Agregar a favoritos      Ayuda      Português      Ingles     

Regresión Potencial mediante el Método de los Mínimos Cuadrados




  1. Ejemplo ilustrativo N° 1
  2. Ejemplo ilustrativo N° 2
  3. Referencias bibliográficas

La regresión examina la relación entre dos variables, pero restringiendo una de ellas con el objeto de estudiar las variaciones de una variable cuando la otra permanece constante. En otras palabras, la regresión es un método que se emplea para predecir el valor de una variable en función de valores dados a la otra variable.

En todos los casos de regresión existe una dependencia funcional entre las variables. En el caso de dos variables, siendo una de ellas (X) variable independiente y la otra (Y) la dependiente, se habla de regresión de Y sobre X; Por ejemplo, los ingenieros forestales utilizan la regresión de la altura de los árboles sobre su diámetro, lo cual significa que midiendo el diámetro (variable independiente) y reemplazando su valor en una relación definida según la clase de árbol se obtiene la altura, y aun sin necesidad de cálculos aprecian la altura utilizando gráficas de la función de dependencia, altura = función del diámetro.

La regresión potencial tiene por ecuación predictora:

Monografias.com

Y la regresión recíproca es:

Monografias.com

Para el primer caso los valores siguen una ley potencial. Si la ecuación predictora está dada por: Monografias.comtomando logaritmos en ambos miembros, queda:

Monografias.com

Donde las constantes Monografias.comy Monografias.comquedan fijadas al resolver simultáneamente las ecuaciones:

Monografias.com

Para el segundo caso, si la ecuación predictora está dada por Monografias.comentonces invirtiendo, la misma expresión se puede escribir Monografias.como sea:

Monografias.com

Donde las constantes Monografias.comy Monografias.comquedan fijadas al resolver simultáneamente las ecuaciones:

Monografias.com

Ejemplos ilustrativo N° 1

Sea el siguiente conjunto de valores, las lecturas de un experimento donde X es el volumen (variable independiente) e Y es la presión de una masa dada de gas (variable resultante).

X

1

2

3

4

5

6

7

Y

7

30

90

170

290

450

650

1.1) Elaborar el diagrama de dispersión.

1.2) Ajustar una curva exponencial aplicando el método de mínimos cuadrados.

1.3) Calcular la ecuación predictora.

1.4) Graficar la ecuación predictora.

1.5) Estimar la presión de la masa de gas de volumen 9.

Solución:

1.1) El diagrama de dispersión elaborado en Excel se presenta en la siguiente figura:

Monografias.com

El diagrama de dispersión elaborado en Graph se presenta en la siguiente figura:

Monografias.com

1.2) Para ajustar una curva exponencial aplicando el método de mínimos cuadrados se llena la siguiente tabla:

X

Y

log X

log Y

log X· log Y

(log X)2

1

7

0,0000

0,8451

0,0000

0,0000

2

30

0,3010

1,4771

0,4447

0,0906

3

90

0,4771

1,9542

0,9324

0,2276

4

170

0,6021

2,2304

1,3429

0,3625

5

290

0,6990

2,4624

1,7211

0,4886

6

450

0,7782

2,6532

2,0646

0,6055

7

650

0,8451

2,8129

2,3772

0,7142

S X=28

S logX=3,7024

S logY=14,4354

S log X· log Y =8,8829

S(log X)2= 2,4890

Reemplazando valores en el sistema de ecuaciones se obtiene:

Monografias.com

Monografias.com

Al resolver el sistema se obtiene: log a = 0,819; ß = 2,351

Reemplazando valores en la ecuación predictora expresada en logaritmos se tiene:

Monografias.com

Monografias.com

1.3) Para calcular la ecuación predictora, primero se calcula el valor de a de la siguiente manera:

Monografias.com

Reemplazando en la ecuación predictora se obtiene:

Monografias.com

Monografias.com

1.4) Graficando la ecuación predictora mediante Excel se muestra en la siguiente figura:

Monografias.com

Empleando Graph se obtiene la siguiente figura:

Monografias.com

1.5) Para estimar la presión de la masa de gas de volumen 9 se reemplaza el valor X = 9 en la ecuación predictora

Monografias.com

Monografias.com

Ejemplo ilustrativo N° 2

Sea el siguiente conjunto de valores, las lecturas de un experimento donde X es la variable independiente e Y la variable resultante.

X

1

2

3

4

5

6

7

Y

1,4

1

0,9

0,7

0,6

0,55

0,5

2.1) Elaborar el diagrama de dispersión.

2.2) Calcular las constantes Monografias.comy Monografias.comaplicando el método de mínimos cuadrados.

2.3) Calcular la ecuación predictora.

2.4) Graficar la ecuación predictora.

2.5) Estimar el valor de Y para X = 9

Solución:

2.1) El diagrama de dispersión elaborado en Excel se muestra en la siguiente figura:

Monografias.com

El diagrama de dispersión elaborado en Graph se muestra en la siguiente figura:

Monografias.com

2.2) Para calcular las constantes Monografias.comy Monografias.comaplicando el método de mínimos cuadrados se llena la siguiente tabla:

X

Y

1/Y

X(1/Y)

X2

1

1,4

0,7143

0,7143

1

2

1

1,0000

2,0000

4

3

0,9

1,1111

3,3333

9

4

0,7

1,4286

5,7143

16

5

0,6

1,6667

8,3333

25

6

0,55

1,8182

10,9091

36

7

0,5

2,0000

14,0000

49

S X = 28

S (1/Y) = 9,7388

S X(1/Y) = 45,0043

S X2 = 140

Reemplazando valores en el siguiente sistema se obtiene:

Monografias.com

Monografias.com

Al resolver el sistema se obtiene:

a = 0,5271; ß = 0,2160

2.3) Para calcular la ecuación predictora se reemplaza los valores encontrados de a y ß, y se obtiene:

Monografias.com

2.4) La gráfica la ecuación predictora elaborada en Excel se muestra en la siguiente figura:

Monografias.com

La gráfica la ecuación predictora elaborada en Graph se muestra en la siguiente figura:

Monografias.com

2.5) Para estimar el valor de Y para X = 9 se reemplaza el valor de X en la ecuación predictora.

Monografias.com

Monografias.com

REFERENCIAS BIBLIOGRÁFICAS

BENALCÁZAR, Marco, (2002), Unidades para Producir Medios Instruccionales en Educación, SUÁREZ, Mario Ed. Graficolor, Ibarra, Ecuador.

DAZA, Jorge, (2006), Estadística Aplicada con Microsoft Excel, Grupo Editorial Megabyte,

Lima, Perú.

SUÁREZ, Mario, (2004), Interaprendizaje Holístico de Matemática, Ed. Gráficas Planeta,

Ibarra, Ecuador.

SUÁREZ, Mario, (2011), Interaprendizaje de Estadística Básica

TAPIA, Fausto Ibarra-Ecuador.

 

 

Autor:

Mario Orlando Suárez Ibujes


Comentarios


Trabajos relacionados

  • Distribución Normal

    Distribución Normal. Función de densidad. La distribución binomial. Esta distribución es frecuentemente utilizada en l...

  • Estructura y funcionamiento del Programa Raíces

    Carlos alberto PérezEl programa esta compuesto por la función principal raices y 9 subfunciones: Raices (principal; Cuad...

  • El poder del Solver

    Ejemplo de cómo usar "SOLVER". En estos tiempos donde se habla de la tecnología, información, sociedad del conocimient...

Ver mas trabajos de Matematicas

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda