El dinero la banca y los mercados finencieros

4542 palabras 19 páginas
DEFINICIÓN Y PROPIEDADES
Se denomina transformación lineal, función lineal o aplicación lineal a toda aplicación cuyo dominio y codominio sean espacios vectoriales y se cumplan las siguientes condiciones:
Transformación lineal: Sean V y W espacios vectoriales reales. Una transformación lineal T de V en W es una función que asigna a cada vector v ϵ V un vector único Tv ϵ W y que satisface, para cada u y v en V y cada escalar ∝,
1. T (u+v)= Tu+Tv
2. T (∝v)= ∝Tv, donde ∝ es un escalar.
Tres notas sobre notación.
1. Se escribe T: V → W para indicar que T toma el espacio vectorial real V y lo lleva al espacio vectorial real W; esto es, T es una función con V como su dominio y un subconjunto de W como su imagen.
2. Se escriben
…ver más…

)||٠cos(α+Ө) = ||(u)||٠(cos α ٠ cos Ө - sen α ٠ sen Ө ) v2= ||T(u)||٠sen(α+Ө) = ||(u)||٠(sen α ٠ cos Ө - cos α ٠ sen Ө )
Distribuyendo y usando el hecho de que U1=||u|| cos α y U2=||u|| sen α tenemos que: v1= U1 cos Ө - U2 sen Ө v2= U2 cos Ө + U1 sen Ө

Por lo tanto, ya descubrimos cómo debe estar definida la transformación T:R^2 → R^2 tal que: T (U1 , U2) = (U1 cos Ө - U2senӨ,U2 cos Ө + U1 sen Ө )
Esta transformación se llama la rotación por un ángulo Ө y es lineal, ya que:
T [(U1 , U2)+ λ(v1 , v 2)] = T (u1 + λ v1 , u2 + λ v2 )
= ((u1 + λ v1)cos Ө - (u2 + λ v2) sen Ө, (u2 + λ v2) cos Ө + (u1 + λ v1) sen Ө)
= (u1 cos Ө - u2 sen Ө, u2 cos Ө + u1 sen Ө) + λ (v1cos Ө - v2 sen Ө , v2 cos Ө + v1 sen Ө)
= T(u1 , u2) + λ T (v1 , v2)
Reflexión sobre el eje x
En este caso, queremos averiguar como está definida la transformación T de R^2 en R^2 que cada vector u = (u1 , u2) lo refleja sobre el eje x, para obtener un vector T (u) = ( v1 , v2)
En una gráfica, vemos la situación como sigue:
↑→
En este caso, la situación es más sencilla ya que claramente tenemos dos triángulos rectángulos que son congruentes, de donde T queda definida como sigue:
T(u1 , u2)=(u1 , - u2)
Esta transformación se llama la reflexión sobre el eje x, y es lineal, ya que:
T[(u1 , u2)+ λ (v1 , v2)] = T(u1 + λ v1 , u2 + λ v2)
=(u1 + λ v1 , - u2 - λ v2)
=(u1 , - u2) + λ (v1 , - v2)
T=(u1 , u2) + λ T (v1 , v2)
Proyección ortogonal sobre el eje x
En este caso,

Documentos relacionados