Agregar a favoritos      Ayuda      Português      Ingles     

Gráficas de control de la calidad para variables




  1. La Gráfica R
  2. La Gráfica X
  3. Tarea de interaprendizaje

Estas gráficas de control ayudan a la detección de la variación de causa asignable (variación en el producto o proceso de producción que señala que el proceso está fuera de control y que se requieren medidas correctivas)

La Gráfica R

Mide la variación en el rango de las muestras. Aunque la desviación estándar es una medida que depende de la dispersión, las técnicas de control de calidad generalmente confían en el rango como un indicio de la variabilidad del proceso.

Límite superior de control para el rango

LSCR=R+3sR

Límite inferior de control para el rango

LICR=R-3sR

Donde sR es la desviación estándar en los rangos muestrales. Sin embrago, en la práctica, es más simple de utilizar

Límite superior de control para el rango

LSCR=D4R

Límite inferior de control para el rango

LICR=D3R

Los valores D4 y D3 se toman de la tabla de factores críticos de las gráficas o cartas de control de acuerdo al tamaño n de la muestra y el rango promedio de los rangos muestrales R=SRk, siendo k = número de muestras

La Gráfica X

Se diseña para medir la variación en las medias muestrales alrededor de algún nivel generalmente aceptado.

Se tiene entonces:

Límite superior de control para las medias

LSCX=X+A2R

Límite inferior de control para las medias

LICX=X-A2R

Donde:

Siendo k = número de muestras

Ejemplo ilustrativo

Una fábrica elabora planchas de madera para tapas de mesas, las cuales deben cumplir ciertas especificaciones de tamaño. Para garantizar que se cumplan estos estándares de calidad, se recolecta K= 24 muestras (subgrupos) de tamaño n = 6, y mide su largo. Los resultados aparecen en la siguiente tabla:

Nº de muestra

Medias muestrales

1

14,5

15,9

15,7

16,3

14,5

16,2

2

15,4

15,2

15,9

15,2

14,5

14,5

3

16,5

15,9

14,8

16,2

16,5

16,2

4

14,8

16,8

15,5

15,2

15,2

14,2

5

15,7

14,5

16,9

14,2

14,5

15,2

6

15,9

15,4

17,1

14,8

16,8

14,8

7

15,2

14,2

18,5

15,8

15,9

15,7

8

14,5

14,8

17,2

16,2

15,0

16,8

9

15,6

15,7

19,2

16,1

16,8

15,9

10

16,5

16,8

18,4

14,8

18,9

16,1

11

14,5

15,8

14,2

14,5

18,7

16,3

12

17,1

15,8

16,2

15,4

15,7

16,2

13

18,5

15,9

17,2

14,2

15,9

14,7

14

17,2

15,7

16,8

14,8

14,8

14,9

15

19,2

15,7

15,9

15,7

15,5

14,8

16

18,4

16,8

15,0

16,8

16,9

14,7

17

14,2

16,9

16,8

15,8

17,1

15,4

18

16,2

17,2

18,9

15,8

18,5

18,9

19

17,2

17,6

18,7

15,9

17,2

16,0

20

16,8

14,5

19,8

15,7

18,2

18,7

21

15,9

17,9

18,7

15,7

18,4

17,5

22

15,0

18,0

18,2

16,8

14,2

17,8

23

16,8

18,9

20,0

16,9

16,2

18,5

24

18,9

17,9

17,4

17,5

17,2

16,5

a) Calcular el rango promedio

b) Calcular el límite superior de control para el rango

c) Calcular el límite inferior de control para el rango

d) Elaborar la gráfica R.

e) Calcular X

f) Calcular el límite superior de control para las medias

g) Calcular el límite inferior de control para las medias

h) Elaborar la gráfica X.

Solución:

Calculando el rango se obtiene:

Recuerde que el rango es igual al valor mayor menes el valor menor, es decir:

R=Xmáxima-Xminima

a) Calculando el rango promedio se tiene:

b) Calcular el límite superior de control para el rango

Con lectura en la tabla para n = 6 se obtiene D4=2,004

Calculando el límite superior se obtiene:

LSCR=D4R=2,004·3,146=6,3

c) Calcular el límite inferior de control para el rango

Con lectura en la tabla para n = 6 se obtiene D3=0

Calculando el límite inferior se obtiene:

LICR=D3R=0·3,146=0

d) Elaborando la gráfica R en Graph se obtiene:

Interpretación: Observando la gráfica se concluye que la misma está bajo control, ya que no existen variaciones de causa asignable, es decir, no existe ningún punto que se salga de los límites de control.

e) Calculando x se obtiene:

Calculando X se obtiene:

f) Con lectura en la tabla para n = 6 se obtiene A2=0,483

Calculando el límite superior se obtiene:

LSCX=X+A2R=16,314+0,483·3,146=17,83

g) Calculando el límite inferior se obtiene:

LICX=X-A2R=16,314-0,483·3,146=14,79

h) Elaborando la gráfica X en Excel se obtiene:

Elaborando la gráfica X en Graph se obtiene:

Interpretación: Observando la gráfica se concluye que la misma está fuera de control, ya que, la muestra 23 representa una variación de causa asignable, es decir, la muestra 23 se sale del límite superior de control.

Los cálculos en Excel se muestran en la siguiente figura:

Tarea de interaprendizaje

1) ¿Qué es variación de causa asignable?

2) Realice un organizador gráfico de las Gráficas para la Media

3) Realice un organizador gráfico de las Gráficas para el Rango

4) Una fábrica produce estructuras para computadores de mesa, los cuales deben cumplir ciertas especificaciones de tamaño. Para garantizar que se cumplan estos estándares de calidad, el gerente de la fábrica, recolecta K= 24 muestras (subgrupos) de tamaño n = 6, y mide su ancho. Los resultados aparecen en la siguiente tabla

4.1) Calcular el rango promedio 2,9625

4.2) Calcular el límite superior de control para el rango 5,936

4.3) Calcular el límite inferior de control para el rango 0

4.4) Graficar manualmente la gráfica R.

4.5) ¿El proceso está bajo control?. ¿Por qué?

5) Empleando los conocimientos de la gráfica R plantee y resuelva dos problemas de aplicación, el uno con

6) Empleando los datos de la fábrica que produce estructuras para computadores de mesa, problema presentado anteriormente.

6.1) Calcular X 16,3194

6.2) Calcular el límite superior de control para las medias 17,75

6.3) Calcular el límite inferior de control para las medias 14,89

6.4) Graficar manualmente la gráfica X.

6.5) ¿El proceso está bajo control?. ¿Por qué?

6.6) Escriba una semejanza y una diferencia entre la gráfica R del problema Nº 4 y la gráfica X del presente problema.

7) Empleando los conocimientos de la gráfica X plantee y resuelva dos problemas de aplicación, el uno con

  • Resuelva los problemas anteriores empleando el programa Excel (para los cálculos) y el programa Graph (para las gráficas).

 

 

Autor:

Mario Orlando Suárez Ibujes


Comentarios


Trabajos relacionados

Ver mas trabajos de Otros

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda