Agregar a favoritos      Ayuda      Português      Ingles     

Introducción a las Probabilidades




  1. Experimento
  2. Experimento aleatorio
  3. Espacio muestral
  4. Punto muestral
  5. Evento o suceso
  6. Probabilidad
  7. Referencias bibliográficas

A) EXPERIMENTO

Es toda acción sobre la cual vamos a realizar una medición u observación, es decir cualquier proceso que genera un resultado definido.

B) EXPERIMENTO ALEATORIO

Es toda actividad cuyos resultados no se determinan con certeza. Ejemplo: lanzar una moneda al aire. No podemos determinar con toda certeza ¿cuál será el resultado al lanzar una moneda al aire?, por lo tanto constituye un experimento aleatorio.

C) ESPACIO MUESTRAL (S)

Es un conjunto de todos los resultados posibles que se pueden obtener al realizar un experimento aleatorio. Ejemplo: sea el experimento E: lanzar un dado y el espacio muestral correspondiente a este experimento es: S = {1, 2, 3, 4, 5, 6}.

D) PUNTO MUESTRAL

Es un elemento del espacio muestral de cualquier experimento dado.

E) EVENTO O SUCESO.-

Es todo subconjunto de un espacio muestral. Se denotan con letras mayúsculas: A, B, etc. Los resultados que forman parte de este evento generalmente se conocen como "resultados favorables". Cada vez que se observa un resultado favorable, se dice que "ocurrió" un evento. Ejemplo: Sea el experimento E: lanzar un dado. Un posible evento podría ser que salga número par. Definimos el evento de la siguiente manera: A = sale número par = {2, 4, 6}, resultados favorables n(E) = 3

Los eventos pueden ser:

i) Evento cierto.- Un evento es cierto o seguro si se realiza siempre. Ejemplo: Al introducirnos en el mar, en condiciones normales, es seguro que nos mojaremos.

ii) Evento imposible.- Un evento es imposible si nunca se realiza. Al lanzar un dado una sola vez, es imposible que salga un 10

iii) Evento probable o aleatorio.- Un evento es aleatorio si no se puede precisar de antemano el resultado. Ejemplo: ¿Al lanzar un dado, saldrá el número 3?

F) PROBABILIDAD

Es el conjunto de posibilidades de que un evento ocurra o no en un momento y tiempo determinado. Dichos eventos pueden ser medibles a través de una escala de 0 a 1, donde el evento que no pueda ocurrir tiene una probabilidad de 0 (evento imposible) y un evento que ocurra con certeza es de 1 (evento cierto).

La probabilidad de que ocurra un evento, siendo ésta una medida de la posibilidad de que un suceso ocurra favorablemente, se determina principalmente de dos formas: empíricamente (de manera experimental) o teóricamente (de forma matemática).

i) Probabilidad empírica.- Si E es un evento que puede ocurrir cuando se realiza un experimento, entonces la probabilidad empírica del evento E, que a veces se le denomina definición de frecuencia relativa de la probabilidad, está dada por la siguiente fórmula:

Monografias.com

Nota: P(E), se lee probabilidad del evento E

Ejemplo ilustrativos

1) En el año 2010, nacieron en un hospital 100 hombres y 150 mujeres. Si una persona fue seleccionada aleatoriamente de los registros de nacimientos de ese año, ¿cuál es la probabilidad de que haya sido mujer?

Solución:

Ya que las probabilidades de que nazcan hombres o mujeres no son iguales, y por tener información específica experimental que respalda este hecho, se calcula empleando la fórmula de la probabilidad experimental

Monografias.com

Monografias.com

Nota: la respuesta puede estar expresada como fracción, como un número decimal y como un porcentaje.

2) La siguiente tabla muestra el número de cajas y el número de artículos dañados por caja que un comerciante recibió. Calcular la probabilidad para cada resultado individual

N° de cajas

N° de artículos dañados

50

0

40

2

10

3

Solución:

Ya que las probabilidades de defectos por caja no son iguales, y por tener información específica experimental que respalda este hecho, se calcula empleando la definición de frecuencia relativa de la probabilidad.

N° de cajas

N° de artículos dañados

P(E)

50

0

P(0) = 50/100 = 1/2 = 0,5 = 50%

40

2

P(2) = 40/100 = 2/5 = 0,4 = 40%

10

3

P(3) = 10/100 = 1/10 = 0,1 = 10%

100

1 = 100%

Los cálculos en Excel se muestran en la siguiente figura:

Monografias.com

Nota:

La respuesta 0,5 significa que existe una probabilidad de 0,5 o del 50% de que 0 artículos en cualquier caja dada estuviera dañado

La respuesta 0,4 significa que existe una probabilidad de 0,4 o del 40% de que 2 artículos en cualquier caja dada estuviera dañado

La respuesta 0,1 significa que existe una probabilidad de 0,1 o del 10% de que 3 artículos en cualquier caja dada estuviera dañado

La suma de las probabilidades individuales siempre es igual a 1 que en porcentaje es igual al 100%

ii) Probabilidad teórica.- Si todos los resultados en un espacio muestral S finito son igualmente probables, y E es un evento en ese espacio muestral, entonces la probabilidad teórica del evento E está dada por la siguiente fórmula, que a veces se le denomina la definición clásica de la probabilidad, expuesta por Pierre Laplace en su famosa Teoría analítica de la probabilidad publicada en 1812:

Monografias.com

Ejemplo ilustrativos

1) En cierta rifa de un automóvil se venden 5000 boletos. Calcular la probabilidad de ganarse el automóvil

1.1) Si se compran 20 boletos.

1.2) Si se compran todos los boletos

1.3) Si no se compran boletos

Solución:

Ya que el espacio muestral S (5000 boletos) es finito, y los resultados de cada boleto son igualmente probables, se calcula empleando la fórmula de la definición clásica de la probabilidad

Monografias.com

Monografias.com

Monografias.com

Monografias.com

2) Calcular la probabilidad de obtener un número impar en el lanzamiento de un dado

Solución:

Espacio muestral = S = {1, 2, 3, 4, 5, 6}, entonces, n(S) = 6

Resultados favorables = {1, 3, 5}, entonces, n(E) = 3

Monografias.com

3) En un ánfora existe 10 fichas amarillas, 6 rojas y 4 azules.

3.1) ¿Qué probabilidad existe de sacar una ficha amarilla en un primer intento?

3.2) ¿Qué probabilidad existe de sacar una ficha no roja en un primer intento?

Solución:

n(S) = 10 + 6 + 4 = 20

3.1) n(E) = 10

Monografias.com

Monografias.com

3.2) Si P(E) es la probabilidad de que ocurra el evento E y Monografias.comla probabilidad de que no ocurra el evento E. Debido a que la suma de las probabilidades siempre da como resultado 1, es decir, Monografias.compor lo que se tiene: Monografias.com

Calculando la probabilidad de sacar una ficha roja se obtiene:

n(E) = 6

Monografias.com

Monografias.com

Calculando la probabilidad de sacar una ficha no roja se obtiene:

Monografias.com

Monografias.com

Monografias.com

4) En una urna existe 10 bolas numeradas con los números dígitos.

4.1) ¿Qué probabilidad existe de sacar una bola enumerada con un número múltiplo de 3?

4.2) ¿Qué probabilidad existe de sacar una bola enumerada con un número divisor de 6?

Solución:

Monografias.com

Espacio muestral = S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, entonces, n(S) = 10

4.1)

Resultados favorables = {3, 6, 9}, entonces, n(E) = 3

Monografias.com

4.2)

Resultados favorables = {1, 2, 3, 6}, entonces, n(E) = 4

Monografias.com

5) De una urna que contiene 2 bolas rojas y 3 azules

5.1) Se extrae una bola, calcular la probabilidad de que la bola sea

a) Roja

b) Azul

Solución:

Monografias.com

a) Roja (R)

Monografias.com

Remplazando valores en la fórmula de la probabilidad teórica se tiene

Monografias.com

b) Azul (A)

Monografias.com

Remplazando valores en la fórmula de la probabilidad teórica se tiene

Monografias.com

5.2) Se extraen simultáneamente dos bolas, calcular la probabilidad de que las dos sean

a) Azules

b) Rojas

c) Diferente color

Designando por Monografias.comlas bolas rojas y por Monografias.comlas azules se tiene el siguiente espacio muestral:

Monografias.com

Monografias.com

Monografias.com

Monografias.com

Entonces, n(S) = 4 + 3+ 2+ 1 = 10

a) Azules

Resultados favorables = Monografias.comentonces, n(E) = 3

Monografias.com

Monografias.com

Otra forma de resolver este ejercicio es la siguiente:

El espacio muestral se calcula aplicando la fórmula de la combinación, es decir,

Monografias.com

En donde:

n = número total de bolas = 2 + 3 = 5

r = número de bolas azules motivo de probabilidad = 2

Entonces, remplazando valores en la fórmula de la combinación se obtiene:

Monografias.com

El número de resultados favorables se calcula aplicando la fórmula de la combinación, es decir,

Monografias.com

En donde:

n = número total de bolas azules = 3

r = número de bolas azules motivo de probabilidad = 2

Entonces, remplazando valores en la fórmula de la combinación se obtiene:

Monografias.com

Reemplazando valores en la fórmula de la probabilidad se tiene:

Monografias.com

Monografias.com

Los cálculos en Excel aplicando combinaciones se muestran en la siguiente figura:

Monografias.com

b) Rojas

Resultados favorables = Monografias.comentonces, n(E) = 1

Monografias.com

Otra forma de resolver este ejercicio es la siguiente:

Monografias.com

Los cálculos en Excel aplicando combinaciones se muestran en la siguiente figura:

Monografias.com

c) Diferente color

Resultados favorables = Monografias.comentonces, n(E) = 6

Monografias.com

Otra forma de resolver este ejercicio es la siguiente:

Monografias.com

Los cálculos en Excel aplicando combinaciones se muestran en la siguiente figura:

Monografias.com

5.3) Se extraen simultáneamente tres bolas, calcular la probabilidad de que las tres sean

a) Dos rojas y una azul

b) Una roja y dos azules

c) Tres rojas

Solución:

Designando por Monografias.comlas bolas rojas y por Monografias.comlas azules se tiene el siguiente espacio muestral:

Monografias.com

Monografias.com

Monografias.com

Monografias.com

Monografias.com

Monografias.com

Entonces, n(S) = 3 + 2 + 1 + 2 + 1 + 1 = 10

a) Dos rojas y una azul

Resultados favorables = Monografias.comentonces, n(E) = 3

Monografias.com

Otra forma de resolver este ejercicio es la siguiente:

Monografias.com

Los cálculos en Excel aplicando combinaciones se muestran en la siguiente figura:

Monografias.com

b) Una roja y dos azules

Resultados favorables = Monografias.comentonces, n(E) = 6

Monografias.com

Otra forma de resolver este ejercicio es la siguiente:

Monografias.com

Los cálculos en Excel aplicando combinaciones se muestran en la siguiente figura:

Monografias.com

c) Tres azules

Resultados favorables = Monografias.comentonces, n(E) = 1

Monografias.com

Otra forma de resolver este ejercicio es la siguiente:

Monografias.com

Los cálculos en Excel aplicando combinaciones se muestran en la siguiente figura:

Monografias.com

5.4) Se extraen simultáneamente cuatro bolas, calcular la probabilidad de que las cuatro sean

a) Dos rojas y dos azules

b) Una roja y tres azules

Solución:

Designando por Monografias.comlas bolas rojas y por Monografias.comlas azules se tiene el siguiente espacio muestral:

Monografias.com

Entonces, n(S) = 5

a) Dos rojas y dos azules

Resultados favorables = Monografias.comentonces, n(E) = 3

Monografias.com

Otra forma de resolver este ejercicio es la siguiente:

Monografias.com

Los cálculos en Excel aplicando combinaciones se muestran en la siguiente figura:

Monografias.com

b) Una roja y tres azules

Resultados favorables = Monografias.comentonces, n(E) = 2

Monografias.com

Otra forma de resolver este ejercicio es la siguiente:

Monografias.com

Los cálculos en Excel aplicando combinaciones se muestran en la siguiente figura:

Monografias.com

6) De una urna que contiene 6 bolas rojas y 5 negras se extraen simultáneamente dos bolas, calcular la probabilidad de que:

6.1) Las dos sean rojas

6.2) Las dos sean negras

6.3) De diferente color

Solución:

6.1)

Monografias.com

Monografias.com

En Excel:

Monografias.com

6.2)

Monografias.com

En Excel:

Monografias.com

6.3)

Monografias.com

En Excel:

Monografias.com

7) De una urna que contiene 6 fichas rojas, 5 negras y 9 azules, Elizabeth extrae simultáneamente tres fichas, calcular la probabilidad de que las 3 fichas extraídas por Elizabeth sean:

7.1) Rojas

7.2) 2 rojas y una negra

7.3) De diferente color

Solución:

7.1) Rojas

Monografias.com

Monografias.com

En Excel:

Monografias.com

7.2) 2 rojas y una negra

Monografias.com

Monografias.com

En Excel:

Monografias.com

7.3) De diferente color

Monografias.com

Monografias.com

En Excel:

Monografias.com

8) En una ferretería existen 6 galones de pintura roja, 5 de pintura naranja, 9 de pintura amarrillo y 10 de pintura blanca. Bertha compra aleatoriamente cuatro galones de pintura, calcular la probabilidad de que los galones comprados por Bertha sean de diferente color.

Solución:

Monografias.com

Monografias.com

En Excel:

Monografias.com

9) Se lanzan simultáneamente tres monedas, calcular la probabilidad de que se obtengan dos caras y un sello.

Solución:

Designando por C = cara y por S = sello se tiene:

Espacio muestral = S = {CCC, CCS, CSC, SCC, CSS, SCS, SSC, SSS}, entonces, n(S) = 8

Resultados favorables = { CCS, CSC, SCC }, entonces, n(E) = 3

Monografias.com

Todas las probabilidades individuales se representan en la siguiente tabla:

Monografias.com

Interpretación:

La probabilidad de obtener 3 caras al lanzar simultáneamente tres monedas es de 1/8, es decir, P(CCC)= 1/8

La probabilidad de obtener 2 caras y un sello al lanzar simultáneamente tres monedas es de 3/8, es decir, P(CCS) = 3/8

La probabilidad de obtener una cara y 2 sellos al lanzar simultáneamente tres monedas es de 3/8, es decir, P(CSS) = 3/8

La probabilidad de obtener 3 sellos al lanzar simultáneamente tres monedas es de 1/8, es decir, P(SSS)= 1/8

Nota:

El número 8 (espacio muestral), se calcula empleando la ecuación Monografias.com

Monografias.com

En donde n es el número de monedas que se lanzan

Los números 1, 3, 3, 1 se calculan mediante el siguiente esquema conocido con el nombre de "Triángulo de Pascal", el cual está relacionado directamente con el Teorema del Binomio de Newton.

Este triángulo tiene como primera fila un 1, como segunda fila dos 1. Para las demás filas, la suma de cada par de números adyacentes de la fila anterior se ubica por debajo de ellos. Se añade un 1 en cada extremo.

Teorema del Binomio de Newton

Triángulo de Pascal

(C+S)0 = 1

1

(C+S)1 = C + S

1 1

(C+S)2 = C2 + 2CS+ S2

1 2 1

(C+S)3 = C3 +3C2S +3CS2 +S3

1 3 3 1

En donde:

C3 = CCC; 3C2S = CCS + CSC + SCC; 3CS2 = CSS + SCS + SSC; S3 = SSS

10) Si un dardo se clava de manera aleatoria en el objeto cuadrado que se muestra en la siguiente figura, ¿cuál es la probabilidad de que caiga en la región sombreada?

Monografias.com

Solución:

Calculando el área del círculo:

Monografias.com

Calculando el área del cuadrado:

Si el radio de la circunferencia es 4cm, entonces el lado del cuadrado es 8 cm, es decir,

Si Monografias.comlMonografias.com= 8cm

Por lo tanto, el área del cuadrado es:

AMonografias.com= l2 = (8cm)2 = 64 cm2

Calculando el área de la región sombreada:

Se obtiene al restar el área del círculo de la del cuadrado

Monografias.com

Monografias.com

Calculando la probabilidad:

Monografias.com

Monografias.com

G) POSIBILIDADES

Las posibilidades comparan el número de resultados favorables con el número de resultados desfavorables. Si todos los resultados de un espacio muestral son igualmente probables, y un número n de ellos son favorables al evento E, y los restantes m son desfavorables a E, entonces las posibilidades a favor de E sonde de n(E) a m(E), y las posibilidades en contra de E son de m(E) a n(E)

Ejemplos ilustrativos:

1) A Mathías se le prometió comprar 6 libros, tres de los cuales son de Matemática. Si tiene las mismas oportunidades de obtener cualquiera de los 6 libros, determinar las posibilidades de que le compren uno de Matemática.

Solución:

Número de resultados favorables = n(E) = 3

Número de resultados desfavorables = m(E) = 3

Posibilidades a favor son n(E) a m(E), entonces,

Posibilidades a favor = 3 a 3, y simplificando 1 a 1.

Nota: A las posibilidades de 1 a 1 se les conoce como "igualdad de posibilidades" o "posibilidades de 50-50"

2) Dyanita compró 5 boletos para una rifa de su lugar de trabajo en la que el ganador recibirá un computador. Si en total se vendieron 1000 boletos y cada uno tiene la misma oportunidad de salir ganador, ¿cuáles son las posibilidades que Dyanita tiene en contra de ganarse el computador?

Solución:

Número de resultados favorables = n(E) = 5

Número de resultados desfavorables = m(E) = 1000-5 = 995

Posibilidades en contra son m(E) a n(E) , entonces,

Posibilidades en contra = 995 a 5, o de 199 a 1.

3) Mario participará en una lotería, en donde las posibilidades de ganar son de 1 a 999. ¿Cuál es la probabilidad que tiene Mario de ganar la lotería?

Solución:

Como las posibilidades a favor = 1 a 999 y se sabe que las posibilidades a favor son n(E) a m(E), entonces,

Número de resultados favorables = n(E) = 1

Número de resultados desfavorables = m(E) = 999

Como el número total de resultados posibles = n(S) = n(E) + m(E) = 1 + 999 = 1000, y aplicando la fórmula de la probabilidad:

Monografias.com

Se obtiene:

Monografias.com

Referencias Bibliográficas

SUÁREZ, Mario, (2012), Interaprendizaje de Probabilidades y Estadística Inferencial con Excel, Winstats y Graph. M & V GRÁFIC. Ibarra-Ecuador.

 

 

Autor:

Mario Orlando Suárez Ibujes


Comentarios


Trabajos relacionados

Ver mas trabajos de Estadistica

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda