Agregar a favoritos      Ayuda      Português      Ingles     
 Página anterior Volver al principio del trabajoPágina siguiente 

69 ejercicios resueltos de programación lineal (página 2)




Partes: 1, 2

(Pàgina 116) EJERCICIO 53 : En una empresa se está discutiendo la composición de un comité para negociar los sueldos con la dirección. En el comité habrá sindicalistas e independientes. El número total de miembros no deberá ser inferior a 10 ni superior a 20. Al menos un 40% del comité serán sindicalistas. El número de independientes será como poco una cuarta parte del de sindicalistas. a. ¿Qué combinaciones de miembros de cada tipo puede tener el comité?. Plantea el problema y representa gráficamente el conjunto de soluciones. ¿Puede haber 4 sindicalistas y 16 independientes?. b. Si se quiere que el número de independientes sea el mayor posible, ¿cuál será la composición del comité? Ing. José Luis Albornoz Salazar

Monografias.com
- 15 - (Pàgina 118) EJERCICIO 54 : La empresa “SURTIDORA” contrató a EL MARTILLO como proveedor de llaves y cinceles en sus tiendas de artículos automotrices. La demanda semanal de Surtidora consiste en al menos 1.500 llaves y 1.200 cinceles. La capacidad actual de “El Martillo”, en un turno, no basta para producir las unidades que se le piden, y debe recurrir a tiempo extra y, quizás, a subcontratar en otros proveedores de herramientas. El resultado es un aumento en el costo de producción por unidad, como se ve en la siguiente tabla. La demanda del mercado limita la producción de cinceles a llaves a un mínimo de 2 : 1. El área de acabado tiene disponible 5.600 minutos, de los que cada unidad del producto A utiliza 04 minutos y cada unidad de producto B consume 07 minutos. El área de ventas informa que pueden vender cualquier cantidad del producto A; sin embargo, del producto B a lo máximo se pueden vender 600 unidades. Los costos variables de producción son de $. 24.00 para el producto A y $.16.00 para el producto B. ¿Cuál es la forma más productiva para fabricar estos productos, si sabemos que los precios de venta son $ 32.00 y $ 23.00 del producto A y B respectivamente? Indique: 1) Cantidad óptima que se debe producir de A y B. y 2) Ganancia máxima. (Pàgina 121) EJERCICIO 56 : Tres sustancias X, Y y W contienen cuatro ingredientes A, B, C y D. En la siguiente tabla están dados los porcentajes de cada ingrediente y el costo por onza (en centavos de dólar) de las tres sustancias: Sustancia A B C D Costo/Onza Formule el problema como programación lineal y determine el programa óptimo de producción para cada herramienta. X Y W 20% 20% 10% 10% 40% 20% 25% 15% 25% 45% 25% 45% 25 35 50 ¿Cuántas onzas se deben combinar de cada sustancia para obtener, con un costo mínimo, 20 onzas de la mezcla con un (Pàgina 120) EJERCICIO 55 : La empresa ESETEC SAC se dedica a la fabricación de dos tipos de productos A y B, en la que utiliza contenido de al menos.14% de A. 16% de B y 20% de C ? ¿Con cuántas se maximiza? los insumos X y Y. Para la elaboración del producto A se necesita 01 unidad del insumo X y una unidad del insumo Y; para el producto B se necesita 03 unidades del Insumo X y 01 EJERCICIO 57 : (Pàgina 123) A un joven matemático se le pidió que del insumo Y. Los informes de los proveedores indican que se debe adquirir como mínimo 600 unidades del insumo X y 400 del insumo Y. El taller puede fabricar 1000 unidades del Producto A o 1200 del producto B, o cualquier combinación de estos. Ejercicios resueltos de PROGRAMACION LINEAL entreviste a un visitante en su empresa durante tres horas, el pensó que sería una excelente idea que el huésped se emborrachara. Se le dieron al matemático 50 dólares para comprar la bebida. El joven sabía que al visitante le gustaba mezclar sus tragos pero que siempre bebía menos de 8 vasos de cerveza, 10 de ginebra, 12 de whiskys y 24 de martinis. El Ing. José Luis Albornoz Salazar

Monografias.com
vaso. - 16 - tiempo que empleaba para beber era de 10 minutos por cada El costo de bebidas son: $1.00 el vaso de cerveza, $2.00 el vaso de ginebra, $4.00 el vaso de whiskys y $3.00 el vaso de martini. El matemático pensó que el objetivo sería maximizar el consumo alcohólico del huésped. Logró que un amigo químico le diese el contenido alcohólico de las bebidas en forma cuantitativa, siendo las unidades alcohólicas de 8, 15, 16 y 7 por vaso de cerveza, ginebra, whisky y martini respectivamente. El visitante siempre bebía un mínimo de 2 whiskys. ¿Cómo resolvió el problema el joven? muestra, además, el nivel requerido de financiamiento (en millones de pesos). Esas cifras representan la cantidad máxima de que se dispone para cada proyecto. La oficina federal puede conceder a cada proyecto una suma que no rebase esa cifra. Observando estas disposiciones, el presidente ha ordenado financiar el proyecto nuclear por lo menos en el 50% de la suma solicitada. El administrador de la dependencia gubernamental tiene mucho interés en el proyecto solar y ha pedido que la cantidad combinada que se conceda a estos proyectos sea como mínimo de 300 millones de pesos. El problema consiste en determinar las sumas de dinero que se otorgaran a cada proyecto con objeto de maximizar los beneficios. (Pàgina 124) EJERCICIO 58 : Una oficina federal cuenta con un presupuesto de mil millones de pesos para otorgarlo como EJERCICIO 59 : (Pàgina 126) Una compañía se dedica a la fabricación subsidio destinado a la investigación innovadora en el campo de la búsqueda de otras formas de producir energía. Un equipo gerencial integrado por científicos y economistas efectuó una reseña preliminar de 200 solicitudes, reduciendo los candidatos a seis finalistas. Los seis proyectos han sido evaluados calificados en relación con los beneficios que se espera conseguir de ellos en los próximos 10 años. Los beneficios estimados se dan en la siguiente tabla: de 4 productos : P1, P2, P3 y P4, utilizando para ello 2 materias primas : M1 y M2, cuyas disponibilidades semanales están limitadas a 1000 y 1200 unidades respectivamente. La materia prima que precisa la fabricación de una unidad de cada una unidad de cada uno de los productos se muestra en la siguiente tabla : Proyecto 1 2 3 4 5 6 Clasificación del Proyecto Solar Solar Combustibles sintéticos Carbón Nuclear Geotérmico Utilidad por peso invertido 4.4 3.8 4.1 3.5 5.1 3.2 Nivel de financiamiento (en millones de pesos) 220 180 250 150 400 120 Además, los costos de fabricación de cada unidad de producto (que incluyen los costos de la materia prima y otros) se han evaluado en 75, 60, 40 y 30 unidades monetarias respectivamente. La próxima semana la compañía debe atender un pedido de 100 unidades de P1, 110 de P2, 120 de P3 y 90 de P4, lo que supera claramente su capacidad de producción. Por esta razón, está considerando la posibilidad de adquirir algunos de estos Así el valor 4.4 asociado al proyecto 1, indica que por cada peso que se invierta en ese proyecto, se obtendrá una utilidad de 4.40 durante los próximos diez años. La tabla Ejercicios resueltos de PROGRAMACION LINEAL productos a un competidor, cuyos productos tienen las mismas características que los que fabrica la compañía. Este competidor sólo puede suministrar unidades de los productos Ing. José Luis Albornoz Salazar

Monografias.com
- 17 - P1, P2 y P3, y los ofrece a 85, 65 y 30 u.m. por unidad, respectivamente. Plantear un modelo que permita determinar cuántos productos de cada tipo debe elaborar la compañía y cuántos debe comprar para satisfacer la demanda de este pedido de manera que se minimicen los costos totales. (Pàgina 128) EJERCICIO 60 : Un fabricante tendrá que atender cuatro pedidos de producción, A, B, C, y D, en este mes. Cada trabajo puede ser llevado a cabo en cualquiera de los tres talleres. El tiempo necesario para completar cada trabajo en cada (Pàgina 130) EJERCICIO 61 : Web Mercantile vende muchos productos para el hogar mediante un catálogo en línea. La compañía necesita un gran espacio de almacén para los productos. Ahora planea rentar espacio para los siguientes 5 meses. Se sabe cuánto espacio necesitará cada mes; pero como varía mucho, puede ser más económico rentar sólo la cantidad necesaria cada mes con contratos mensuales. Por otro lado, el costo adicional de rentar espacio para meses adicionales es menor que para el primero, y puede ser menos costoso rentar el espacio máximo los 5 meses. Otra opción es el enfoque intermedio de cambiar la cantidad total de espacio rentado (con un nuevo contrato y/o la terminación del anterior) al menos una vez pero no cada mes. El espacio requerido y los costos para los periodos de arrendamiento son los siguientes: uno de esos talleres, el costo por hora y la cantidad de horas disponibles que tendrá cada taller durante este mes aparecen en la siguiente tabla. El objetivo es minimizar el costo total de arrendamiento para cumplir con los requerimientos. También existe la posibilidad de dividir cada uno de los trabajos entre los distintos talleres, en cualquier proporción que se desee. Por ejemplo, una cuarta parte del trabajo A puede hacerse en 8 horas en el taller 1. EJERCICIO 62 : (Pàgina 132) Don K-NI es el presidente de una firma El fabricante desea determinar la cantidad de horas de cada trabajo que deberán realizarse en cada taller, para minimizar el costo total de terminación de los cuatro trabajos. Identifique las variables de decisión, formule un modelo de PL para este problema y finalmente resuélvalo. Ejercicios resueltos de PROGRAMACION LINEAL de inversiones personales, que maneja una cartera de valores de un cierto número de clientes. Un cliente nuevo ha solicitado recientemente que la firma le maneje una cartera de $100.000,00. Al cliente le gustaría limitar su cartera a una combinación de las tres acciones que se muestran en la tabla. Ing. José Luis Albornoz Salazar

Monografias.com
- 18 - Sobre la base del mantenimiento y la disponibilidad de Formular un programa de programación lineal que permita tomar la mejor decisión para maximizar las utilidades totales que se obtengan de la inversión. (Pàgina 133) EJERCICIO 63 : Una fábrica de aparatos electrónicos puede tener una producción diaria de televisores de pantalla plana mínima de 300 y máxima de 600; en lo que se refiere a televisores con pantalla de cristal liquido la producción diaria fluctúa entre 200 y 500 unidades. Para mantener una calidad optima en su producto debe de fabricar un máximo de 900 unidades entre ambos tipos de televisor. El costo de producción de un televisor de pantalla plana es de $ 3,400.00. y el de pantalla de cristal liquido es de $ 5,600.00. Cada televisor de pantalla plana se vende a $ 6000.00, y cada televisor de pantalla de cristal liquido se vende a $ 10800.00. La fábrica desea maximizar las utilidades. En base a dicha información: escriba un planteamiento para resolver por programación lineal. (Pàgina 134) EJERCICIO 64 : Rich Oil Company, cerca de Cleveland, suministra gasolina a sus distribuidores en camiones. La compañía recientemente recibió un contrato para iniciar el suministro de 800.000 galones de gasolina por mes a distribuidores de Cincinnati. La compañía tiene $.500.000 disponibles para crear una flota consistente en 3 tipos diferentes de camiones. En la siguiente tabla se muestra la capacidad relevante, costo de compra, costo operativo y número máximo de viajes por cada tipo de camión. Ejercicios resueltos de PROGRAMACION LINEAL conductores, la compañía no desea comprar más de 10 vehículos para su flota. Asimismo, la compañía desearía asegurarse que se compren al menos 3 de los camiones del tipo 3. Finalmente, la compañía no desea que más de la mitad de la flota sea de camiones del tipo 1. Como gerente de operaciones, formule un modelo para determinar la composición de la flota que minimice los costos operativos mensuales al tiempo que satisfaga las demandas, no saliéndose del presupuesto y satisfaciendo los requerimientos de las otras compañías. (Pàgina 135) EJERCICIO 65 : Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas. Dos mayoristas pueden suministrarle para satisfacer sus necesidades, pero solo venden la fruta en contenedores completos. El mayorista “A” envía en cada contenedor 8 cajas de naranjas, 1 de plátanos y 2 de manzanas. El mayorista “B” envía en cada contenedor 2 cajas de naranjas, 1 de plátanos y 7 de manzanas. Sabiendo que el mayorista “A” se encuentra a 150 km. de distancia y el mayorista “B” a 300 km. Obtener el modelo de programación lineal y calcular cuántos contenedores habrá que comprar a cada mayorista, con objeto de ahorrar tiempo y dinero, reduciendo al mínimo la distancia de lo solicitado. (Pàgina 136) EJERCICIO 66 : El dietista de un hospital desea preparar un platillo de maíz y calabazas que proporcione al menos 3 gr de proteínas y no cueste más de US $0.36 por ración. Una onza de maíz con crema proporciona 0.5 gr. de proteína y cuesta US Ing. José Luis Albornoz Salazar

Monografias.com
1 $0.04. una onza de calabazas proporciona 0.25 gr. de proteínas y cuesta US $0.03. Para un buen sabor se necesitan al menos 2 onzas de maíz y la misma cantidad de calabaza que de maíz, es importante que el número de onzas por ración sea lo más Si se puede o no cumplir el pedido. Y ¿Cómo sería la distribución del estampado de tela en los dos tipos de máquinas para maximizar los beneficios del pedido? pequeño posible. Halle la combinación de maíz y calabaza que hace mínimo el tamaño de la ración. EJERCICIO 68 : (Pàgina 140) El DISTRITO METRO es una dependencia que administra la distribución de agua en cierta región geográfica grande. La región es bastante árida, por lo (Pàgina 137) EJERCICIO 67 : El “Estampado SA”, una tintorería textil que se dedica a hacer trabajos por pedidos, cuenta con dos tipos de estampadoras: rápidas y lentas. Dispone de 60 estampadoras rápidas y 40 lentas. Aclaremos que estampar consiste en imprimir dibujos con colores sobre tela cruda, de modo que el rollo de tela cruda va pasando por la estampadora y ésta le va imprimiendo el dibujo con los colores y formas seleccionados. Estampado SA ha tomado dos trabajos para hacer: Dibujo Snoopy y dibujo Scooby. Cada uno de estos estampados se puede hacer en una máquina de cualquiera de los dos tipos, sólo que la eficiencia será distinta según el tipo. Una máquina rápida estampa 12 m de dibujo Snoopy por hora. Una máquina lenta estampa 6 m de dibujo Snoopy por hora. Una máquina rápida estampa 8 m. de dibujo Scooby por hora. Una máquina que el distrito debe comprar y traer agua desde fuera de ella. Las fuentes de esta agua importada son los ríos 1, 2 y 3. El distrito revende el agua a los usuarios de la región. Sus clientes principales son los departamentos de agua de las ciudades A, B, C y D. Es posible hacer llegar agua a cualquiera de estas ciudades desde cualquiera de los tres ríos, con la excepción de que no hay forma de abastecer a la ciudad “D” con agua del río “3”. Sin embargo, dada la distribución geográfica de los acueductos y las ciudades en la región, el costo del abastecimiento para el distrito depende tanto de la fuente como de la ciudad a la que abastece. En la tabla siguiente se dan los costos variables por acre-pie de agua para cada combinación de río y ciudad. A pesar de estas variaciones, el precio que el distrito cobra por acre-pie es independiente de la fuente de agua y es el mismo para todas las ciudades. lenta estampa 4 metros de dibujo Scooby por hora. Una misma estampadora (sea rápida o lenta) no puede destinarse en el mismo día a trabajar en dos tipos distintos de dibujo. Río Cdad.A 16 Cdad. B Cdad.C 13 22 Cdad.D Recursos 17 50 El costo por hora de energía para las máquinas rápidas y Río 2 14 13 19 15 60 lentas son $4 y $3, respectivamente. El costo para la máquina rápida es mayor debido a que ésta requiere una mayor potencia. Los costos de tintes para Snoopy y Scooby son de $2.2 y $3.2 por metro de tela cruda, respectivamente. Cada metro de tela estampada con Snoopy se vende a $6 y Río 3 Mín.necesario Solicitado 19 30 50 20 70 70 23 0 30 NO 10 infinito 50 un metro de tela estampada con Scooby se vende a $8. Para mañana le han pedido a Estampado SA que entregue 3000 metros de tela Snoopy y 3100 metros de Scooby. Tiene todo el día de hoy (ocho horas) para trabajar. Formule el problema de programación lineal para determinar: Ejercicios resueltos de PROGRAMACION LINEAL La administración del distrito tiene que resolver el problema de cómo asignar el agua disponible durante el próximo verano. En la columna del lado derecho de la tabla se dan las cantidades disponibles en los tres ríos, en unidades de un millón de acres-pie. El distrito se compromete a proporcionar Ing. José Luis Albornoz Salazar - 19 -

Monografias.com
- 20 - una cantidad mínima para cumplir con las necesidades esenciales de cada ciudad (con la excepción de la ciudad “C”, que tiene una fuente independiente de agua); estas necesidades mínimas se muestran en la tabla. La fila de solicitado indica que la ciudad “B” no quiere más agua que la que cubre sus necesidades mínimas, pero la ciudad “A” compraría hasta 20 más, la ciudad “C” hasta 30 más y la ciudad “D” compraría toda la que pudiera obtener. La administración desea asignar toda el agua disponible de los tres ríos de manera que por lo menos se cumpla con las necesidades mínimas de cada ciudad y al mismo tiempo minimizar los costos. (Pàgina 141) EJERCICIO 69 : Un comerciante debe entregar a sus tres hijas 90 manzanas para que las vendan. - Fátima recibirá 50 manzanas, - Cunda recibirá 30 manzanas y - Siha recibirá 10 manzanas. Las tres hijas deben vender las manzanas al mismo precio y deben obtener la misma utilidad por la venta, bajo la siguiente condición de mercadeo: Si Fátima vende una porción de 7 manzanas por 1 dólar y otra porción a 3 dólares por cada manzana, sus hermanas deben hacer lo mismo. (Pàgina 144) CÓMO INSTALAR “SOLVER” EN LA HOJA DE CÁLCULO EXCEL 2007 (Pàgina 146) DESPLIEGUE Y SOLUCIÓN DE UN PROBLEMA DE TRANSPORTE EN LA HOJA DE CÁLCULO EXCEL Ejercicios resueltos de PROGRAMACION LINEAL Nota : El ejercicio 25 explica (de manera más detallada que los demás) el DESPLIEGUE Y SOLUCIÓN DEL MODELO MATEMÁTICO DE PROGRAMACIÓN LINEAL EN LA HOJA DE CÁLCULO EXCEL: Ing. José Luis Albornoz Salazar

Monografias.com
y ; 2 Xa = Xb - 21 - EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL . Para facilitar la elaboración del modelo matemático en La Programación Lineal (PL) recomendamos lectura y análisis de las siguientes 12 consideraciones: 8) La capacidad de espacio de almacenamiento en la fábrica es de 200 productos: Xa + Xb < = 200 9) La materia prima me permite fabricar un máximo de 160 unidades: Xa + Xb < = 160 10) El producto A necesita 2 unidades de materia prima “w” y el producto B necesita 3 unidades de la misma materia prima, la disponibilidad de la materia prima “w” en los depósitos de la empresa es de 800 unidades: 2 Xa + 3 Xb < = 800 Si llamamos: Xa = Producto A Xb = Producto B 11) Si “Z” representa la utilidad total y la utilidad del producto A es de Bs 20,oo y la utilidad del producto B es de Bs 25,oo : Z = 20 Xa + 25 Xb 12) Si se venden 50 productos A y 60 productos B la utilidad será : Exprese algebraicamente : 1) Hoy fabriqué 60 unidades de cada producto: Xa = 60 Xb = 60 Z = 20 (50) + 25 (60) = 1000 + 1500 Z = Bs 2.500,oo 2) La producción total fue de 120 productos: EJERCICIO 1 : La tienda de comestible BK vende dos Xa + Xb = 120 3) Para que sea rentable tengo que producir por lo menos 50 productos A y 55 tipos de bebidas: La marca sabor a cola A1 y la marca propia de la tienda, Bk de cola, más económica. El margen de utilidad en la bebida A1 es de 5 centavos de dólar por lata, mientras que la bebida productos B: 4) La capacidad de producción es de 180 unidades Xa > = 50 ; Xb > = 55 Xa + Xb < = 180 de cola Bk suma una ganancia bruta de 7 centavos por lata. En promedio, la tienda no vende más de 500 latas de ambas bebidas de cola al día. Aún cuando A1 es una marca más conocida, los clientes tienden a comprar más latas de la marca Bk, porque es considerablemente más económica. Se calcula que las ventas de la marca Bk superan a las de la marca A1 en una razón 2:1 por lo 5) Los clientes compran más productos A que productos B : Xa > = Xb 6) Por cada producto A que se venda se venden dos productos B : (Recordar “Razón de proporcionalidad”) 7) Las ventas del producto A superan las del producto B cuando menos en 30 menos. Sin embargo, BK vende, como mínimo, 100 latas de A1 al día. ¿ Cuántas latas de cada marca debe tener en existencia la tienda diariamente para maximizar su utilidad ?. Respuesta: unidades: Xa > = Xb + 30 En la pregunta, al final del enunciado, se identifican claramente las variables de decisión ya que se hace referencia a las dos marcas de bebidas de cola en lata. Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
(1) - (1) (3) - 22 - A1 = Latas de bebida A1 que debe tener la tienda en existencia diariamente. A2 = Latas de bebida Bk que debe tener la tienda en existencia diariamente. El objetivo es incrementar al máximo la utilidad por la venta de los dos tipos de bebidas. Se menciona que la utilidad es de 5 centavos por lata de A1 y 7 centavos por lata de Bk. La ecuación que representa la utilidad total por concepto de ventas de latas de estas bebidas será: Z = 5 A1 + 7 A2 Ahora analizamos el enunciado del ejercicio buscando las condiciones o restricciones que limitan las ventas de dichas bebidas: Nota: Es bueno recomendar que las restricciones se expresen de manera tal que las incógnitas queden del lado izquierdo de la desigualdad o ecuación y los términos independientes (números) del lado derecho. Esta recomendación nos facilitará el uso de las hojas de cálculo u otros métodos de resolución (método simplex, programas computarizados, etc.). - En promedio la tienda no vende más de 500 latas de ambas bebidas al día: A1 + A2 < = 500 - Los clientes tienden a comprar más latas de la marca Bk : El Modelo de Programación Lineal (MPL) quedará expresado como: MAXIMIZAR : Z = 5 A1 + 7 A2 Sujeto a: A1 + A2 < = 500 (1) - A1 + A2 > = 0 (2) - 2 A1 + A2 > = 0 (3) A1 > = 100 (4) Y a la condición de no negatividad que implica que todas las variables de decisión sean positivas (valores mayores o iguales a cero) A1 , A2 > = 0 (5) Solución Gráfica: El problema tiene solamente dos variables de decisión, A1 y A2, y por lo tanto sólo dos dimensiones, así que podemos usar un procedimiento gráfico para resolverlo. Dicho proceso consiste en dibujar un gráfico en dos dimensiones, utilizando a A1 y A2 como los ejes. El primer paso consiste en identificar los valores de A1 y A2 permitidos por las restricciones, esto es, la región o área factible de solución determinada por las restricciones. Recuerde que las restricciones de no negatividad ( A1 > = 0 ; A2 > = 0) limitarán la región factible a estar en el cuadrante positivo (conocido como primer cuadrante). A2 > = A1 (atendiendo la nota anterior) - A1 + A2 > = 0 (2) -Las ventas de Bk superan a las ventas de A1 en una razón de 2:1 por lo menos (Ver y analizar el ordinal 6 de la página 3 ) : A2 > = 2 A1 (atendiendo la nota anterior) - 2 A1 + A2 > = 0 - Se venden como mínimo 100 latas de A1 al día: A2 500 Estudiando la primera restricción A1 + A2 = 500 A1 + A2 < = 500 El área sombreada representa el espacio de solución factible de A1 + A2 < = 500 A1 > = 100 (4) 500 A1 Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
- (3) 500 A2 A2 A1 - 23 - El procedimiento más recomendado consiste en trazar la recta (“generada por la restricción”) y sombrear el lado factible y a medida que vayamos Estudiando la restricción 3: - 2A1 + A2 > = 0 graficando nuevas rectas “borramos” el área sombreada anteriormente que no cumpla con esta nueva restricción. En el gráfico anterior notamos que el punto (100,200) cumple con la restricción (100 + 200 < 500) por lo que todos los que están en el primer cuadrante y del lado izquierdo de la recta también. - 2 A1 + A2 = 0 El área sombreada representa el espacio de solución factible de - 2 A1 + A2 > = 0 A1 + A2 < = 500 - A1 + A2 > = 0 - A1 + A2 = 0 - A2 Estudiando la restricción 2: - A1 + A2 > = 0 (2) A1 + A2 = 500 500 El área sombreada representa el espacio de solución factible de A1 + A2 < = 500 y - A1 + A2 > = 0 500 A1 - Estudiando la restricción 4: - A1 + A2 = 0 A1 > =100 (4) A1 + A2 = 500 A1 = 100 - 2 A1 + A2 = 0 El área sombreada representa el espacio TOTAL de solución 500 A1 500 El punto (100,200) cumple con la restricción dos (-100 +200 > 0) y ya vimos que cumple con la restricción 1. Sin embargo el punto (200,100) cumple con la restricción 1 (200+100 < 500) pero NO cumple con la restricción 2 (-200+100 no es mayor que 0) por lo tanto no estará dentro del espacio de solución. El estudiante debe recordar que para formar parte del espacio de solución o área factible los puntos deben cumplir con todas las restricciones que se vayan estudiando. El último aspecto señalado permite garantizar que la solución encontrada cumpla con todas las restricciones o limitaciones que impone el Modelo Matemático. Nótese también que a medida que se van analizando las restricciones el espacio factible (área sombreada) se hace menor. JAMAS crecerá. Ejercicios resueltos de PROGRAMACION LINEAL - A1 + A2 = 0 A1 + A2 = 500 500 Definida como ha sido el área total de factibilidad, el último paso consiste en escoger el punto de dicha región que maximiza el valor de la función objetivo. En un “punto de esquina” de esta área sombreada se encuentra el “punto óptimo de solución”, es decir el punto que contiene el valor de A1 y A2 que cumpliendo con todas las restricciones me permitirá obtener el máximo valor de Z. (Zmáx.) Ing. José Luis Albornoz Salazar

Monografias.com
; (4) - 24 - Para determinar este “punto de esquina” se utiliza un procedimiento de ensayo y error que consiste en darle valores arbitrarios a la función objetivo (Z) y al graficarla generará una recta que OBLIGATORIAMENTE es paralela a la recta de la “FUNCIÓN OBJETIVO ÓPTIMA” (Zmáxima) y que en el caso de maximización será la que contenga al ya mencionado punto de esquina que esté ubicado en la recta paralela mas alejada del origen (en el caso de minimización será la que esté más cerca del origen). Para fijar mejor la idea de cómo realizar este procedimiento graficaremos dos rectas: El punto óptimo (donde Z alcanza el máximo valor) es la intersección de las rectas (1) y (4) representado por el par ordenado ( 100 , 400 ) , donde: A1 = 100 y A2 = 400 Lo que significa que para maximizar su utilidad la tienda debe tener en existencia diariamente 100 latas de bebida A1 y 400 latas de bebida Bk. La máxima utilidad se calcula sustituyendo estos valores en la función objetivo (Z). Z = 3.500 = 5 A1 + 7 A2 y, Z = 5 A1 + 7 A2 Z = 5 (100) + 7 (400) Z = 3.100 = 5 A1 + 7 A2 . Antes de seguir el procedimiento es bueno aclarar que estos valores que se asignen a Z no tienen ninguna relevancia ni representan ningún dato importante de la solución del problema. Repetimos, son valores arbitrarios que únicamente nos ayudan a visualizar la pendiente de la recta de la función objetivo. (No deben confundirla con Zmáx.. que es el error más común que cometen los estudiantes). A2 (4) Punto óptimo A2 500 Zmáx = 3.300,oo centavos de dólar. Zmáx = $ 33,oo Punto óptimo (100,400) (3) (2) Zmáx = 3.300 500 (3) (2) Z = 3.500 Z = 3.100 500 (1) A1 A1 500 (1) Al seguir “trazando” rectas paralelas “invisibles” notaré que el punto de esquina buscado es la intersección de las rectas (1) y (4) y que puede calcularse resolviendo un sistema de dos ecuaciones y dos incógnitas: DESPLIEGUE Y SOLUCIÓN DEL MODELO MATEMÁTICO EN LA HOJA DE CÁLCULO EXCEL: Para facilitar las “consultas posteriores” se recomienda identificar los cuadros en Excel, para ello utilizamos las dos primeras filas. A1 + A2 = 500 (Ecuación 1) Coloque en la FILA 3 los valores que acompañan las incógnitas o A1 = 100 (Ecuación 4) variables de decisión en la función objetivo Z. Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
- 25 - Introduzca las fórmulas en las celdas G5, G6, G7 y G8 ; ellas reflejarán los valores que adquieren las condiciones de restricción una vez resuelto el problema. Introduzca las restricciones que aparecen en el modelo matemático. - Celda G5 - Celda G6 =B5*B12+C5*C12 =B6*B12+C6*C12 Introduzca “ceros” en las celdas donde desea se reflejen los resultados de - Celda G7 - Celda G8 =B7*B12+C7*C12 =B8*B12+C8*C12 A1 y A2 (en este caso B12 y C12). (En la hoja de cálculo se reflejarán “ceros” inicialmente) Introduzca la fórmula de la función objetivo en la celda G12. Ejercicios resueltos de PROGRAMACION LINEAL - G12 =B3*B12+C3*C12 Ing. José Luis Albornoz Salazar

Monografias.com
- 26 - Para calcular el valor de Z máximo, se utiliza una herramienta que incluye Excel llamada “ SOLVER”. Para correr el Solver se elige &uml;SOLVER” en el menú “Herramientas”. En caso de que su computador no muestre en el menú “Herramientas” el comando “Solver”, busque en dicho menú el comando “Complementos” e instale “Solver”. Una vez instalado haga clic en “Solver” y se mostrará un cuadro de diálogo “Parámetros de Solver”. En ella se reflejará el valor de Zmáximo una vez aplicado “Solver”. Inicialmente reflejará cero. Una vez que se introduce el modelo en la hoja de cálculo, es sencillo analizar soluciones potenciales. Cuando se dan valores a las variables de decisión (celdas B12 y C12), la columna “G” muestra de inmediato los valores de cada condición de restricción (celdas G5 hasta G8) y la celda G12 muestra la ganancia total. Haga una prueba con este ejercicio y coloque 10 en las celdas B12 y C12 respectivamente. Si ha llenado bien su hoja de cálculo en la pantalla de su PC aparecerán los valores que mostramos a continuación: Ejercicios resueltos de PROGRAMACION LINEAL Antes de que “Solver” pueda resolver el problema, necesita conocer con exactitud, donde se localizan los componentes del modelo en la hoja de cálculo. Es posible escribir las direcciones de las celdas o hacer clic en ellas. En el espacio superior izquierdo del cuadro de diálogo mostrado, donde se solicita la celda objetivo coloque $G$12. En los círculos blancos donde se solicita el “valor de la celda objetivo” indique “Máximo”. El modelo matemático pide maximizar Z.(haga clic sobre la palabra máximo). En el espacio central izquierdo, donde se solicita “cambiando las celdas” indique las celdas donde se propuso anteriormente que se mostraran los resultados de cada incógnita. En este caso son las celdas B12 y C12, coloque $B$12:$C$12. Ing. José Luis Albornoz Salazar

Monografias.com
- 27 - Haga clic en “Aceptar”. Este procedimiento se hará tantas veces como sea necesario en atención al número de restricciones que presente el modelo. $G$7 > = $E$7 En el espacio en blanco, en la parte inferior izquierda, “Sujetas a las siguientes Restricciones” indique las restricciones o condiciones del problema, para lo cual haga clic en “Agregar”. En este momento aparecerá en la pantalla el cuadro de diálogo “Agregar Restricción”. $G$8 > = $E$8 Coloque: $G$5 < = $E$5 Sea muy cuidadoso al introducir las restricciones, sobre todo con los signos de desigualdad o igualdad (es el error más común que se comete). Ahora el cuadro de diálogo resume el modelo completo. Se le está “ordenando” al programa que A1 + A2 debe ser menor a 500 Haga clic en “Aceptar”. Regresará en la pantalla el cuadro “Parámetros de Solver”, vuelva a hacer clic en “Agregar” y volverá a aparecer “Agregar Restricción”, coloque ahora: $G$6 > = $E$6 Antes de pedir a ¨Solver” que resuelva el modelo, se elige el botón “Opciones” y aparecerá el cuadro de diálogo “Opciones de Solver”. Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
- 28 - Y aparecerá la hoja de resultados: Este cuadro permite especificar las opciones para resolver el modelo. Lo más importante son las opciones “Adoptar Modelo Lineal” y “Asumir no negativos” (asegúrese de hacer clic sobre ellos). Con un clic en “Aceptar” se regresa al cuadro de diálogo “Parámetros de Solver”. Los resultados de este ejercicio se “leen” de la siguiente manera: A1 = 100 A2 = 400 Para maximizar la utilidad la tienda debe tener en existencia 100 latas de la marca A1 y 400 latas de la marca Bk. Ahora todo está listo para hacer clic en “Resolver” y después de unos segundos Solver indicará los resultados en las celdas B12 y C12, y en la celda objetivo (G12) aparecerá el valor máximo de la función objetivo (Zmáx). En el cuadro final “Resultados de Solver”, haga clic en “Aceptar”. Ejercicios resueltos de PROGRAMACION LINEAL La utilidad máxima que obtendrá al vender las cantidades indicadas anteriormente será de 3300 centavos de dólar. Zmáx = 3.300,oo Ing. José Luis Albornoz Salazar

Monografias.com
: (1) (2) (3) S - 120 80 - 29 - EJERCICIO 2 BFC emplea a cuatro carpinteros 2 M + 0,5 S < = 80 durante 10 días para ensamblar mesas y sillas. Se requieren 2 horas para ensamblar una mesa y 30 minutos para ensamblar una silla. - Los clientes compran entre 4 y 6 sillas con cada mesa Por lo común, los clientes compran entre cuatro y seis sillas con cada mesa. Las utilidades son de $ 135 por mesa y $ 50 por silla. La ( 4 M < = S = < 6 M ): 4M <= S compañía opera un turno de 8 horas al día. Determine gráficamente la mezcla de producción óptima de los 10 días. Respuesta: Las variables de decisión estarán representadas como: M = Mesas a ensamblar durante 10 días. (colocando las incógnitas del lado izquierdo) 4M- S <= 0 S<=6M (colocando las incógnitas del lado izquierdo) -6M +S <= 0 - Condición de no negatividad que implica que todas las variables de decisión sean positivas (valores mayores o iguales a cero) S = Sillas a ensamblar durante 10 días. M ; S >= 0 (4) Se entiende que buscar la mezcla óptima de producción es aquella que genere mayores beneficios. Por lo que el Modelo de PL tendrá que enfocar MAXIMIZAR la función objetivo (Z). Solución Gráfica: La función objetivo relacionará entonces la utilidad de cada variable de decisión: Z = $135 M + $50 S Sujeta a las siguientes restricciones: Antes de abordar las restricciones es bueno señalar las unidades de 160 Estudiando la restricción 1: 2M + 0,5 S = 80 2 M + 0,5 S < = 80 (1) tiempo en que vamos a trabajar. Se recomienda trabajar en horas y hacer las siguientes observaciones: - - 30 minutos = 0,5 horas. La compañía opera 8 horas al día y empleará 10 días para ensamblar mesas y sillas. El tiempo total de trabajo será de 80 horas 40 (8 x 10): - Tiempo de ensamblaje: Se requieren 2 horas para ensamblar una mesa y 30 minutos para ensamblar una silla y el tiempo total disponible es de 80 horas: - 10 20 30 40 50 M Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
- - - (3) ; 80 40 - 30 - Estudiando la restricción 2: Utilizando el procedimiento de ensayo y error para: 4M - S<=0 (2) S Z = 5.000 S 160 (1) (3) (2) 160 120 Punto óptimo 120 80 4M – S = 0 2 M + 0,5 S = 80 80 40 Zmáx Z = 5.000 40 M 10 20 30 40 50 M 10 20 30 40 50 El punto óptimo (donde Z alcanza el máximo valor) es la intersección de las Estudiando la restricción 3: -6M + S<=0 rectas (1) y (3) representado por el par ordenado ( 16 , 96) , donde: M = 16 y S = 96 Lo que significa que para maximizar su utilidad BFC debe ensamblar 16 S 160 -6M+S =0 mesas y 96 sillas durante los 10 días. La máxima utilidad se calcula sustituyendo estos valores en la función objetivo (Z). 120 4M – S = 0 Z = 135 M + 50 S Z = 135 (16) + 50 (96) Zmáx = $ 6.960,oo 2 M + 0,5 S = 80 DESPLIEGUE Y SOLUCIÓN DEL MODELO MATEMÁTICO EN LA HOJA DE CÁLCULO EXCEL: El procedimiento es similar al utilizado en el Ejercicio 1. 10 20 30 40 50 M Coloque en la FILA 3 los valores que acompañan las incógnitas o variables de decisión en la función objetivo Z. Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
- G12 - 31 - Introduzca las restricciones que aparecen en el modelo matemático. Introduzca “ceros” en las celdas donde desea se reflejen los resultados de Introduzca la fórmula de la función objetivo en la celda G12. =B3*B12+C3*C12 M y S (en este caso B12 y C12). Haga clic en “Solver” y se mostrará un cuadro de diálogo “Parámetros de Solver”. En el espacio superior izquierdo del cuadro de diálogo mostrado, donde se solicita la celda objetivo coloque $G$12. En los círculos blancos donde se solicita el “valor de la celda objetivo” Introduzca las fórmulas en las celdas G5, G6, y G7; ellas reflejarán los valores que adquieren las condiciones de restricción una vez resuelto el problema. indique “Máximo”. El modelo matemático pide maximizar Z.(haga clic sobre la palabra máximo). En el espacio central izquierdo, donde se solicita “cambiando las celdas” - Celda G5 - Celda G6 - Celda G7 =B5*B12+C5*C12 =B6*B12+C6*C12 =B7*B12+C7*C12 indique las celdas donde se propuso anteriormente que se mostraran los resultados de cada incógnita. En este caso son las celdas B12 y C12, coloque $B$12:$C$12. Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
- 32 - En el espacio en blanco, en la parte inferior izquierda, “Sujetas a las siguientes Restricciones” indique las restricciones o condiciones del problema, para lo cual haga clic en “Agregar”. Todas las restricciones son del tipo < = . En este caso se le ordena al programa que los valores de las celdas G5, G6 y G7 deben ser menores o iguales a los de las celdas E5, E6 y E7 respectivamente. Ahora todo está listo para hacer clic en “Resolver” y después de unos segundos Solver indicará los resultados en las celdas B12 y C12, y en la celda objetivo (G12) aparecerá el valor máximo de la función objetivo (Zmáx). En el cuadro final “Resultados de Solver”, haga clic en “Aceptar”. - Coloque: $G$5:$G$7 <= $E$5:$E$7 Y aparecerá la hoja de resultados: También puede hacerlo una a una como en el ejercicio anterior. Antes de pedir a ¨Solver” que resuelva el modelo, se elige el botón “Opciones” y aparecerá el cuadro de diálogo “Opciones de Solver”. Los resultados de este ejercicio se “leen” de la siguiente manera: M = 16 S = 96 Este cuadro permite especificar las opciones para resolver el modelo. Lo más importante son las opciones “Adoptar Modelo Lineal” y “Asumir no negativos” (asegúrese de hacer clic sobre ellos). Con un clic en “Aceptar” se regresa al cuadro de diálogo “Parámetros de Solver”. Ejercicios resueltos de PROGRAMACION LINEAL Para maximizar la utilidad BFC debe ensamblar 16 mesas y 96 sillas durante los 10 días. La utilidad máxima que obtendrá al vender las cantidades indicadas anteriormente será de 6.690,oo dólares. Zmáx = $ 6.690,oo Ing. José Luis Albornoz Salazar

Monografias.com
(1) (2) (3) (4) (2) 8 4 6 2 y - 33 - EJERCICIO 3 : Jack es un estudiante emprendedor 2) Jack quiere estudiar por lo menos ( > = ) tanto como juega: de primer año de universidad. Jack quiere distribuir su tiempo Xe > = Xj que es igual a - Xj + Xe > = 0 disponible, de alrededor de 10 horas al día, entre el estudio y la diversión. Calcula que el juego es dos veces más divertido que el estudio. También quiere estudiar por lo menos tanto como juega. Sin embargo, Jack comprende que si quiere terminar todas sus tareas universitarias, no puede jugar más de cuatro horas al día. ¿ Cómo debe distribuir Jack su tiempo para maximizar su 3) Jack comprende que si quiere terminar sus tareas no puede jugar más ( < = ) de 4 horas al día: Xj < = 4 De manera que el Modelo de Programación Lineal (MPL) quedará satisfacción tanto en el estudio como en el juego.? expresado como: MAXIMIZAR Z = 2 Xj + Xe Respuesta: Primero defino las variables de decisión que tratamos de determinar y en la pregunta, al final del enunciado, notamos que se refiere al tiempo para estudio y para juego que debe distribuir Jack. Por lo tanto, las variables de decisión del modelo se pueden definir como: Xe = Horas de estudio al día. Xj = Horas de juego al día. Solución Gráfica: Xj (1) Sujeto a; Xj + Xe < = 10 - Xj + Xe > = 0 Xj <= 4 Xj , Xe > = 0 Conociendo las variables, la siguiente tarea es encontrar la función objetivo. El objetivo es lograr la máxima satisfacción tanto en el estudio como en el juego. Si “Z” representa la satisfacción diaria y el juego es dos veces más divertido que el estudio, obtendremos que : Z = 2 Xj + Xe El último elemento del modelo aborda las restricciones que limitan el empleo del tiempo: Z=10 Punto óptimo (3) Zmáxima 1) Jack quiere distribuir el tiempo disponible (< =) de alrededor de 10 horas al día, entre el estudio y la diversión: 2 4 6 8 10 Xe Xj + Xe < = 10 El punto óptimo (donde Z alcanza el máximo valor) es la intersección de las rectas (1) y (3) representado por el par ordenado ( 6 , 4) , donde: (Las horas destinadas al juego más las horas destinadas al estudio serán menores o iguales a 10 horas diarias que es el tiempo disponible de Jack) Xe = 6 Xj = 4 Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
; - 34 - Lo que significa que para maximizar su satisfacción Jack dedicará 4 horas al juego y 6 horas diarias al estudio.. La máxima satisfacción se calcula sustituyendo estos valores en la función objetivo (Z). Z = 2 Xj + Xe Z = 2 (4) + 6 Zmáx = 14 “unidades de satisfacción” DESPLIEGUE Y SOLUCIÓN DEL MODELO MATEMÁTICO EN LA HOJA DE CÁLCULO EXCEL: Haga clic en “Solver” y se mostrará un cuadro de diálogo “Parámetros de Solver”. El procedimiento es similar al utilizado en el Ejercicio 1. Coloque en la FILA 3 los valores que acompañan las incógnitas o variables de decisión en la función objetivo Z. Introduzca las restricciones que aparecen en el modelo matemático. Introduzca “ceros” en las celdas donde desea se reflejen los resultados de Xj y Xe (en este caso B12 y C12). Introduzca las fórmulas en las celdas G5, G6, y G7; ellas reflejarán los valores que adquieren las condiciones de restricción una vez resuelto el problema. En el espacio superior izquierdo del cuadro de diálogo mostrado, donde se solicita la celda objetivo coloque $G$12. En los círculos blancos donde se solicita el “valor de la celda objetivo” indique “Máximo”. El modelo matemático pide maximizar Z.(haga clic sobre la palabra máximo). En el espacio central izquierdo, donde se solicita “cambiando las celdas” indique las celdas donde se propuso anteriormente que se mostraran los resultados de cada incógnita. En este caso son las celdas B12 y C12, coloque $B$12:$C$12. - Celda G5 - Celda G6 - Celda G7 =B5*B12+C5*C12 =B6*B12+C6*C12 =B7*B12+C7*C12 Introduzca la fórmula de la función objetivo en la celda G12. - G12 =B3*B12+C3*C12 Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
- 35 - En el espacio en blanco, en la parte inferior izquierda, “Sujetas a las siguientes Restricciones” indique las restricciones o condiciones del problema, para lo cual haga clic en “Agregar”. Los resultados de este ejercicio se “leen” de la siguiente manera: Xj = 4 Xe = 6 Antes de pedir a ¨Solver” que resuelva el modelo, se elige el botón “Opciones” y aparecerá el cuadro de diálogo “Opciones de Solver”. Este cuadro permite especificar las opciones para resolver el modelo. Lo más importante son las opciones “Adoptar Modelo Lineal” y “Asumir no negativos” (asegúrese de hacer clic sobre ellos). Con un clic en “Aceptar” se regresa al cuadro de diálogo “Parámetros de Solver”. Ahora todo está listo para hacer clic en “Resolver” y después de unos segundos Solver indicará los resultados en las celdas B12 y C12, y en la celda objetivo (G12) aparecerá el valor máximo de la función objetivo (Zmáx). En el cuadro final “Resultados de Solver”, haga clic en “Aceptar”. Y aparecerá la hoja de resultados: Ejercicios resueltos de PROGRAMACION LINEAL Para maximizar su satisfacción, Jack dedicará 4 horas al juego y 6 horas diarias al estudio. La máxima satisfacción que alcanzará Jack será de: Zmáx = 14 “unidades de satisfacción” Ing. José Luis Albornoz Salazar

Monografias.com
- (2) - , Xp 100.000 Xa - 36 - EJERCICIO 4 : El banco de Elkin está asignando un El modelo de PL quedará expresado como: máximo de $ 200.000,oo para préstamos personales y de automóviles durante el próximo mes. El banco cobra 14% por préstamos MAXIMIZAR Z = 0,10 Xa + 0,11 Xp personales y 12% por préstamos para automóviles. Ambos tipo de préstamos se liquidan al final de un período de un año. La experiencia muestra que alrededor del 3% de los préstamos personales y el 2% de los préstamos para automóviles nunca se liquidan. Por lo común, el banco asigna cuando menos el doble de los préstamos personales a los préstamos para automóviles. Determine la asignación óptima de fondo para los dos tipos de préstamos. Sujeta a las siguientes restricciones: El banco está asignando un máximo de $200.00,oo para préstamos personales y de automóviles: Xa + Xp < = 200.000 (1) - Por lo común el banco asigna cuando menos el doble de los préstamos personales a los préstamos para automóviles: Respuesta: Xa > = 2 Xp que es igual a Xa - 2 Xp > = 0 Al analizar el enunciado del problema observamos claramente que las variables se relacionan con dos tipos de créditos: Xa = Cantidad de dinero asignada a los préstamos para autos. Condición de no negatividad: Xa Xp >= 0 (3) = Cantidad de dinero asignada a los préstamos personales. El objetivo principal está relacionado lógicamente con la mayor utilidad que Solución Gráfica: Xp obtendrá el banco con la asignación de esos dos tipos de préstamo. Por lo que debemos tener presente que la utilidad viene dada por la diferencia entre lo que obtengo y lo que pierdo o dejo de ganar. 200.000 (1) Punto óptimo (2) Obtengo 14% por préstamos personales y 12% por préstamos para automóviles, pero después observo que nunca se liquidan o se pierden 3% de lo préstamos personales y 2% de los préstamos para autos. Entonces la función objetivo puede ser expresada como: Z = (12% Xa + 14% Xp) – (2% Xa + 3% Xp) O también: 100.000 Z = 22.000 200.000 Z = 12% Xa – 2% Xa + 14% Xp – 3% Xp Z = 10% Xa + 11% Xp Ejercicios resueltos de PROGRAMACION LINEAL Verifique que el punto (Xa =100.000, Xp =0) cumple con las dos restricciones. Ing. José Luis Albornoz Salazar

Monografias.com
y - 37 - El punto óptimo (donde Z alcanza el máximo valor) es la intersección de las rectas (1) y (2) representado por el par ordenado (133330 , 66670) , donde: Xa = 133.330,oo Xp = 66.670,oo Lo que significa que para maximizar su utilidad el banco debe asignar $133.330,oo para préstamos de automóviles y $66.670,oo para préstamos personales. La máxima utilidad se calcula sustituyendo estos valores en la función objetivo (Z): Z = 0,10 (133.330) + 0,11 (66.670) Zmáx = $ 20.667,oo DESPLIEGUE Y SOLUCIÓN DEL MODELO MATEMÁTICO EN LA HOJA DE CÁLCULO EXCEL: El procedimiento es similar al utilizado en el Ejercicio 1. Coloque en la FILA 3 los valores que acompañan las incógnitas o variables de decisión en la función objetivo Z. Introduzca las restricciones que aparecen en el modelo matemático. Introduzca “ceros” en las celdas donde desea se reflejen los resultados de Xa y Xp (en este caso B12 y C12). Introduzca las fórmulas en las celdas G5 y G6 ; ellas reflejarán los valores que adquieren las condiciones de restricción una vez resuelto el problema. Haga clic en “Solver” y se mostrará un cuadro de diálogo “Parámetros de Solver”. En el espacio superior izquierdo del cuadro de diálogo mostrado, donde se solicita la celda objetivo coloque $G$12. En los círculos blancos donde se solicita el “valor de la celda objetivo” indique “Máximo”. El modelo matemático pide maximizar Z.(haga clic sobre la palabra máximo). En el espacio central izquierdo, donde se solicita “cambiando las celdas” indique las celdas donde se propuso anteriormente que se mostraran los resultados de cada incógnita. En este caso son las celdas B12 y C12, coloque $B$12:$C$12. En el espacio en blanco, en la parte inferior izquierda, “Sujetas a las siguientes Restricciones” indique las restricciones o condiciones del problema, para lo cual haga clic en “Agregar”. - Celda G5 - Celda G6 =B5*B12+C5*C12 =B6*B12+C6*C12 Introduzca la fórmula de la función objetivo en la celda G12. - G12 =B3*B12+C3*C12 Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
(1) - 38 - EJERCICIO 5 : Popeye Canning tiene un contrato para recibir 60.000,oo libras de tomates maduros a 7 centavos de dólar por libra, con los cuales produce jugo de tomate enlatado, así como pasta de tomate. Los productos enlatados se empacan en cajas de 24 latas. Una lata de jugo requiere una libra de tomate y una lata de pasta solo requiere 1/3 de libra. La participación de mercado de la Antes de pedir a ¨Solver” que resuelva el modelo, se elige el botón “Opciones” y aparecerá el cuadro de diálogo “Opciones de Solver”. Este cuadro permite especificar las opciones para resolver el modelo. Lo más importante son las opciones “Adoptar Modelo Lineal” y “Asumir no negativos” (asegúrese de hacer clic sobre ellos). Con un clic en “Aceptar” se regresa al cuadro de diálogo “Parámetros de Solver”. Ahora todo está listo para hacer clic en “Resolver” y después de unos segundos Solver indicará los resultados en las celdas B12 y C12, y en la celda objetivo (G12) aparecerá el valor máximo de la función objetivo (Zmáx). En el cuadro final “Resultados de Solver”, haga clic en “Aceptar”. Y aparecerá la hoja de resultados: compañía se limita a 2000 cajas de jugo y 6000 cajas de pasta. Los precios de mayoreo por caja de jugo y de pasta son de 18 y 9 dólares respectivamente. Desarrolle un programa de producción óptima para Popeye Canning. Respuesta: Es muy importante fijar o definir las unidades en que debemos trabajar; en este problema vemos que se enfoca muchas veces “cajas de 24 latas” cada una. Lo importante es tener claro que una vez escogida la “unidad de estudio” debo trabajar únicamente con dicha unidad. Como en este problema queremos desarrollar un programa óptimo de producción y los productos son cajas de 24 latas de jugo y pasta de tomate, las variables de decisión serán: Xj = Cajas de 24 latas de jugo de tomate a producir. Xp = Cajas de 24 latas de pasta de tomate a producir. La función objetivo se relacionará directamente con la utilidad o ganancia máxima, en tal sentido el modelo de programación lineal quedará expresado como: MAXIMIZAR Z = 18 Xj + 9 Xp Sujeta a las siguientes restricciones: Como la “unidad de trabajo” escogida son cajas de 24 latas, las restricciones también tienen que ser indicadas en dichas unidades. 1) Una lata de jugo requiere una libra de tomate (24 latas requerirán 24 libras) y una lata de pasta solo requiere 1/3 de libra (24 latas requerirán 24 x 1/3 = 8 libras) y el total de libras de tomates que puedo utilizar es de 60.000,oo : 24 Xj + 8 Xp < = 60.000 Xa = 133.333,oo Xp = 66.667,oo Zmáx = $ 20.667,oo Ejercicios resueltos de PROGRAMACION LINEAL 2) La participación de mercado de la compañía se limita a 2.000 cajas de jugo y 6.000 cajas de pasta: Xj < = 2.000 (2) Xp < = 6.000 (3) Ing. José Luis Albornoz Salazar

Monografias.com
, Xp 4000 y - 39 - - Condición de no negatividad: Xj Xp >= 0 (4) DESPLIEGUE Y SOLUCIÓN DEL MODELO MATEMÁTICO EN LA HOJA DE CÁLCULO EXCEL: Solución Gráfica: El procedimiento es similar al utilizado en el Ejercicio 1. Cuando se vaya a implementar el procedimiento que se señala en este 8000 6000 2000 Punto óptimo (2) (1) Z = 72.000 (3) texto es bueno aclarar que una vez que ya haya desplegado cualquier ejercicio en la hoja de cálculo Excel, se facilita el mismo debido a que puedo utilizar la misma hoja y solamente tengo que introducir los nuevos datos sobre los ya existentes, poniendo especial énfasis en cambiar las restricciones en Solver. Todos los demás pasos quedan intactos. La hoja de resultados de este ejercicio será: 2000 4000 Xj Verifico que el punto (1000 , 1000) cumple con todas las restricciones. Esto nos reafirma que el área punteada es la zona factible de solución. El punto óptimo (donde Z alcanza el máximo valor) es la intersección de las rectas (1) y (3) representado por el par ordenado (500 , 6000) , donde: Xj = 500,oo Xp = 6.000,oo Lo que significa que para maximizar su utilidad la empresa debe producir 500 cajas de 24 latas de jugo de tomate y 6.000 cajas de 24 latas de pasta de tomate.. La máxima utilidad se calcula sustituyendo estos valores en la función objetivo (Z) Z = 18 (500) + 9 (6.000) Zmáx = $ 63.000,oo Ejercicios resueltos de PROGRAMACION LINEAL Ing. José Luis Albornoz Salazar

Monografias.com
: (2) (3) (4) , X2 100 - 40 - EJERCICIO 6 Una empresa produce dos tipos de 2) Si todos los sombreros producidos son del tipo 2, la compañía puede producir un total de 400 sombreros: sombrero. El sombrero tipo 1 requiere el doble de tiempo de trabajo que el del tipo 2. Si todos los sombreros producidos únicamente son del tipo 2, la compañía puede producir un total de 400 sombreros al día. Los límites diarios del mercado son de 150 del tipo 1 y 200 del tipo 2. La utilidad del sombrero tipo 1 es de $ 8,oo y la del sombrero tipo 2 es de $ 5,oo. Determinar el número de sombreros de cada tipo que debe producir la empresa para obtener la máxima utilidad. X2 < = 400 3) Los límites diarios del mercado son de 150 del tipo 1 y 200 del tipo 2: X1 < = 150 X2 < = 200 - Condición de no negatividad: Respuesta: X1 X2 >= 0 (5) El problema enfoca directamente la producción de dos tipos de sombrero, las variables serán: X1 = Sombrero tipo 1 a producir diariamente. X2 = Sombrero tipo 2 a producir diariamente. Solución Gráfica: La función objetivo está relacionada directamente con la utilidad que genera la venta de dichos sombreros. El modelo de programación lineal 400 (3) (1) (2) estará representado como: 300 MAXIMIZAR Z = 8 X1 + 5 X2 Sujeta a las siguientes restricciones: 200 Punto óptimo (4) 1) El sombrero tipo 1 requiere el doble de tiempo de trabajo que el del tipo 2.. Nótese que no se habla ni de mayor o menor, ni de máximo o mínimo, es Z = 1500 (valor arbitrario) decir no se habla de límites sino de igualdad, por lo tanto la restricción está dada por una igualdad: 2 X1 = X2 (1) 100 200 300 400 X1 En la mayoría de los problemas de PL trabajamos con restricciones del tipo (< =) o del tipo (> =) y se explicó que la recta graficada a partir de ellas dividía al plano en dos partes, una que cumplía con la restricción y la otra nó; en el caso de la restricción de Igualdad (=), como este caso, se grafica la recta y el punto óptimo se encontrará OBLIGATORIAMENTE contenido en ella y en el espacio que cumpla con todas las demás restricciones. Ejercicios resueltos de PROGRAMACION LINEAL El área punteada contiene los puntos que cumplen con las restricciones (2), (3) y (4) pero atendiendo que la restricción (1) es una igualdad, el punto óptimo se ubicará en dicha área pero contenido en la mencionada recta X2 = 2X1. Ing. José Luis Albornoz Salazar

Monografias.com
ESTA PRESENTACIÓN CONTIENE MAS DIAPOSITIVAS DISPONIBLES EN LA VERSIÓN DE DESCARGA
Partes: 1, 2


 Página anterior Volver al principio del trabajoPágina siguiente 

Comentarios


Trabajos relacionados

Ver mas trabajos de Programacion

 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.


Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.