teorema de residuo

2432 palabras 10 páginas
Teorema del residuo
Si se divide la función polinomial ƒ(x) entre el binomio x - a donde a es un número real, el residuo es igual a ƒ(a).
El teorema del residuo indica que el resultado de evaluar numéricamente una función polinomial para un valor a es igual al residuo de dividir el polinomio entre x - a. Un ejemplo de esto se ilustra en la parte de arriba. Se recomienda que el lector realice otras comprobaciones. Una conclusión muy importante del teorema del residuo es se puede evaluar numéricamente una función polinomial usando la división sintética.
A partir de lo anterior, si ƒ(a) = 0, entonces x - a es un factor del polinomio porque el residuo es cero. Cuando se encuentra un valor de x para el cual ƒ(x) = 0 se ha encontrado una
…ver más…
Enunciamos entonces una definición más general.

Definición de integral definida: Sea f una función continua definida para a £ x £ b. Dividimos el intervalo [a, b] en n subintervalos de igual ancho D x = . Sean x0 = a y xn = b y además x0, x1, ...., xn los puntos extremos de cada subintervalo. Elegimos un punto ti en estos subintervalos de modo tal que ti se encuentra en el i-ésimo subintervalo [xi-1, xi] con i = 1, .., n.

Entonces la integral definida de f de a a b es el número =.

La integral definida es un número que no depende de x. Se puede utilizar cualquier letra en lugar de x sin que cambie el valor de la integral.

Aunque esta definición básicamente tiene su motivación en el problema de cálculo de áreas, se aplica para muchas otras situaciones. La definición de la integral definida es válida aún cuando f(x) tome valores negativos (es decir cuando la gráfica se encuentre debajo del eje x). Sin embargo, en este caso el número resultante no es el área entre la gráfica y el eje x.

Observación: La suma que aparece en la definición de integral definida se llama suma de Riemann en honor al matemático alemán Bernahrd Riemann. Su definición incluía además subintervalos de distinta longitud.

Definición de las sumas de Riemann: Sea f una función definida en el intervalo cerrado [a, b] y sea una

Documentos relacionados

  • Teorema de pitagoras
    1242 palabras | 6 páginas
  • Program de residuos liquidos
    1045 palabras | 5 páginas
  • Teorema De Tales
    1222 palabras | 5 páginas
  • Teorema de torricelli
    643 palabras | 3 páginas
  • Ensayo de residuos peligrosos
    2283 palabras | 10 páginas
  • Teorema De Tales
    997 palabras | 5 páginas
  • Teorema de pitagoras
    2568 palabras | 11 páginas
  • Teorema de green
    976 palabras | 4 páginas
  • Teorema de rolle
    1292 palabras | 6 páginas
  • Teorema De Bayes
    879 palabras | 4 páginas