Monografias.com > Ingeniería
Descargar Imprimir Comentar Ver trabajos relacionados

Disciplina estática en transistores Mosfet




Enviado por Gian Marco



  1. Disciplina estática
  2. Funciones lógicas utilizando interruptores
  3. El dispositivo MOSFET y su modelo S
  4. Análisis estático utilizando el modelo S
  5. Ejemplo disciplina estática
  6. El modelo SR del MOSFET
  7. Análisis estático de la compuerta NAND usando el modelo SR

Disciplina estática

La disciplina estática es una especificación para dispositivos digitales. La disciplina estática requiere dispositivos para interpretar correctamente los voltajes que se encuentran dentro de los umbrales de entrada (VIL y VIH). Mientras las entradas válidas se proporcionan a los dispositivos, la disciplina también requiere que los dispositivos para producir voltajes de salida válidos que satisfacen los umbrales de salida (VOL y VOH).

En este tema se introduce el elemento del circuito del interruptor y demuestra cómo las puertas lógicas digitales se pueden construir usando MOSFET (Metal Oxide Semiconductor Transistor de efecto de campo).

EL INTERRUPTOR

El interruptor está normalmente apagado y se comporta como un circuito abierto. cuando la presión es aplicada al interruptor, se cierra y se comporta como un alambre y conduce la corriente.

FIGURA 6.1

Monografias.com

En consecuencia, el interruptor puede ser modelado como el dispositivo de tres terminales se muestra en la Figura 6.2. Las tres terminales incluyen un terminal de control, un terminal de entrada y un terminal de salida. Los terminales de entrada y de salida de un interruptor comúnmente exhiben propiedades simétricas. Cuando el terminal de control tiene un VERDADERO o una señal de 1 lógico en él, la entrada está conectada a la salida a través de un corto circuito, y el interruptor se dice que está en su estado ON. De lo contrario, existe un circuito abierto entre la entrada y la salida, y el interruptor se dice que está en su estado OFF.

FIGURA 6.2

Monografias.com

como se ilustra en la figura 6.3, cuando la entrada de control es un 0 lógico, la curva VI para el par terminal de entrada-salida indica que la corriente a través del interruptor es 0, independientemente de la tensión aplicada. Por el contrario, el interruptor se comporta como un corto circuito entre su entrada y terminales de salida cuando la entrada de control es un 1 lógico. Cuando se comporta como un cortocircuito, el voltaje a través de los terminales de entrada y de salida es cero, y la corriente no está restringida por el interruptor (en lugar, se determina por las limitaciones que son externos al interruptor).

Las características vi de un interruptor también se pueden expresar en forma algebraica como:

para el Control ='' 0'' i = 0 y para el Control ='' 1'', v = 0.

FIGURA 6.3

Monografias.com

Funciones lógicas utilizando interruptores

A continuación, consideremos el circuito de bombilla con un par de interruptores conectados en serie como se muestra en la figura 6.6a. La bombilla se puede activar sólo mediante el cierre de los dos interruptores A y B. De forma similar, la figura 6.6b muestra un circuito con un par de interruptores conectados en paralelo. En esta última configuración, la bombilla se puede activar mediante el cierre o bien el interruptor A o interruptor B.

FIGURA 6.6

Monografias.com

El dispositivo MOSFET y su modelo S

El MOSFET pertenece a una clase de dispositivos llamados transistores. El MOSFET es un dispositivo de tres terminales con un terminal de control, un terminal de entrada y un terminal de salida.

Como se muestra en la Figura 6.8, el terminal de control del MOSFET se llama a su puerta G, el terminal de entrada de su drenaje D, y el terminal de salida de su fuente S. Para nuestros propósitos, podemos tratar la fuente y el drenaje de una manera simétrica.

FIGURA 6.8

Monografias.com

Monografias.com

Un modelo de circuito simple para un tipo específico de dispositivo MOSFET llamado MOSFET de canal n. Este modelo basado en un simple interruptor se llama del interruptor MOSFET modelo, o S Modelo.

El dispositivo está en el estado ON cuando vGS cruza una tensión de umbral VT, de lo contrario, está desactivado. En el estado OFF, existe un circuito abierto entre el drenaje y la fuente. Como se ilustra en la figura 6.10, existe un circuito abierto entre la puerta y la fuente, y entre la puerta y el drenaje en todo momento.

FIGURA 6.10

Monografias.com

Podemos resumir el modelo S para el MOSFET en forma algebraica declarando

sus características v i de la siguiente manera:

para vGS /font>

Monografias.com

podemos tratar el par de terminales G y S como el puerto de entrada o
el puerto de control y el par de terminales D y S como el puerto de salida del
MOSFET.

Monografias.com

  • a) El inversor MOSFET

  • b) El mismo circuito inversor utilizando la notación
    abreviada de alimentación y tierra.

  • Monografias.com

    Una forma mas simbolica de representar el inversor del MOSFET donde
    IN y OUT representan los valores logicos VIN y vOUT.

    Monografias.com

    Figura 6.17 muestra el modelo equivalente para el circuito mostrado
    en la Figura 6.14. Supongamos que un alto lógico se representa mediante
    5 V y una lógica baja 0 con V.

    Como se muestra en la Figura 6.17, cuando el VIN de entrada es alta,
    el MOSFET está en el estado ON (suponiendo que el nivel de alta tensión
    está por encima del umbral VT), tirando de ese modo la tensión
    de salida a un valor bajo. En contraste, cuando la entrada es baja, el MOSFET
    está apagado, y la salida se eleva a un valor alto por RL. Aquí
    vemos el propósito de la resistencia de carga RL que proporciona una
    salida de 1 lógico cuando el MOSFET está apagado. Además,
    RL se elige generalmente para ser grande de modo que la corriente está
    limitada cuando el MOSFET está en ON. Debido a que la resistencia entre
    los puertos del drenaje-fuente del MOSFET de puerta a fuente y es infinito
    en el modelo S, el iIN actual es 0.

    FIGURA 6.17

    Monografias.com

    La figura 6.18 muestra una forma de onda de entrada de la muestra y
    la forma de onda de salida correspondiente a nuestro circuito.

    FIGURA 6.18

    Monografias.com

    FIGURA 6.19

    Monografias.com

    También podemos construir otras puertas de la misma manera.
    La figura 6.20 muestra un circuito de puerta NAND y la Figura 6.21 muestra
    el modelo de circuito equivalente S. Es fácil ver que la salida es
    un 0 sólo cuando ambas entradas son altas. La salida es alta cuando
    es lo contrario.

    FIGURA 6.20

    Monografias.com

    FIGURA 6.21

    Monografias.com

    Usando la intuición del circuito NAND de dos entradas, podemos
    construir NAND y NOR de entradas múltiples. La figura 6.22a muestra
    un n-entradas para la compuerta NOR y 6.22b muestra n-entrada para la compuerta
    NAND. En la entrada de la puerta NOR múltiple, la salida se tira a
    tierra cuando cualquiera de las entradas es alta. De la misma manera, en la
    puerta NAND, la salida sigue siendo alta, incluso si una entrada es baja.

    La conexión en paralelo de dos transistores (o grupo de ellos)
    actúa como una puerta OR.

    La conexión en serie de dos transistores (o grupo de ellos)
    actúa como una puerta AND.

    FIGURA 6.22

    Monografias.com

    EJEMPLO:

    Dadas las funciones dibujar su equivalente:

    Monografias.com

    Análisis estático utilizando el modelo S

    La curva de transferencia de entrada-salida para el inversor mostrado
    en la Figura 6.19, o la característica del inversor, contiene toda
    la información necesaria para determinar si el inversor satisface una
    disciplina estática dada. Recordemos que la disciplina estática
    para una puerta lógica garantiza que las salidas de la puerta se reunirán
    las restricciones de salida especificados por la disciplina, proporcionado
    a sus entradas de satisfacer las restricciones de entrada.

    La figura 6.26 ilustra la asimetría entre las entradas y las
    salidas. En la entrada de la puerta, cualquier nivel de voltaje más
    bajo que VIL es reconocido como una baja válida, y cualquier voltaje
    más alto que VIH es un alto válido. A su salida, la puerta se
    garantiza para producir un nivel de tensión superior a VOH un alto
    vigente, con un nivel de tensión inferior a VOL para una baja válido.

    Los niveles de tensión entre VIL y VIH no son válidos
    en la entrada, y los niveles entre VOL y VOH no son válidos en la salida.
    Debido a que los niveles de producción son más estrictos que
    los umbrales de entrada, la disciplina estática prevé márgenes
    de ruido.

    Monografias.com

    En base a las características del convertidor (se repite aquí
    en la figura 6.27 por conveniencia), podemos determinar si el inversor cumple
    una disciplina estática determinada. Como ejemplo, vamos a determinar
    si el inversor cumple una disciplina estática con los siguientes umbrales
    de tensión:

    VOH = 4,5 V, VOL = 0,5 V, VIH = 4 V y VIL = 0,9 V.

    La característica de transferencia del inversor.

    Monografias.com

    Valores lógicos y niveles de tensión correspondientes
    a una disciplina estática adecuada para el inversor.

    Figura 6.28 muestra los umbrales de tensión para la disciplina
    estática dado superpuesta a la función de transferencia del
    inversor. Vamos a ver cada uno de los umbrales de entrada y salida.

    Monografias.com

    VOH: El inversor produce una salida alta de 5 V. Evidentemente, este
    nivel de tensión de salida para un 1 lógico es mayor que la
    salida-alto umbral 4,5-V requerida por la disciplina estática.

    VOL: El inversor produce una salida baja de 0 V. Esta tensión
    de salida es inferior a la producción bajo el umbral de 0,5 V requerida
    por la disciplina estática.

    VIH: Para nuestra disciplina estática, VIH = 4 V. Para obedecer
    la disciplina estática del inversor debe interpretar cualquier voltaje
    por encima de 4 V como un 1 lógico. Esto es especialmente cierto para
    nuestro inversor. Nuestro inversor se enciende cuando la tensión de
    entrada es mayor que VT = 1 V y tira de la salida a un voltaje bajo válidas.
    Por lo tanto, interpreta cualquier voltaje por encima de 1 V como un 1 lógico.

    VIL: Para nuestra disciplina estática, VIL = 0,9 V. Esto significa
    que obedecen a la disciplina estática el inversor debe interpretar
    cualquier tensión por debajo de 0,9 V como un 0 lógico. Esto
    es cierto para nuestra inversor. El inversor está apagado cuando la
    tensión de entrada es inferior VT = 1 V, y su salida es a las 5 V.
    Dado que el inversor produce una tensión de salida de alta válido
    (salida) para tensiones de entrada por debajo de 0,9 V, cumple la disciplina
    estática.

    Ejemplo disciplina estática

    Vamos a ver para ver si nuestro inversor satisface una disciplina estática
    utilizado por Disco Systems Inc. Supongamos que algunos de los sistemas de
    disco se adhieren a una disciplina estática con los siguientes umbrales
    de tensión:

    VOH = 4 V, VOL = 1 V, VIH = 3,5 V y VIL = 1,5 V.

    Para operar bajo esta disciplina estática, sabemos que nuestros
    inversores deben operar de la siguiente manera:

    • Cuando la salida de un 1 lógico, el voltaje de sus salidas
      producen debe ser al menos VOH = 4 V. Dado que nuestros inversores producen
      una salida de 5 V para un 1 lógico, que se cumpla esta condición.

    • Cuando se emite un 0 lógico, el voltaje de sus salidas producen
      debe ser no mayor que VOL = 1 V. Dado que nuestros inversores producen
      una salida de 0-V para un 0 lógico, que se cumpla esta condición
      fácilmente.

    • En sus entradas los inversores deben reconocer tensiones superiores
      a VIH = 3,5 V como un 1 lógico. Ya que nuestros inversores reconocen
      tensiones superiores a 1 V como un 1 lógico, que se cumpla esta
      condición.

    • Por último, en sus entradas, los inversores deben reconocer
      tensiones de menos de VIL = 1,5 V como un 0 lógico si son para
      satisfacer disciplina estática de Disco. Desafortunadamente, nuestros
      inversores pueden reconocer tensiones sólo por debajo de 1 V como
      un 0, y por lo tanto no satisfacer esta condición.

    Por lo tanto, nuestros inversores no se pueden utilizar en los sistemas
    de disco.

    Cuando se utiliza el modelo de S para el MOSFET, los umbrales de entrada
    y salida de voltaje para el NAND y otros circuitos digitales vienen a ser
    idénticos a los del inversor. Por lo tanto, los resultados de análisis
    estático para estos circuitos son idénticos a aquellos para
    el inversor. Por ejemplo, como el inversor, el circuito NAND satisface una
    disciplina estática con los siguientes umbrales de tensión:
    VOH = 4,5 V, VOL = 0,5 V, VIH = 4 V, y VIL = 0,9 V. Del mismo modo, el NAND
    no es capaz de satisfacer la disciplina estática con estos umbrales
    de tensión: VOH = 4 V, VOL = 1 V, VIH = 3,5 V y VIL = 1,5 V.

    El modelo SR del MOSFET

    En particular, un MOSFET práctica muestra una resistencia no-cero
    entre sus terminales D y S cuando está encendido. En consecuencia,
    un modelo ligeramente más preciso para el MOSFET utiliza una resistencia
    RON en lugar del corto entre D y S cuando el MOSFET está encendido.
    La figura 6.29 muestra el modelo de resistencia-conmutador (o modelo SR) del
    MOSFET de canal n.

    Cuando el MOSFET está apagado, no hay conexión entre
    el drenaje y la fuente. Si la tensión VGS entre los terminales de puerta
    y la fuente está por encima de VT, el MOSFET se enciende y muestra
    una resistencia RON entre sus terminales D y S. Al igual que antes, existe
    un circuito abierto entre los terminales de puerta y de fuente de los terminales
    de puerta y drenador del MOSFET, por lo que iG = 0.

    El modelo SR es una mejor aproximación del comportamiento MOSFET
    que el modelo S. De hecho, es fácil ver que el modelo SR reduce al
    modelo S si RON es cero. Sin embargo, el modelo SR aún es una burda
    simplificación de la conducta MOSFET. En particular, aunque el MOSFET
    muestra un comportamiento de resistencia cuando VDS 24 k, Lo que resultará
    en un voltaje de salida para un 0 lógico que es inferior a 0.2 V. Sin
    embargo, resulta que los grandes valores de la resistencia son difíciles
    de lograr en la tecnología VLSI. La Sección 6.11 muestra cómo
    otro MOSFET puede ser utilizado en lugar de la resistencia pull-up.

    Alternativamente, se puede tratar de reducir el RON aumentando el rango
    W/L del MOSFET.

    Determinaremos el rango W/L mínimo.De la ecuación
    6.7, podemos encontrar la restricción en RON, esto permite que el bajo
    voltaje de salida sea inferior a 0,2 V:

    Monografias.com

    En otras palabras si elegimos un MOSFET con W/L > 8.62 resultara
    en un voltaje de salida para una lógica 0 que es menor que 0.2V

    Análisis estático de la compuerta NAND usando el modelo
    SR

    También podemos analizar otras compuertas de la misma
    manera. Figura 6.42 muestra el circuito equivalente para la compuerta NAND
    mostrada en la Figura 6.20 basándose en el modelo SR MOSFET.

    En este caso, el voltaje de salida, cuando ambas entradas
    son altas viene dado por:

    Monografias.com

    Recuerde nuestro inversor con características mostrado
    en la Figura 6.40 que satisface esta disciplina estática. Ahora revisemos
    nuestra compuerta NAND.

    Monografias.com

    La Figura 6.43 muestra los voltajes umbrales para la disciplina estática
    dada superpuesta a la función de transferencia del inversor. Al igual
    que antes, vamos a ver cada uno de los de entrada y salida.

    Al igual que el inversor, la compuerta NAND produce una salida alta
    de 5 V ypor lo tanto, satisface la salida de Voltaje umbral Alto de 4,5 V.
    Asimismo, elCompuerta NAND satisface tanto a el VIH = 4 y a el VIL
    = 0.9 V ya que interpreta tensiones por encima de 4 V en su entrada como
    un 1 lógico y la alimentación por debajo de 0,9 V en sus entradas
    como un 0 lógico.

    Veamos ahora en VOL. Cuando la salida de un 0 lógico,
    la compuerta NAND produce un voltaje

    Monografias.com

    Dado que esta tensión de salida es mayor que VOL = 0,5 V, concluimos
    de que nuestra NAND no cumple con la disciplina estática.

    ¿Cómo podemos rediseñar nuestra puerta NAND de
    tal manera que satisfaga la disciplina estática? Un método es
    aumentar RL de tal manera que

    Monografias.com

     

     

     

    Autor:

    Gian Marco

     

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Categorias
Newsletter