni animales, aunque se parezcan en algunas de sus características tanto a las unas como a los otros. A las plantas, por ser organismos sedentarios que se encuentran fijos a un sustrato y, mientras están vivos, no cesan de crecer. A los animales, pues, aunque las células de los hongos poseen pared como las de las plantas, las paredes celulares fúngicas son ricas en quitina, la misma sustancia que hace duro el esqueleto externo de los insectos.

En realidad, los organismos que conocemos como hongos tienen diferentes orígenes en el árbol de la vida, razón por la cual se distribuyen en tres distintos reinos. La mayoría, los más familiares y reconocibles, conforman el reino de los hongos verdaderos (Fungi o Eumycota). Otros se ubican en el mismo reino de las amebas, el llamado Protozoa, como es el caso de los hongos mucilaginosos; y otros más, entre los que se cuentan ciertos mohos acuáticos que parasitan peces, comparten un tercer reino, el denominado Chromista, con las diatomeas, esas particulares algas microscópicas de curiosa simetría.

Se estima que existe más de un millón de especies de hongos en el planeta, pero tan sólo unas 70,000 de ellas han sido descritas por los especialistas, lo cual hace evidente la necesidad de contar con más científicos (micólogos o micetólogos) que estudien estos organismos. Mientras tanto, muchas especies de hongos se han extinguido y otras se encuentran amenazadas en todo el mundo. Esto es particularmente cierto en países tropicales ricos en diversidad biológica como Colombia. Los hongos tienen distintos hábitos de vida. Los hongos saprófitos, es decir descomponedores de materia orgánica, cumplen una función ecológica de la mayor relevancia pues garantizan el reciclaje de la materia muerta y, por lo tanto, la recirculación de sustancias nutritivas en los ecosistemas. Los hongos parásitos, que viven sobre o dentro de otros seres vivos, obtienen su alimento de éstos y llegan a producir enfermedad en su hospedero. Los hongos simbiontes que se asocian de manera mutualista con otros organismos constituyen alianzas vivas de beneficio mutuo como por ejemplo los líquenes (asociación de hongo y alga) y las micorrizas (asociación de hongo y raíz de una planta), simbiosis estas de gran importancia en la naturaleza en procesos de colonización de hábitats y de circulación de nutrientes.

Desde la perspectiva económica, los hongos ofrecen múltiples servicios, pues se utilizan como alimentos, levaduras de la masa de pan, fermentadores en la producción de vino y cerveza, en la maduración de quesos y en el control biológico de plagas agrícolas. Además, como fuentes de sustancias que por su actividad biológica pueden ser de enorme utilidad en medicina y en la bioindustria (eg. antibióticos) y como agentes para estimular el desarrollo de las plantas (hongos formadores de micorriza). Sin embargo, también son dañinos cuando actúan como parásitos de plantas y animales o cuando estropean estructuras de madera, alimentos almacenados, libros y hasta obras de arte, amén de ser peligrosos si, por desconocimiento, se consumen aquellos que tienen principios tóxicos o alucinógenos.

En el siguiente trabajo se presenta una clasificación lo mas completa posible del reino de los hongos, desde la clase hasta los géneros. Esto nos permite tener una idea mas clara de la gran diversidad de este reino.

División Myxomycota

Monografias.com

División Eumycota

Subdivisión Phycomycotina

Monografias.comMonografias.comMonografias.comMonografias.comMonografias.com

Partes: 1, 2, 3, 4, 5, 6
 Página anterior Volver al principio del trabajoPágina siguiente 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Categorias
Newsletter