Agregar a favoritos      Ayuda      Português      Ingles     

Integrales Múltiples

Enviado por Reynol Maltos



Partes: 1, 2

  1. Integrales Iteradas
  2. Área por Doble Integración
  3. Integrales dobles como volúmenes
  4. Coordenadas Polares
  5. Definición Integral triple
  6. Integrales Triples en Coordenadas Cilíndricas y Esféricas

Integrales Iteradas

Se llaman integrales iteradas a la realización sucesiva de por lo menos 2 procesos de integración simple considerando las diferenciales dx y dy.

Es importante tomar en cuenta en que posición vienen dados los límites de las integrales en cuestión para saber en que orden serán ejecutados los procesos de integración simple; es decir, reconocer si se va integrar primero considerando la diferencial dx o la diferencial dy o viceversa.

FORMAS EN QUE PUEDEN PRESENTARSE LAS INTEGRALES ITERADAS

Monografias.com

Monografias.com

Área por Doble Integración

La aplicación más simple de las integrales dobles es para hallar el área de una región del plano xy. Esta área esta dada por una cualquiera de las integrales

Monografias.com

Los límites de integración apropiados. Ya hemos visto como se hace esto en la figura 1, cuando se efectúan las integraciones primero respecto a y, y después respecto a x; es decir

Monografias.com

Esta última integral podía haberse escrito de primera intención, puesto que expresa el área como límite de la suma de fajas horizontales.

Integrales dobles como volúmenes

Cuando f(x ,y) es positiva podemos interpretar la integral doble de f sobre una región rectangular R como el volumen del prisma sólido limitado abajo por R y arriba por la superficie z = F(x, y). Cada termino f (xk, yk)

"Ak en la suma Sn = Monografias.com

"Ak es el volumen de un prisma rectangular vertical que aproxima el volumen de la porción del sólido que está directamente arriba de la base "Ak. La suma Sn aproxima entonces a lo que llamamos volumen total del sólido. Definido este volumen como

Monografias.com

Coordenadas Polares

En un espacio R2, un dominio de integración que tenga una simetría circular es muchas veces suceptible de ser transformado de coordenadas rectangulares a polares, lo que significa que cada punto P (x, y) del dominio de una integral doble tomará su valor correspondiente en coordenadas polares mediante la siguiente transformación:

Monografias.com

Por ejemplo:

Monografias.com

Si aplica la identidad trigonométrica pitagórica de senos y cosenos.

El determinante jacobiano de la transformación es:

Monografias.com

Definición Integral triple

Es la aplicación sucesiva de tres procesos de integración definida simple a una función de tres variables f (x, y, z); tomando en consideración en función de que variable se encuentran los límites para saber cual diferencial (dx, dy, dz) se utilizará primero y cual después y cual al final.

Ejemplo.

Monografias.com

Integrales Triples en Coordenadas Cilíndricas y Esféricas

Coordenadas cilíndricas.

Las coordenadas cilíndricas son apropiadas para describir cilindros cuyos ejes coinciden con el eje x y planos que contienen el eje z o bien son perpendiculares a el.

r = 4 Cilindro, radio 4, eje el eje z

Monografias.com

Plano que contiene al eje z

z= 2 Plano perpendicular al eje z

El elemento de volumen para subdividir una región en el espacio con coordenadas cilíndricas es

Monografias.com

Las integrales triples en coordenadas cilíndricas son entonces evaluadas como integrales iteradas, como el siguiente ejemplo.

EJEMPLO.

Monografias.com

Solución

Paso 1: La base de D también es la proyección de la región R sobre el plano xy. La frontera de R es el

círculo

Monografias.com

Su ecuación en coordenadas polares es

Monografias.com

Paso 2: Los límites z de integración. Una recta M, que pasa por un punto típico (r, Monografias.com ) en R, paralela al eje z, entra a D en z=0 y sale en

Partes: 1, 2

Página siguiente 

Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda