

user guide

Disclaimer
The information in this guide is provided by Pro-
Model Corporation to document ProModel. The
contents of this manual are subject to change
without notice and does not represent a commit-
ment on the part of ProModel Corporation. The
software described in this guide is applied under
a license agreement and may be copied only
under the terms of the license agreement. No part
of this guide may be reproduced, transmitted, or
distributed by any means, electronic or mechani-
cal, for purposes other than the owner’s personal
use without express written permission from Pro-
Model Corporation.

Copyright Information
© 1/06 ProModel Corporation

All rights reserved

Printed in the United States of America

ProModel and SimRunner are registered trade-
marks of ProModel Corporation.

Text indicator graphics Copyright New Vision
Technologies Inc.

Microsoft is a registered trademark and Win-
dows, Excel, and ActiveX are trademarks of
Microsoft Corporation.

Stat::Fit is a trademark of Geer Mountain Corpo-
ration.

IBM is a registered trademark of International
Business Machines Corporation.

Netware and Novell are a registered trademarks
of Novell, Inc.

AutoCAD is a registered trademark of Autodesk,
Inc.

1/06

 ProModel iii
User Guide
Table of Contents

Introduction .. 1

About the User Guide ... 1
Symbols and Notation .. 3

Keyboard .. 3
Text .. 3
Logic .. 3

Product Support .. 4
Modeling Services .. 5
Reporting Suggestions .. 5

Chapter 1: Getting Started ... 7

Welcome to ProModel .. 7
Where to Go from here .. 7

Using ProModel .. 9
Building Models ... 9
Running Models ... 11
Creating Run-Time Models ... 11
Trace Window .. 11
Location Information Windows 12
Viewing Output .. 12

Chapter 2: Installation and Registration ... 15

iv
General Setup Information ... 15
Hardware Requirements ... 15

Installation Procedure for a Stand-alone PC 15
Installation Procedure for Network Version 17

Overview .. 17
Installation Types ... 17
Local Machine Install ... 18
File Server Install ... 19
Set Up License Server .. 21

Registering ProModel ... 24
Checking for ProModel Updates 28
Software License Key FAQ ... 28

Chapter 3: Planning the Model .. 31

Steps for Doing Simulation .. 31
Introduction .. 31
General Procedure .. 31
Step 1: Planning the Study ... 32
Step 2: Defining the System ... 36
Step 3: Building the Model .. 41
Step 4: Conducting Experiments 43
Step 5: Analyzing the Output 51
Step 6: Reporting the Results 51
Pitfalls in Simulation .. 52
Summary .. 52

Building a Model .. 53
Modeling Scenario ... 53
Phased Modeling Approach ... 54
Phase 1: Basic Model Elements 55
Phase 2: Adding Resources & Variability 58
Phase 3: Additional Operations 61

Running a Model .. 62
Simulation Options .. 63
Animation Screen ... 63
Options Menu ... 64
Information Menu .. 64

 ProModel v
User Guide
Viewing Model Statistics & Reports 65

Chapter 4: Modeling Environment .. 67

Menu Bar .. 67
File Menu .. 68

File Management .. 68
Model Merging .. 70
View/Print Model Text .. 72
Model Packaging/Data Protection 74

Edit Menu ... 76
Editing Tables .. 76
Editing Process Records ... 77
Editing Notes Windows ... 78
Editing Logic Windows ... 78
Editing Background Graphics 80
Editing & Moving Graphics .. 81

View Menu ... 83
Switches ... 83
Toolbars ... 83
Settings ... 83
Views ... 84
Zoom Feature ... 86
Layout Settings .. 86
Edit Tables ... 90
Commands ... 90

Window Menu .. 91
Help Menu .. 91
Toolbars .. 92
Right-Click Menu ... 94

Chapter 5: Building the Model: General Elements 95

Build Menu .. 95
Locations .. 96

vi
Locations Editor ... 96
Location Edit Table .. 97
Location Graphics Window ... 98
Location Graphics .. 100
Capacities and Units ... 106
Location Downtimes .. 107
Rules Dialog Box ... 115

Entities .. 118
Entities Editor .. 118
Defining Entities .. 119
Entity Graphic Dimensions .. 119
Defining Multiple Entity Graphics 120
Preemptive Entities .. 121

Path Networks .. 123
Path Networks Editor ... 123
A Typical Path Network .. 125
Path Segment Edit Table .. 126
Automatic Time and Distance Calculation 127
Interfaces Edit Table .. 127
Mapping Edit Table ... 128
Nodes Edit Table .. 130
Pre-translation check for Path Networks 131

Resources .. 132
Typical Use of Resources .. 132
Resources Editor .. 133
Static Resources ... 135
Dynamic Resources .. 136
Multiple Resource Graphics 136
Multi-Unit Resources vs.
Multiple Single-Unit Resources 137
Resource Downtimes ... 138
Resource Priorities and Preemption 140
Resource Shift Downtime Priorities 141
Resource Preemption Matrix 141
Resource Specifications Dialog Box 143
Resource Search Routines .. 145
Node Logic Editor .. 146
Resource Points .. 147

Processing ... 149

 ProModel vii
User Guide
Using the Processing Editor 149
Defining Entity Processing .. 150
Processing Editor ... 151
Process Edit Table .. 151
Routing Edit Table ... 155
Processing Tools .. 159

Arrivals ... 163
Arrivals Editor .. 163
Arrivals Edit Table ... 163
Defining Arrivals ... 164
Independent Arrivals .. 165
Arrival Logic .. 167

Shifts & Breaks ... 168
Shift Assignments .. 171
Shift Downtime Principles ... 175

General Information ... 179
General Information Dialog Box 179

Cost ... 183
Cost Dialog Box ... 183
Building a Model with Costing 184
Preemption/Downtime ... 185
Join/Load .. 185
Combine/Group .. 185
Special Cost Handling .. 186
Costing Output Statistics .. 186
Enable or Disable Costing .. 187

Tanks .. 188
Basic Concepts ... 189
Tank Logic Builder .. 191

Pre-defined Tank Subroutines .. 193
Tank_Fill .. 193
Tank_Empty ... 194
Tank_Transfer .. 195
Tank_TransferUpTo ... 195
Tank_TransferDownTo .. 196
Tank_SetLevel ... 197
Tank_Inc .. 198
Tank_Dec ... 198

viii
Tank_RiseTrigger .. 199
Tank_FallTrigger ... 200
Tank_Cap ... 200
Tank_FreeCap .. 200
Tank_DoOperation ... 201
Tank_GoDown ... 201
Tank_GoDownSched ... 202
Tank_DoPrep ... 203
Tank_SetState .. 204
Tank_SelectOutput ... 204
Tank_SelectInput ... 206
Tank_UpdateStats .. 206
Tank_Rate .. 207
Pre-defined Data Elements ... 207
Defining Tank Control Subroutines 209
Examples of Tank Control Logic 209

Background Graphics ... 218
Background Graphics Editor Modes 218
Background Graphics Editor 219

Chapter 6: Building the Model: Advanced Elements 225

Attributes .. 225
Attribute Types .. 225
Memory Allocation for Attributes 226
Attributes vs. Local Variables 226
Cloning Attributes .. 226
Attribute Edit Table ... 227
Example of Attributes in Logic 227
Attributes and the JOIN Statement 228
Attributes and the GROUP/UNGROUP Statements . 228
Attributes and the LOAD/UNLOAD Statements 229
Attributes and the COMBINE Statement 230

Variables ... 231
Variable Edit Table .. 231
Variable Layout .. 232
Editing a Variable’s Icon ... 233
Local Variables .. 233

 ProModel ix
User Guide
Arrays ... 235
Arrays Edit Table ... 236
Initializing Arrays .. 237
Import Data into Arrays ... 237
Export Arrays to Spreadsheets 239
Using Arrays .. 240
Notes on Arrays ... 240

Macros .. 241
Macro Editor .. 241
Run-Time Interface .. 242
Resource Grouping .. 244

Subroutines ... 246
Subroutine Editor ... 246
Subroutine Format .. 247
Subroutine Example ... 248
Interactive Subroutines .. 249
External Subroutines .. 250
Subroutines vs. Macros .. 250

Arrival Cycles ... 252
Arrival Cycles Edit Table .. 252
Arrival Cycles Example ... 252
Cumulative Cycle Tables ... 254
Arrival Cycles by Quantity .. 254

Table Functions .. 256
Table Functions Editor ... 256
Table Function Edit Table .. 257

User Defined Distributions ... 259
User Distribution Edit Table 259
Discrete Distributions .. 259
Continuous Distributions ... 261

External Files .. 262
External Files Editor .. 262
File Types ... 262

Streams ... 266
Streams Edit Table ... 266
Using Random Number Streams 266
Stream Example ... 267

x

Material Handling Systems .. 269
Crane Systems .. 269
Conveyors .. 277
Automated Guided Vehicle Systems 281
Manual Material Handling Systems 282
Industrial Vehicles ... 282
Automated Storage/Retrieval Systems 283

Modeling Tips .. 284
Using Entity Attributes .. 284
Customizing Graphics .. 285
Batching & Unbatching Entities 286
Modeling Priorities .. 288
Displaying Statistics On Screen 289
Creating Pull Systems .. 290
Making Assemblies .. 291

Chapter 7: Building the Logic ... 293

Logic Builder .. 293
Using the Logic Builder ... 293

Operation Logic .. 299
Preemption Process Logic .. 300
Routing Move Logic ... 302

Move-Related Statements .. 303
Related Logic Statements ... 304
Statement Processing ... 304

Shift & Break Logic ... 305

Chapter 8: Using Auxiliary Tools .. 307

Tools Menu .. 307
Expression Search .. 308

Expression Search Sub-Menu Choices 308
Find Expression .. 309
Replace Expression .. 309
Important Notes Regarding Expression Searches 310

 ProModel xi
User Guide
Local Find and Replace .. 311
Graphic Editor .. 312

Overview .. 312
File Menu ... 313
Edit Menu ... 314
Graphics Menu ... 316
Options Menu ... 319
Window Menu .. 321
Library Edit Buttons ... 321
Manipulating Graphics ... 321
Create New Graphics and Libraries 322
Naming a Graphic .. 322
Graphic Tools Button Bar .. 323
Editing a Library Graphic .. 331

Options ... 334
Customize ... 336
Power Tools .. 337

ProClare ... 338
ProSetter ... 339
Shift Library ... 340
ProActiveX ... 340
Promodel Player ... 343

Chapter 9: Running the Model ... 347

Simulation Menu .. 347
Simulation Options ... 348

General Options & Settings 348
Output Reporting Options .. 350
Running a Specific Replication 351
Customized Reporting .. 352

Model Parameters & Scenarios .. 352
Model Parameters .. 352
Scenarios .. 353

Running the Simulation .. 355
Run-Time Menus & Controls ... 355

Run-Time File Menu .. 355

xii
Run-Time Simulation Menu 356
Run-Time Options Menu ... 356
Debug Option ... 357
Trace Options ... 361
Animation Options ... 363
Run-Time Information Menu 363
Dynamic Plots .. 364
Run-Time Window Menu .. 368
Run-Time Interact Menu .. 368
Run-Time Help Menu .. 368
Run-Time Controls .. 369
Run-Time Right-Click Menu 370
SimRunner ... 370

Chapter 10: Reports and Graphs ... 373

Output Viewer 3DR .. 374
Menu Bar .. 374
Toolbar ... 379
Right-click Menu ... 379

Creating Reports ... 382
Creating Charts ... 389

Chart Window .. 389
Category Chart ... 391
State Chart .. 392
Histogram ... 394
Time Plot .. 397

Chapter 11: Language Elements and Expressions 403

Language Elements .. 403
Names ... 404
Keywords .. 405
Numbers ... 406
Character Strings .. 407
Operators .. 408

 ProModel xiii
User Guide
Mathematical Operators ... 408
Relational Operators .. 408
Comparison Operators ... 408
Operator Precedence .. 408
Expressions .. 408

 Numeric Expressions ... 409
Boolean Expressions .. 410
Time Expressions ... 411
String Expressions .. 412
Operator Precedence ... 413

Chapter 12: Routing Rules .. 415

Routing Rules ... 415
Alternate ... 416
Backup .. 417
Continue ... 418
Dependent ... 420
Empty ... 421
First Available .. 422
Join ... 423
Load .. 424
Longest Unoccupied ... 425
Most Available ... 426
Probability .. 427
Random ... 428
Send .. 429
Turn .. 430
Until Full .. 431
User Condition .. 432

Chapter 13: Logic Elements .. 435

Functions .. 435

xiv
System Functions ... 435
General Functions .. 435

Statements ... 436
Distribution Functions .. 437
Priorities ... 438

Chapter 14: Statements and Functions .. 439

Accum ... 439
Activate ... 441
Animate .. 442
ArrayDims() ... 443
ArrayDimSize() .. 444
Assignment Statement .. 445
Begin ... 446
Break ... 447
BreakBlk ... 448
CalDay() ... 449
CalDOM() ... 450
CalHour() .. 451
CalMin() ... 452
CalMonth() ... 453
CalYear() .. 454
Cap() ... 455
Char() .. 456
Clock() .. 457
Close ... 458
Combine ... 459
Comments ... 461
Contents() ... 462
Create .. 463
Debug ... 465
Dec .. 466
Display .. 467

 ProModel xv
User Guide
Do...Until .. 468
Do...While .. 469
Down .. 470
DownQty() .. 471
DTDelay() ... 472
DTLeft() ... 473
DynPlot() .. 474
End .. 475
Ent() .. 476
Entity() .. 477
Entries() .. 478
Exp() ... 479
ForLocation() .. 480
Format() .. 481
ForResource() ... 482
Free ... 483
FreeCap() .. 484
FreeUnits() .. 485
Get .. 486
GetCost() .. 488
GetReplicationNum() ... 489
GetResRate() .. 490
Goto .. 491
Graphic ... 492
Group .. 493
GroupQty() ... 495
If...Then...Else .. 496
Inc ... 498
IncEntCost .. 499
IncLocCost ... 500
IncResCost .. 501
Int .. 502
Join ... 504
Jointly Get .. 506
Last() ... 507

xvi
Ln() ... 508
Load .. 509
Loc() ... 511
LocState() ... 512
Location() ... 513
Log .. 514
MapArr ... 516
Match .. 518
Move ... 520
Move For .. 522
Move On ... 523
Move With .. 524
Next() .. 526
Order ... 527
OwnedResource() ... 528
Pause ... 529
PercentOp() ... 530
PercentUtil() ... 531
Preemptor() ... 532
Priority .. 533
Prompt .. 534
Rand() ... 536
Read .. 537
Real ... 539
Real() .. 540
Rename ... 541
Report ... 542
Res() ... 543
Reset ... 544
Reset Stats .. 545
Resource() ... 546
ResourceUnit() ... 547
ResQty() ... 548
Return ... 549
Round() ... 551

 ProModel xvii
User Guide
Route ... 552
Send .. 554
SetRate .. 556
Sound .. 558
Split As ... 559
Sqrt() ... 561
Stop ... 562
ThreadNum() .. 563
TimeLeft() .. 564
TimesUsed() ... 565
Trace ... 566
Trunc() .. 567
Ungroup .. 568
Units() ... 570
Unload .. 571
Use .. 573
Variable() .. 575
View ... 576
Wait .. 577
Wait Until ... 578
Warmup .. 579
While...Do .. 580
Write ... 581
WriteLine .. 582
Xsub() ... 583
Xwrite ... 585

Appendix A ... 587

Glossary .. 601

Bibliography ... 606

xviii
Index ... 607

 ProModel 1
User Guide
Introduction

This chapter will introduce you to the user guide, and provide information regarding assumptions this
guide makes. You may also find information on support and consulting services in this chapter.

About the User Guide
The ProModel User Guide is designed as a refer-
ence to guide you through the process of build-
ing, running, and viewing the results of
simulation models. The guide contains detailed
information on the use of features and capabili-
ties found within ProModel and serves as a com-
pliment to the product training.

Chapter 1
Getting Started
Welcomes you to ProModel and provides infor-
mation on getting started with the model building
process.

Chapter 2
Installation and Registration
Provides step-by-step instructions on how to
install ProModel.

Chapter 3
Planning the Model
Introduces you to the theory behind simulation
modeling and gives an overview of model build-
ing procedure. This chapter outlines six steps to
help you plan and create a successful, valid

model. It then provides an example scenario,
which designs a model from start to finish.

Chapter 4
Modeling Environment
Familiarizes your with the ProModel modeling
environment. You will learn how to use many of
the menus and windows found in ProModel.

Chapter 5
Building the Model: general ele-
ments
Brings you face to face with basic modeling com-
ponents. Discussion revolves around the nuances
of creating and working with locations, entities,
path networks, resources, processing records,
arrivals, shifts, costs, background graphics, and
more.

Chapter 6
Building the Model: advanced
elements
Advanced elements ensure that the models you
create reflect the exact behavior of your system.
Contributing elements include attributes, vari-
ables, arrays, spreadsheets, macros, run-time
interfaces, subroutines, arrival cycles, table func-

2
About the User Guide
tions, user-defined distributions, external files,
and streams.

Chapter 7
Building the Logic
Applying intelligence and decision-making capa-
bilities to your models makes them true to life.
The logic builder helps you create and implement
logic for operations, routings, shifts, breaks, and
more.

Chapter 8
Using Auxiliary Tools
Auxiliary tools allow you to work with many
aspects of your model. You may create and mod-
ify graphics, search for expressions, or examine
which statistical distributions best suit your mod-
eling needs.

Chapter 9
Running the Model
Running the model is the most exciting part of
the modeling process. This chapter discusses the
various conditions under which you may run a
model and how to ensure that the model contains
no logical errors.

Chapter 10
Reports and Graphs
With the simulation complete, you are ready to
examine the results from the model. Options
available include reports, graphs, spreadsheets,
and customized output templates.

Chapter 11
Language Elements and Expres-
sions
Describes the basics of the language used to
define model objects and logic, as well as expres-
sions and the role they play in creating models.
Discussion focuses on names, reserved words,
numbers, strings, operators, and basic syntactical
structure, as well as operator precedence and
numeric, Boolean, time, and string expressions.

Chapter 12
Routing Rules
Provides syntax and examples for the rules you
will use to route between locations in the model.

Chapter 13
Logic Elements
Introduces the different types of functions and
statements available to use in building logic for
your model and identifies where you may use
them.

Chapter 14
Statements and Functions
Provides syntax and examples for the statements
and functions you will use to apply intelligence
and decision-making capabilities to your model.

Appendix A
Presents a categorized list of all expressions,
statements, and functions with a table identifying
which fields evaluate at translation and which
evaluate continuously.

Appendix B
Gives instructions for the Classic Output Viewer

 ProModel 3
User Guide
Glossary
Contains definitions and descriptions for many of
the terms and concepts common to simulation
and modeling.

Bibliography
Referenced materials and suggested readings.

Symbols and Notation
To better help you navigate this text, please
review the following symbols and conventions.

Keyboard
The names of keys are displayed in capital letters.
For example, ESC refers to the Escape key and
CTRL refers to the Control key.

Keys are frequently specified in combinations or
in a sequence of keystrokes. For example,
CTRL + L means to hold down the CTRL key
while pressing L. When key commands are set
off by commas (e.g., ALT + N, R), press and
release each of these keys (or key combinations)
in the order listed. The term “arrow keys” refers
collectively to the , , , and cursor keys.

Text
Specific text you are asked to type is shown in
bold type. For example, if you are directed to
type cd pmod, you would type the lowercase
letters “cd” followed by a space and the letters
“pmod.”

Place holders for things such as file names and
directories are shown in italics. For example, if
you are directed to type filename.mod, enter the
name of the file you wish to use (e.g.,
model_1.mod).

Logic
All ProModel reserved keywords are in upper-
case.

Syntax example:

IF Start_Time = 10 THEN INC Var1

4
Product Support
Product Support
Technical support is available to all licensed Pro-
Model users with current maintenance and sup-
port agreements. Support representatives are glad
to answer specific questions you may have and
offer direction in solving specific modeling chal-
lenges you encounter.

Technical support

Technical support is available via: telephone, fax,
ftp, and email. When you contact technical sup-
port, please be prepared to provide your user pro-
file and a description of any problems you
experience.

User Profile
•Your name and company.
•The license # found on your security key or

ProModel CD.
•Hardware make and configuration.
•Network information (if applicable).
•Version number of Windows and ProModel.

Problem Description
•Brief description of the problem you are

experiencing.
•What you were doing when the problem

occurred.
•The exact wording of any messages that

appeared on your screen.

Telephone (888) PROMODEL

Speak to a technical support engineer and resolve
the problem over the phone. Our support lines are
open Monday through Friday from 6:00 AM to
6:00 PM MST. The technical support number is
(888) PROMODEL.

After Hours Support (801) 362-8324

In our ongoing effort to serve you better, techni-
cal support is also available after hours. Please
have ready your user profile and a description of
the problem you encountered.

Fax (801) 226-6046

Send a fax of the listing created when you select
Print Text from the File menu along with your
user profile and a description of the problem you
encountered.

FTP ftp.promodel.com

For file transfers to and from ProModel Corpora-
tion via file transfer protocol, contact the ftp
server at “ftp.promodel.com”. ProModel Corpo-
ration allows user access via anonymous login
(your e-mail address is your password).

Email support@promodel.com
When you contact technical support via email,
send your user profile and a description of the
problem you encountered.

 ProModel 5
User Guide
Modeling Services
If you find yourself in need of extra help or spe-
cific expertise to complete your simulation
project, let us help you. ProModel Corporation
Modeling Services will meet all of your needs
with fast, accurate results at competitive rates.

Whether simple or complex, partial or complete,
ProModel Corporation Modeling Services can
create any model you require. With our vast
experience in producing simulation models for
many diverse applications, we are in a unique
position to evaluate your system and isolate spe-
cific improvements. We work closely with you
during the development process to ensure that the
model we create is complete and precise.

With each simulation ProModel Corporation pro-
vides a complete, comprehensive analysis of your
system. We document conclusions and results
derived from the project and present you with sta-
tistics suitable for company presentations and
briefings. You may even present a limited ver-
sion of the model which allows repeated execu-
tions and minor revision capabilities.

For more information on modeling
services, please contact:

Phone (801) 223-4600

Fax (801) 226-6046

Reporting Suggestions
It is our goal to make ProModel the ultimate
manufacturing simulation tool. To do this, we
rely on your input. Please feel free to submit
comments and ideas on how we may improve the
ProModel software and documentation.

Send us your comments

ProModel Product Team
ProModel Corporation
556 E. Technology Way
Orem, UT 84097

Phone (801) 223-4600
Fax (801) 226-6046
Email pmteam@promodel.com

6
Reporting Suggestions

 ProModel 7
User Guide
Chapter 1: Getting Started

Welcome to ProModel
ProModel is a powerful, Windows-based simula-
tion tool for simulating and analyzing production
systems of all types and sizes. ProModel provides
the perfect combination of ease-of-use and com-
plete flexibility and power for modeling nearly
any situation, and its realistic animation capabili-
ties makes simulation come to life.

ProModel provides engineers and managers the
opportunity to test new ideas for system design or
improvement before committing the time and
resources necessary to build or alter the actual
system. ProModel focuses on issues such as
resource utilization, production capacity, produc-
tivity, and inventory levels. By modeling the
important elements of a production system such
as resource utilization, system capacity, and pro-
duction schedules, you can experiment with dif-
ferent operating strategies and designs to achieve
the best results.

As a discrete event simulator, ProModel is
intended primarily for modeling discrete part
manufacturing systems, although process indus-
tries can be modeled by converting bulk material
into discrete units such as gallons or barrels. In
addition, ProModel is designed to model systems
where system events occur mainly at definite
points in time. Time resolution is controllable
and ranges from .01 hours to .00001 seconds.

•Typical applications for using ProModel
include:

•Assembly lines• Job Shops

•Transfer lines• JIT and KANBAN systems
•Flexible Manufacturing systems• Supply
chains & logistics

Use of ProModel requires only a brief orientation
and virtually no programming skills. With Pro-
Model's convenient modeling constructs and
graphical user interface, model building is quick
and easy. All you do is define how your particu-
lar system operates, mostly through part flow and
operation logic. Automatic error and consistency
checking help ensure that each model is complete
prior to simulation. During simulation, an ani-
mated representation of the system appears on the
screen. After the simulation, performance mea-
sures such as resource utilization, productivity
and inventory levels are tabulated and may be
graphed for evaluation

Where to Go from Here
1. In order to use ProModel effectively, you

must understand the basics of the Microsoft
Windows operating environment. If you are
unfamiliar with Windows you should begin
by reviewing the help information. To do
this, select Help from the Start menu. If you
are an accomplished Windows user, you can
proceed to the next step.

2. To begin using ProModel you must install
the software. This is described in Chapter 2:
Installation and Registration.

3. You will want to become familiar with the
basic theory of model building, and review

8 Chapter 1:
Welcome to ProModel
the model building scenario, which is cov-
ered in chapter 3: Planning the Model. If you
are already familiar with modeling theory, or
just want to jump into model building, skip
to the next step.

4. ProModel incorporates an easy-to-use as
well as intuitive user interface. Chapter 4:
Modeling Environment will introduce you to
the menus and options you will use to build
your model.

5. Build your model. Chapters 5 and 6: Build-
ing the Model propel you into model build-
ing by describing the Build menu, which
gives you access to most of the tools needed
to build your model.

6. Refer to Chapter 7: Building the Logic dur-
ing the model building process to learn the
logical elements that will control your model
during simulation.

7. Run your model. See you model come to life
as its animation runs. Chapter 9: Running the
Model outlines the process of running a
model.

8. View, analyze, and display the data your
model collected during simulation. With this
information in hand you are ready to make
real-world decisions to achieve your model-
ing goals. Chapter 10: Reports and Graphs
describes the Output Viewer, which presents
you with your simulation’s data.

Training
Although the tutorial and documentation are both
self contained, first-time users are strongly
encouraged to seek formal training at some point
before embarking on a complex modeling
project. PROMODEL Corporation holds training
courses on a regular basis for beginning and
advanced users of PROMODEL simulation prod-
ucts. For details on course dates and times, or to
register for the course nearest you, call our main

office at (801) 223-4600 and ask for the Pro-
Model Product Team.

 ProModel 9
User Guide
Using ProModel
ProModel views a production system as an
arrangement of processing locations, such as
machines or work stations, through which parts
(or entities) are processed according to some pro-
cessing logic. A system may also include paths,
such as aisle-ways for movement, as well as sup-
porting resources, such as operators and material
handling equipment used in the processing and
movement of parts.

The example below depicts a typical manufactur-
ing workcell with six processing locations
(Receiving, NC_301L, NC_302L, Degrease,
Inspect, Rework), two entity types (Pallets and
Blanks), two operators, and one transporting
device (forklift). Models such as this are devel-
oped rapidly and easily using ProModel's graphi-
cal user interface and point-and-click approach to
modeling.

Building Models
Models are created by completing the necessary
modules selected from the Build menu shown
below. Each module consists of various edit
tables and dialog boxes used to supply model
information. A layout window also appears with

graphical tools for placing locations, path net-
works and other modeling elements.

Modules may be completed in any order and with
any amount of switching back and forth between
modules. However, with certain exceptions, it is
recommended that modules be completed in the
general order in which they appear in the menu.
For example, it is usually best to identify and
place locations in a model, and define the entities
to be processed at those locations, before actually
defining processing logic. This is generally
accepted since processing logic describes the
flow of entities from location to location and the
operations performed on, for, or in behalf entities
at each location.

Edit Tables
Edit tables, such as the Locations edit table, are
used extensively throughout ProModel for defin-
ing model elements. Edit tables provide direct
access to model data without wading though sev-
eral levels of dialog boxes. Each table consists of
records, which consist of fields describing some
aspect of the element. Many of these fields have
heading buttons you can click (or select and press

10 Chapter 1:
Using ProModel
F2) to open a dialog box for further definition of
the particular element.

Dialog Boxes
Dialog boxes are used throughout ProModel for
selecting options. The Decision Rules dialog
shown below contains additional information
regarding a location.

Logic Builder
The Logic Builder in ProModel provides a quick
and powerful way to create and insert valid state-
ments and expressions in logic windows or fields.
It takes you through the process of creating state-
ments or expressions, as well as providing point-
and-click access to every element defined in your
model. The Logic Builder handles the syntax for

every statement and function, allowing you to
define logic by simply filling in the blanks.

To access the Logic Builder, click the right
mouse button in any edit box which accepts an
expression or anywhere inside an open logic win-
dow. You may also click the Build button on the
logic window's toolbar.

Model Merging and Submodels
Another extremely useful feature in ProModel is
the ability to merge two or more models into one
larger model. This supports the concept of modu-
lar model building, where models are created and
tested in modules, and then joined together to
produce a final model.

The use of sub-models further allows you to build
common model elements such as work cells and
place them repeatedly in a model. The elements
of each sub-model (i.e., locations, entities,
resources, etc.) may all be given a common prefix

 ProModel 11
User Guide
or suffix to differentiate them from the same ele-
ments of another sub-model.

For more information on merging models, see
“Model Merging” on page 70.

On-Line Help
Regardless of where you are in the model build-
ing process, the on-line help system is available
to provide context specific definitions and
instructions. The help system can even run in the
background, allowing instant access to help
whenever you need it.

Like all Windows applications, you can locate
the help you need quickly using the standard help
tools.

Running Models
Completed models are run using the Simulation
menu. Model data is automatically checked for
consistency and completeness before each simu-
lation begins.

As shown in the dialog below, ProModel allows
you to specify a run length, warm-up period,
number of replications, and other special options
before running a simulation. In addition, you may
run the models with or without animation. For

more information on running models, see “Run-
ning the Model” on page 347.

Creating Run-Time Models
One of the most powerful features in ProModel is
the ability to create models that may be run by
others who do not own the full software. PRO-
MODEL allows you to install the software on any
machine to run a model. However, without the
security key, the user has limited ability to build
or make changes to a model.

You may wish to develop run-time models to
allow the user to perform "what-if" analyses with
the models. PROMODEL encourages you to
develop demonstration models, and allows you to
distribute them freely. These models can be run
by installing ProModel from the CD-Rom onto a
computer without a security key.

Trace Window
Several tools are available to help you verify and
validate your models. During model execution
you may trace the activity of the simulation
events to see exactly what is happening in the

12 Chapter 1:
Using ProModel
model. The example below shows a brief portion
of a trace window.

Location Information Windows
In addition to trace files, you may track the activ-
ity at any location through a Location Informa-
tion window. This feature gives up-to-the-minute
information about a selected location, such as
current contents, total entries, and operational
state (i.e., idle, blocked, or in operation).

Viewing Output
The output generator gathers statistics on each
location, entity, resource, path network, and vari-
able in the system. You may, however, turn off
reporting capability for any element you do not
wish to include. The default level of statistics is
at the summary level (i.e., average values, % val-
ues, and final values), although detailed history
plots can be gathered on such things as utiliza-
tion, queue fluctuations, and variable values. For
more information about viewing the results of a

simulation, see “Reports and Graphs” on
page 373.

Simulation results may be presented in either tab-
ular or graphic format, including histograms, pie
charts, plots and bar graphs. Multiple output
results can even be compared on the same chart.

The example below shows a portion of a general
report for a model.

Graphical Analysis

In addition to the general report shown above,
almost all report elements of a model may be dis-
played graphically. Below is an example of a
Category Chart.

 ProModel 13
User Guide
Utilization Graphs

Quickly generate utilization graphs of various
types such as the State Chart shown below.

Timeplots

In addition to Category and State Charts, Time-
plot Charts, which show variable values as they
change over time, can be created.

14 Chapter 1:
Using ProModel

 ProModel 15
User Guide
Chapter 2: Installation and
Registration

General Setup Information
This section describes how to install and register
ProModel.

Hardware Requirements

Minimum

Pentium 3 - 800 or better
512MB RAM
200 MB Free Disk Space
SVGA Monitor (1024 x 768)
CD ROM
Mouse
Windows 98 SE or higher

Recommended

Pentium 4 or better
1 GB RAM
1 GB Free Disk Space
SVGA Monitor (1280 x 1024 x 32 bit color)
CD ROM
Sound card
Internet access
Mouse
Windows 2000 or Windows XP

Installation Procedure for a
Stand-alone PC
The installation program will decompress and
copy files from the CD-ROM into user-specified
directories.

Technical Support

If you encounter problems during installation,
please call the Product Team at (888) PRO-
MODEL between 6:00 AM and 6:00 PM MST,
Monday through Friday. We will be glad to help
you get up and running.

How to install ProModel:

1. Start Windows.

2. Insert the CD-ROM.

16 Chapter 2:
Installation Procedure for a Stand-alone PC
3. The ProModel Setup program will open
automatically, and display the following win-
dow.

Please note

If the Setup Program did not open automatically,
select Run... from the Windows Start menu. Type
x:\install.exe (where x is the CD-ROM drive let-
ter) and press ENTER. The proper dialog will the
appear

4. Click Next to proceed with the installation

5. Review the License Agreement. If you wish
to accept the agreement and continue with
the installation, , select the button to accept
the agreement, and then click Next.

6. Select Standard Package and click Next.

7. From the dialog that appears, choose the
components that you would like the Setup
program to install. It is recommended that
you allow the Setup program to install all
components, hard drive space permitting.
When you have finished selecting your com-
ponents, click Next.

8. Choose the destination directory for the
install. If you wish to change the destination
from the default, select the Browse button

and choose a new directory. When you have
chosen the destination directory, click Next.

9. The next dialog allows you to have the
Setup program create backups of any files
that might be replaced during the installa-
tion. This is helpful if you are installing this ver-
sion of the ProModel software on a computer
that already has ProModel installed on it. If
hard drive space permits, it is recommended
that you allow the Setup program to backup
previous files. When you are ready to con-
tinue with the installation, click Next.

10. The Setup program will add a new Win-
dows Program group containing ProModel
program icons to the Program Manager.
When you have selected where you want the
Program icons to appear, click Next.

11. The Setup program is now ready to install
ProModel on your computer. If you wish to
make changes to the options you have previ-
ously selected, click the Back button to return
to any point in the installation you wish. Other-
wise, click Next to allow the Setup program to
install ProModel.

The Setup program may require you to reboot
your computer during the setup. If you do so, the
Setup program will automatically launch after the
reboot, and the installation will continue.

When you have completed the installation, you
can run ProModel from the Windows Start menu.

Upon running ProModel for the first time, you
will be prompted to register ProModel. For
instruction on doing so, see the section at the end
of this chapter on registering ProModel.

 ProModel 17
User Guide
Installation Procedure for
Network Version
In a multi-user environment, license tracking
with multiple keys is difficult. To combat this,
PROMODEL Corporation offers a network ver-
sion of ProModel that allows a single machine to
control license usage (via a network connection)
for several users. To use this method of license
tracking, you must install a network version of
ProModel. The network version of ProModel
includes a hardware security key and the license
manager software you will use to control license
usage at your site.

Overview
When you install and run the network version of
ProModel from a workstation’s local hard drive
or a file server share, the workstation searches
your network for a license key server rather than
check its own printer port for a security key.
Once it locates the license key server, the work-
station asks the license manager software (run-
ning on the key server) if a license is available. If
a license is available, the license manager soft-
ware will assign a license to the workstation.
When you exit ProModel, the license you used
becomes available to another user.

Check the support web page for periodic updates
to the installation information, software configu-
ration, and the license server software for Pro-
Model.

http://www.promodel.com/support

Please note

If you are running a network version of Pro-
Model on a routed network and your license key
server and workstations are located on different

sub-nets, see “Find a License Key Server on a
Routed Network” on page 23.

Installation Types

Local Machine Install
This procedure allows you to install to and exe-
cute ProModel from the local hard drive of a
workstation, yet still require the workstation to
make a license request from the license server.

Pros
•Locally stored files minimize start-up time.
•One-step installation as opposed to a file
server install.

•Limits network usage to short license
requests only and allows users to connect
remotely due to lower network traffic needs.

Cons
•You must install ProModel from the CD at
each workstation.

•Install occupies more hard drive space on
each workstation than when you install it on
a file server share.

File Server Install
This procedure allows you to install ProModel to
a share on a file server. From each workstation
that will run ProModel, run the workstation setup
program, pmwsetp.exe (this will create a program
group, icons, and copy several files to the win-
dows directory).

Pros
•Saves hard drive space on the workstation by
running ProModel from the file server.

18 Chapter 2:
Installation Procedure for Network Version
•End-user can run workstation setup program
without administrative help.

Cons
•File server must always be available.

Set Up Network License Server
Whether you choose to do a file server share or
local hard drive install of the network version of
ProModel, you must set up a license server. The
license server consists of the security key that
plugs into the license server’s printer port, and
the license manager software. When installed, the
license server responds to ProModel license
requests and allows workstations to run either a
full version (if sufficient licenses are available) or
a limited run-time version.

Local Machine Install

Install Program Files on Local
Machine:

1. Start Windows.

2. Insert the CD-ROM.

3. The ProModel Setup program will open
automatically, and display the following win-
dow.

Please note

If the Setup Program did not open automatically,
select Run... from the Windows Start menu. Type
x:\install.exe (where x is the CD-ROM drive let-
ter) and press ENTER. The proper dialog will the
appear

4. Click Next to proceed with the installation

5. Review the License Agreement. If you wish
to accept the agreement and continue with
the installation, , select the button to accept
the agreement, and then click Next.

6. From the dialog that appears, select Net-
work Package. The dialog will then appear as
below:

7. Select Install program files on local machine,
and click Next.

 ProModel 19
User Guide
8. Select the type of hardware key you are
using on the network server, and click Next.

9. From the dialog that appears, choose the
components that you would like the Setup
program to install. It is recommended that
you allow the Setup program to install all
components, hard drive space permitting.
When you have finished selecting your com-
ponents, click Next.

10. Choose the destination directory for the
install. If you wish to change the destination
from the default, select the Browse button
and choose a new directory. When you have
chosen the destination directory, click Next.

11. The next dialog allows you to have the
Setup program create backups of any files
that might be replaced during the installa-
tion. This is helpful if you are installing this ver-
sion of the ProModel software on a computer
that already has ProModel installed on it.
Later, if you choose, you can have the instal-
lation rolled back and the original files
restored. If hard drive space permits, it is rec-
ommended that you allow the Setup pro-
gram to backup previous files. When you are
ready to continue with the installation, click
Next.

12. The Setup program will add a new Win-
dows Program group containing ProModel
program icons to the Program Manager.

When you have selected where you want the
Program icons to appear, click Next.

13. The Setup program is now ready to install
ProModel on your computer. If you wish to
make changes to the options you have previ-
ously selected, click the Back button to return
to any point in the installation you wish. Other-
wise, click Next to allow the Setup program to
install ProModel.

The Setup program may require you to reboot
your computer during the setup. If you do so, the
Setup program will automatically launch after the
reboot, and the installation will continue.

When you have completed the installation, you
must set up a license server. See “Set Up License
Server” on page 21, for information on how to do
so.

Please note

If you are running a network version of Pro-
Model on a routed network and your license key
server and workstations are located on different
sub-nets, see “Find a License Key Server on a
Routed Network” on page 23.

File Server Install

Install Programs & Grant Rights/
Permissions
From a PC on the network, install the software on
the file server and grant appropriate rights. Users
will need at least the equivalent rights of read and
file scan for the PROMODEL directory.

20 Chapter 2:
Installation Procedure for Network Version
Install Program Files on File Server:

1. Start Windows.

2. Insert the CD-ROM.

3. The ProModel Setup program will open
automatically, and display the following win-
dow.

Please note

If the Setup Program did not open automatically,
select Run... from the Windows Start menu. Type
x:\install.exe (where x is the CD-ROM drive let-
ter) and press ENTER. The proper dialog will the
appear

4. Click Next to proceed with the installation

5. Review the License Agreement. If you wish
to accept the agreement and continue with
the installation, , select the button to accept
the agreement, and then click Next.

6. From the dialog that appears, select Net-
work Package. The dialog will then appear as
below:

7. Select Install program files on file server, and
click Next.

8. Select the type of hardware key you are
using on the network server, and click Next.

9. From the dialog that appears, choose the
components that you would like the Setup
program to install. It is recommended that
you allow the Setup program to install all
components, hard drive space permitting.
When you have finished selecting your com-
ponents, click Next.

10. Choose the destination directory for the
install. If you wish to change the destination
from the default, select the Browse button

 ProModel 21
User Guide
and choose a new directory. When you have
chosen the destination directory, click Next.

11. The next dialog allows you to have the
Setup program create backups of any files
that might be replaced during the installa-
tion. This is helpful if you are installing this ver-
sion of the ProModel software on a computer
that already has ProModel installed on it.
Later, if you choose, you can have the instal-
lation rolled back and the original files
restored. If hard drive space permits, it is rec-
ommended that you allow the Setup pro-
gram to backup previous files. When you are
ready to continue with the installation, click
Next.

12. The Setup program will add a new Win-
dows Program group containing ProModel
program icons to the Program Manager.
When you have selected where you want the
Program icons to appear, click Next.

13. The Setup program is now ready to install
ProModel on your server. If you wish to make
changes to the options you have previously
selected, click the Back button to return to
any point in the installation you wish. Other-
wise, click Next to allow the Setup program to
install ProModel.

The Setup program may require you to reboot
your computer during the setup. If you do so, the
Setup program will automatically launch after the
reboot, and the installation will continue.

When you have completed the installation, you
can setup each workstation you will use to run
ProModel. See "Workstation Set up," which is
the next section, for information on setting up
multiple workstations.

When you have completed setting up worksta-
tions, you must set up a license server. See “Set
Up License Server” on page 21, for information
on how to do so.

Workstation Set up

Set up a Workstation:

1. Run ProModel Workstation Setup.exeS
(located in the directory to which you
installed ProModel on the file server) from the
workstation you will use to run ProModel.

2. Click Next.

3. Select the components you wish to install
and click Next.

4. Select the folder to which you will to install
ProModel and click Next.

5. Select the program group you wish to use
and click Next. (By default, ProModel creates
its own program group).

6. Click Next to finish installing ProModel.

Please note

If you are running a network version of Pro-
Model on a routed network and your license key
server and workstations are located on different
sub-nets, see “Find a License Key Server on a
Routed Network” on page 23.

Set Up License Server
PROMODEL software monitors licensed user
activity through a security key attached to the
parallel port (for the network version of Pro-
Model, you must have the red key supplied by
PROMODEL Corporation). The machine to
which you attach the key becomes the license
manager—whether it is a dedicated file server or
a workstation. The security server can run on
Windows 95, 98, 2000, or NT 4.0 and listen for
incoming license requests over any of the follow-

22 Chapter 2:
Installation Procedure for Network Version
ing network protocols: IPX, TCP/IP, and Net-
BEUI. If the security server is not functioning,
ProModel will start as a limited run-time version.

Please note

If you are running a network version of Pro-
Model on a routed network and your license key
server and workstations are located on different
sub-nets, see “Find a License Key Server on a
Routed Network” on page 23.

Set Up License Server:

1. Start Windows.

2. Insert the CD-ROM.

3. The ProModel Setup program will open
automatically, and display the following win-
dow.

Please note

If the Setup Program did not open automatically,
select Run... from the Windows Start menu. Type
x:\install.exe (where x is the CD-ROM drive let-

ter) and press ENTER. The proper dialog will the
appear

4. Click Next to proceed with the installation

5. Review the License Agreement. If you wish
to accept the agreement and continue with
the installation, click Next.

6. From the dialog that appears, select Net-
work Package. The dialog will then appear as
below:

7. Select Set up a network license server, and
click Next.

8. Select the type of hardware key you are
using on the network server, and click Next.

 ProModel 23
User Guide
9. The Install Wizard for the NetHASP License
Manager will appear. Click Yes, and follow
the on-screen directions to install the man-
ager. If you click No, you will have to set up
the license server manually, which is
described in the next section.

The Setup program may require you to reboot
your computer during the setup. If you do so, the
Setup program will automatically launch after the
reboot, and the installation will continue.

You need to install the device driver only once.
However, you must launch the license manager
program each time you reboot the key server
machine. To automatically start the license man-
ager each time you reboot the system, create and
place an icon for NHSRVW32.EXE in the work-
station’s startup folder.

When you have completed installing either you
local machine or server setup, and finished
installing the License Server, you are ready to run
ProModel.

Set Up License Server Manually
After successfully running the setup for the
license server, if you chose to manually install
the device driver for the security key and launch
the license manager software, follow the steps
below.

Install the Device Driver:

1. Open a DOS box and run HINSTALL -i from
the directory to which you installed the
license server.

2. After you receive a confirmation that the
driver installed successfully, reboot the work-
station

Start the License Manager Soft-
ware:

1. From the directory to which you installed
the license server, run NHSRVW32.EXE. A win-
dow will appear and show the network proto-
cols to which the license manager will listen
for license requests.

You need to install the device driver only once.
However, you must launch the license manager
program each time you reboot the key server. To
automatically start the license manager each
time you reboot the system, create and place an
icon for NHSRVW32.EXE in the workstation’s
startup folder.

Find a License Key Server on a
Routed Network
In order for a workstation to run the network ver-
sion of ProModel properly, the workstation must
check out a license from a license server. To
make a license request, the workstation sends a
broadcast message out on the network and awaits
a response from the license server. If the license
server and the workstation running ProModel are
on the same sub net of a routed network (or on
the same network of a non-routed network), the
license server receives the request and responds.
Due to the nature of routed networks, if the
license server and workstation running ProModel
are not on the same sub net of a routed network,
the key server will not receive the license request
broadcast.

To resolve this problem, the workstation must
send a license request directly to the computer on

24 Chapter 2:
Registering ProModel
the network set up as the license server. To iden-
tify which computer on the network is the license
server, you must create and store a text file called
NETHASP.INI in the directory to which you
installed ProModel on the workstation or file
server.

For TCPIP-based network the NETHASP.INI
file must contain the following lines

[NH_COMMON]

NH_TCPIP=Enabled;

[NH_TCPIP]

NH_TCPIP_METHOD=TCP

NH_SERVER_ADDR=<Enter the license
server’s IP address here>

Registering ProModel
Your ProModel product must be registered. If
you do not register ProModel, you will only have
access to a limited, evaluation version of Pro-
Model. This version will not allow expansive
model building.

The registration process for ProModel depends
on the type of installation you chose.

Registration for a Stand-alone PC
Installation
When you run ProModel for the first time after
installing it on a Stand-alone PC, you will be
prompted to register ProModel. The following
screen will appear.

 ProModel 25
User Guide
When you have entered your information and
clicked next, you will be prompted to enter your
Serial Number.

Depending on your organization’s software
licensing arrangement, a Serial Number may be
included with your CD or possibly obtained by
contacting the ProModel Corporation licensing
representative for your organization.

If you do not have a Serial Number, you may still
register using the instructions “How to Register
without a Serial Number” on page 25.

How to Register with a Serial Num-
ber

1. When you have obtained a valid Serial
Number, enter it into the registration dialog,
and then click the Next button.

2. If a connection cannot be made to the
ProModel Corporation server, an Internet
connectivity issue (firewall, etc.) may exist. If
this is the case, you will be prompted that the
registration was not successful, in which case
you may still register without a serial number.

See “How to Register without a Serial Num-
ber” on page 25.

3. When the serial number has been success-
fully sent to the ProModel Corporation server,
you will be given a ProModel username and
password. Record this information, since you
will use it to obtain updates to ProModel in
the future.

4. Check the “I have recorded this informa-
tion for future use” box, and then click Exit to
finish the registration.

How to Register without a Serial
Number

1. If you do not have a serial number, or your
serial number cannot be used due to Internet
connectivity issues, choose the “I do not have
a Serial Number (or registering with the serial
number failed)” option, and click Next.

2. You may choose to email (this step) or
phone (next step) ProModel Support to regis-
ter your product. If you would like to email
ProModel Support, follow the “Click to send
registration request” link that is next to the
Email option.

26 Chapter 2:
Registering ProModel
An email message will be composed using
your computer’s default email application,
and you can then choose to send it.

While waiting for a response from ProModel
Support, you may leave the Registration dia-
log open, or close it until you receive your
response.

The reply you receive from ProModel Support
will contain a License Key code. If you have
closed ProModel, relaunch it, and return to
the Phone or Email Registration window. In
the “Step 2: Enter License Key” area, enter
the License Key code that is in the email reply
from ProModel Support.

You may then click “Register” to complete
the registration process.

3. If you would like to register over the phone,
call ProModel Support at (888) PROMODEL. A
ProModel Support representative will guide
you through the rest of registration process.

You will now have access to the full version of
ProModel.

If you choose not to register ProModel at this
time, click Cancel without entering registration
information. You will then have access to the
limited, evaluation version of ProModel.

Registration for a Network
Installation
If you purchased a network version of ProModel,
you will have received a hardware key with your
ProModel software. To register your network
version of ProModel, simply attach the hardware
key to your computer’s LPT1 port.

Transferring Your Software Key
As you use ProModel it may become necessary to
transfer your software key from one PC to

another. Since you may only have one installa-
tion of ProModel for every software key, or
license, you have purchase, PROMODEL pro-
vides you with a utility program, LicenseMan-
ager, to move your license, while keeping your
software key valid.

The LicenseManager is a stand alone program,
which can be accessed through the Windows
Start menu.

Moving a License

A license may be moved from one computer to
another by moving its software key. When a soft-
ware key is moved using the LicenseManager,
the original computer will no longer run the full
version of ProModel.

In preparation of moving a license to another
computer, be sure to install ProModel on the
computer to which you want to move the license.

How to move a license

1. Launch the LicenseManager from the Win-
dows Start menu.

2. The following dialog will appear, showing
you the licenses you currently have on your
machine.

 ProModel 27
User Guide
3. If you have multiple licenses, click on the
name of the license you want to move. Click
Move. The following dialog will appear.

4. Enter the reference code. This will be the
code generated by the computer you are
moving a license to. The reference code will
be displayed when you attempt to register
ProModel on the machine you are moving
the license to.

5. WARNING: Proceeding with the next step
will permanently remove your software key
from the computer; however, it is necessary
to complete the next step to move the soft-
ware key to the new machine.

6. After entering the reference code, click
Generate. A new license key will be dis-
played. You software key on the original
computer has now been removed.

7. Copy the new license key into the license
key field of the registration dialog on the
machine you are moving the license to in
order to complete its registration.

8. The full version of ProModel will now run on
new machine. The original computer will no
longer run the full version of ProModel, but the
evaluation version instead.

Terminating a License

Terminating a license permanently removes the
valid software key from a machine running Pro-
Model. Terminating a license may be necessary
to receive a new software key from PRO-
MODEL.

When you terminate a license, the LicenseMan-
ager will give you a termination code, which is
your proof to PROMODEL that you have perma-
nently removed the software key from you com-
puter. Only then can PROMODEL issue you a
new software key for any current license you may
have.

How to terminate a license

1. Launch the LicenseManager from the Win-
dows Start menu.

2. The following dialog will appear, showing
you the licenses you currently have on your
machine.

3. If you have multiple licenses, click on the
name of the license you want to terminate.
Click Terminate. The following dialog will
appear.

4. Click Yes.

28 Chapter 2:
Registering ProModel
5. WARNING: Completing the next step will
permanently remove your software key from
your computer.

6. You will once again be prompted to con-
tinue with the termination. Click OK. Your soft-
ware key will be terminated, and the
following dialog will appear.

7. Write down and save your termination
code. This is your proof that your have termi-
nated your software key. Click the HERE link to
E-mail the code to PROMODEL

8. Click OK to complete the termination pro-
cess. Your installed version of ProModel will
now run in evaluation mode.

Checking for ProModel
Updates
The Check for ProModel Update feature checks
the PROMODEL Web server for an update to
ProModel, downloads any available update, and
then installs the update. In order to have access to
updates, you will need a PROMODEL Solutions
Cafe username and password, and a current
Maintenance and Support agreement. If you have
questions regards your M&S agreement, or user-
name and password, please contact PROMODEL
Technical Support at support@promodel.com.

There are two ways to launch the Check for
Update client:

•Upon completion of the main ProModel 6.0
professional install, you will have the option
to check for updates by selecting the "Check
for updates to ProModel" option on the final
installation screen.

•Or, you may launch the Update client by
selecting "Check for ProModel Update"
from the Start Menu’s PROMODEL Icon
group.

It is recommend that you check regularly for
updates to ProModel.

Software License Key FAQ
1. I need to move my software license key to

another computer, can I do this?
Yes. Using the License Manager, which can
be found in the Start menu within the Pro-
Model 6.0/PowerTools group, you may
move a license. It is recommended you use
the Move option in the License Manager to
move a license between computers. A
description of the License Manager and its
functionality can be found in chapter 2 of the
User Guide.

2. I want to upgrade my computer’s operat-
ing system, or make a major change to my
computer’s configuration, should I be
concerned?
The software license key is sensitive to
changes to your computer’s configuration.
This is to prevent the key’s unauthorized
duplication to multiple computers. If you
plan on making major changes to your com-
puter’s configuration, you must take one of
the following steps to protect your software
license key:

•Move your key to another computer, using
the License Manager. When you have com-
pleted the changes to the original computer,
you may then move the license key back.

 ProModel 29
User Guide
•Or, if moving the key to another computer is
not an option, you may terminate your soft-
ware license key using the License Manager.
Doing so will create a Termination Code,
which you will use as proof of the key’s
removal when you contact PROMODEL
Support (1-888-PROMODEL) for a new
license key after you have completed the
changes to your computer.

3. My software license key no longer appears
to be functioning. What should I do?
Your software license key may have been
disturbed by changes to your computer’s
configuration. Reboot your computer in an
attempt to reset the configuration to a point
that is recognizable by the license key. If the
problem persists, please contact PRO-
MODEL Support (1-888-PROMODEL).

30 Chapter 2:
Registering ProModel

 ProModel 31
User Guide
Chapter 3: Planning the
Model

Steps for Doing Simulation

Introduction
Doing simulation requires more than just know-
ing how to use a simulation product. A simula-
tion study is, by its very nature, a project. Like
any project, there are tasks to be completed and
resources required to complete them. To be suc-
cessful, a simulation project should be planned
with an understanding of the requirements of
each of the tasks involved. Many failures result
from hastily jumping into a simulation without
first taking time to consider the steps involved
and developing a plan for proceeding.

Simulation modeling requires good analytical,
statistical, communication, organizational, and
engineering skills. The modeler must understand
the system being investigated and be able to sort
through complex cause-and-effect relationships
that determine system performance. At least a
basic foundation in statistics is needed to prop-
erly design experiments and correctly analyze
and interpret input and output data. Ongoing
communication with owners, stakeholders, and
customers during a simulation study is also vital
to ensure that a purposeful model is built and that
everyone understands the objectives, assump-
tions, and results of the study.

General Procedure
A decision to do a simulation usually results from
a perception that simulation can help resolve one
or more issues associated with the design of a
new system or the modification of an existing
system. Before launching into a simulation
project, one or more individuals should have
been assigned to the study who have at least a
basic knowledge of the system to be studied and
the issues of concern. Enough background infor-
mation should have been obtained about the
nature of the problem to determine whether simu-
lation is a suitable solution. If the simulation is
being conducted by individuals inside the com-
pany, there may already be a basic knowledge of
the operation. For outsiders or those unfamiliar
with the operation, a brief description of the sys-
tem and explanation of key issues should be pro-
vided. For an existing system, a facility walk-
through is an excellent way of getting familiar
with the operation.

Once a suitable application or project has been
identified as a candidate for simulation, decisions
must be made about how to conduct the study.
There are no strict rules on how to perform a sim-
ulation study, however, the following steps are
generally recommended as a guideline (Shannon,
1975; Gordon, 1978; Law, 1991):

1. Plan the study
2. Define the system
3. Build the model

32 Chapter 3:
Steps for Doing Simulation
4. Run experiments
5. Analyze the output
6. Report results

Each step need not be completed in its entirety
before moving on to the next step. The procedure
for doing a simulation is an iterative one in which
activities are refined and sometimes redefined
with each iteration. Describing this iterative pro-
cess, Pritsker and Pegden (1979) observe the fol-
lowing.

The iterative nature of this process is shown next:

Procedure for Conducting a Simulation
Study

While the requirements for each step vary from
simulation to simulation, the basic procedure is
essentially the same. The primary value of adopt-
ing this systematic procedure, or one like it, is to
ensure that the project is conducted in an orga-
nized, timely fashion with minimal waste of time
and resources and maximum effectiveness in
achieving the objectives.

Step 1: Planning the Study
Many simulation projects are doomed to failure
from the outset due to poor planning. Undefined
objectives, unrealistic expectations and a general
lack of understanding of requirements frequently
result in frustration and disappointment. If a sim-
ulation project is to be successful, a plan must be
developed which is realistic, clearly communi-
cated and closely followed. Planning a simulation
study involves the following sub tasks:

•Defining Objectives
•Identifying Constraints
•Preparing a Simulation Specification
•Developing a Budget and Schedule

Each of these tasks is discussed in the following.

Defining Objectives
With a basic understanding of the system opera-
tion and an awareness of the issues of concern or
interest, one or more objectives can be defined
for the study. Simulation should only be used if
an objective can be clearly stated and it is deter-
mined that simulation is the most suitable tool for
achieving the objective. Defining an objective
does not necessarily mean that there needs to be a
problem to solve. A perfectly valid objective may
be to see if there are, in fact, any unforeseen
problems. Common types of objectives for a sim-
ulation study include the following:

 ProModel 33
User Guide
•Performance Analysis How well does the
system perform under a given set of circum-
stances in all measures of significance (utili-
zation, throughput, waiting times, etc.)?

•Capacity Analysis What is the maximum
processing or production capacity of the sys-
tem?

•Capability Analysis Is the system capable
of meeting specific performance require-
ments (throughput, waiting times, etc.), and,
if not, what changes (added resources or
improved methods) are recommended for
making it capable?

•Comparison Study How well does one
system configuration or design variation per-
form compared to another?

•Sensitivity Analysis Which decision vari-
ables are the most influential on one or more
performance measures, and how influential
are they?

•Optimization Study What combination of
feasible values for a given set of decision
variables best achieves desired performance
objectives?

•Decision/Response Analysis What are the
relationships between the values of one or
more decision variables and the system
response to those changes?

•Constraint Analysis Where are the con-
straints or bottlenecks in the system and
what are workable solutions for either reduc-
ing or eliminating those constraints?

•Communication Effectiveness What vari-
ables and graphic representations can be
used to most effectively depict the dynamic
behavior or operation of the system?

Defining the objective should take into account
what the ultimate intended use of the model will
be. Some models are built as “throw-away” mod-
els to be used only once and then discarded.
Other models are built to be used on an ongoing
basis for continued “what-if” analyses. Some

models need only provide a quantitative answer.
Others require realistic animation to convince a
skeptical customer. Some models are intended
for use by only the analyst. Other models are
intended for use by managers with little simula-
tion background and must be easy to use. Some
models are used to make decisions of minor con-
sequence. Other models are relied upon to make
major financial decisions.

Realizing the objectives of a simulation should
consider both the purpose as well as the intended
use of the model, the following questions should
be asked when defining the objectives of the
study:

•Why is the simulation being performed?
•Who will be using the model?
•To whom will the results of the simulation
be presented?

•What information is expected from the
model?

•Is this a “throw-away” model?
•How important is the decision being made?

Identifying Constraints
Equally as important as defining objectives is
identifying the constraints under which the study
must be conducted. It does little good if simula-
tion solves a problem if the time to do the simula-
tion extends beyond the deadline for applying the
solution, or if the cost to find the solution exceeds
the benefit derived. Objectives need to be tem-
pered by the constraints under which the project
must be performed such as the budget, deadlines,
resource availability, etc. It is not uncommon to
begin a simulation project with aspirations of
developing an impressively detailed model or of
creating a stunningly realistic animation only to
scramble at the last minute, throwing together a
crude model that barely meets the deadline.

Constraints should not always be viewed as an
impediment. If no deadlines or other constraints

34 Chapter 3:
Steps for Doing Simulation
are established, there is a danger of getting too
involved and detailed in the simulation study and
run the risk of “paralysis from analysis.” The
scope of any project has a tendency to shrink or
expand to fill the time allotted.

In identifying constraints, anything that could
have a limiting effect on achieving the desired
objectives should be considered. Specific ques-
tions to ask when identifying constraints for a
simulation study include the following:

•What is the budget for doing the study?
•What is the deadline for making the deci-
sion?

•What are the skills of those doing the study?
•How accessible is the input data?
•What computer(s) will be used for the study?

Preparing a Simulation
Specification
With clearly defined objectives and constraints,
the simulation requirements can be specified.
Defining a specification for the simulation is
essential to projecting the time and cost needed to
complete the study. It also guides the study and
helps set expectations by clarifying to others
exactly what the simulation will include or
exclude. A specification is especially important if
the simulation is being performed by an outside
consultant so that you will know exactly what
you are getting for your money. Aspects of the
simulation project to be contained in the specifi-
cation include the following:

•Scope
•Level of detail
•Degree of accuracy
•Type of experimentation
•Form of results

Each of these specification criteria will be dis-
cussed in the following pages.

Scope The scope refers to the breadth of the
model or how much of the system the model will
encompass. Determining the scope of the model
should be based on how much bearing or impact
a particular activity has on achieving the objec-
tives of the simulation. A common tendency is to
model the entire system, even when the problem
area and all relevant variables are actually iso-
lated within a smaller subsystem. If, for example,
the objective is to find the number of operators
required to meet a required production level for a
machining cell, it is probably not necessary to
model what happens to parts after leaving the
cell.

The following figure illustrates how the scope of
the model should be confined to only those activ-
ities whose interactions have a direct bearing on
the problem being studied. Upstream and down-
stream activities that do not impact the perfor-
mance measure of interest should be omitted
from the model. In the following figure, since the
output rate from activity A is predictable, it can
be modeled as simply an arrival rate to activity B.
Since activity E never constrains output from
activity D, it can also be ignored.

Confining the Scope to Impacting Activities

Level of Detail Project the level of detail defines
the depth or resolution of the model. At one
extreme, an entire factory can be modeled as a
single “black box” operation with a random
activity time. At the other extreme, every detailed
motion of a machine could be modeled with a
one-to-one correspondence depicting the entire
machine operation.

 ProModel 35
User Guide
Unlike the model scope which affects only the
size of the model, the level of detail affects model
complexity as well as model size. Determining
the appropriate level of detail is an important
decision. Too much detail makes it difficult and
time consuming to develop a valid model. Too
little detail may make the model too unrealistic
by excluding critical variables. The following
figure illustrates how the time to develop a model
is affected by the level of detail. It also highlights
the importance of including only enough detail to
meet the objectives of the study.

Model Development Time

Level of
Detail

One to One

Minimum
Required

Correspondence

Effect of Level of Detail on Model Develop-
ment Time

The level of detail is determined largely by the
degree of precision required in the output. If only
a rough estimate is being sought, it may be suffi-
cient to model each activity by its time, rather
than specific details making up the activity. If, on
the other hand, details such as downtimes or
move times have an appreciable effect on the out-
come of the model, they should be included.

Degree of Accuracy The degree of accuracy
pertains to the correctness of the data being used.
For some models or activities, the information
need not be as accurate or exact as it does for oth-
ers. The required degree of accuracy is deter-
mined by the objectives of the study. If the
decision is important or a comparison is close,
greater accuracy may be required. Accuracy

sometimes has to be sacrificed if reliable infor-
mation is simply unavailable such as when mod-
eling a completely new system.

The required degree of accuracy can have a sig-
nificant impact on the time and effort required to
gather data. It often has little impact, however, on
the model building time since a model can be
built with estimated values that can later be
replaced with more accurate values. Output pre-
cision is often governed by the degree of accu-
racy of the model.

Type of Experimentation The number and
nature of the alternative solutions to be evaluated
should be planned from the outset in order to
ensure that adequate time is allotted. This deci-
sion is often influenced by the deadline con-
straints of the study. Where alternatives with only
slight differences are to be evaluated, a base
model can be developed requiring only minor
modifications to model each alternative. If alter-
native configurations are significantly different,
it may require nearly as much effort modeling
each configuration as it does developing the ini-
tial model.

For studies in which improvements to an existing
system are being considered, it is often helpful
and effective to model the current system as well
as the proposed system. The basic premise is that
you are not ready to make improvements to a sys-
tem until you understand how the current system
operates. Information on the current system is
easier to obtain than information on areas of
change. Once a model of the current system is
built, it is often easier to visualize what changes
need to be made for the modified system. Both
systems may even be modeled together in the
same simulation and made to run side by side.
During the final presentation of the results, being
able to show both “as is” and “to be” versions of
the system effectively demonstrates the impact
changes can have on system performance.

36 Chapter 3:
Steps for Doing Simulation
Form of Results The form in which the results
are to be presented can significantly affect the
time and effort involved in the simulation study.
If detailed animation or an extensive report is
expected, the project can easily stretch on for
several weeks after the experimental phase has
been completed. Many times the only result
required is a simple verification of whether a sys-
tem is capable of meeting a production require-
ment. In such cases, a simple answer will suffice.

Developing a Budget and
Schedule
With objectives and constraints clearly defined
and a specification prepared identifying the work
to be performed, a budget and schedule should be
developed projecting the expected cost and time
for completing the simulation project. Obviously,
the time to perform a simulation project will vary
depending on the size and difficulty of the
project. If data is not readily available, it may be
necessary to add several additional weeks to the
project. A small project can take two to four
weeks while large projects can take two to four
months. A simulation schedule should be based
on realistic projections of the time requirements
keeping in mind the following:

•Defining the system to be modeled can take
up to 50% of the project time.

•Model building usually takes the least
amount of time (10 to 20%).

•Once a base model is built, it can take sev-
eral weeks to conduct all of the desired
experiments, especially if alternative designs
are being compared.

While it may have initially been determined that
simulation is a suitable tool for achieving the
objective, the decision to use simulation may
need to be reconsidered in light of projected cost
and time estimates. Simulation may be a good
solution to the problem at hand, but if the time or

the cost of doing the project outweighs the antici-
pated benefits, either an alternative solution may
need to be explored or the objectives may need to
be modified to cut down on the level of effort
required.

Step 2: Defining the System
With clearly defined objectives and a well orga-
nized plan for the study, the system that will be
simulated can begin to be defined in detail. This
can be viewed as the development of a concep-
tual model on which the simulation model will be
based. The process of gathering and validating
system information can be overwhelming when
faced with the stacks of uncorrelated data to sort
through. Data is seldom available in a form that
defines exactly how the system works. Many data
gathering efforts end up with lots of data but very
little useful information.

Data gathering should never be performed with-
out a purpose. Rather than being haphazard, data
gathering should be goal oriented with a focus on
information that will achieve the objectives of the
study. There are several guidelines to keep in
mind when gathering data.

•Identify cause-and-effect relationships
It is important to correctly identify the
causes or conditions under which activities
are performed. In gathering downtime data,
for example, it is helpful to distinguish
between downtimes due to equipment failure
or personal emergencies and planned down-
times for break. Once the causes have been
established and analyzed, activities can be
properly categorized.

•Look for key impact factors Discrimina-
tion should be used when gathering data to
avoid wasting time examining factors that
have little or no impact on system perfor-
mance. If, for example, an operator is dedi-

 ProModel 37
User Guide
cated to a particular task and, therefore, is
never a cause of delays in service, there is no
need to include the operator in the model.
Likewise, extremely rare downtimes, negli-
gible move times and other insignificant or
irrelevant activities that have no appreciable
effect on routine system performance may be
safely ignored.

•Distinguish between time and condition
dependent activities Time-dependent
activities are those that take a predictable
amount of time to complete, such as cus-
tomer service. Condition-dependent activi-
ties can only be completed when certain
defined conditions within the system are sat-
isfied. Because condition-dependent activi-
ties are uncontrollable, they are
unpredictable. An example of a condition-
dependent activity might be the approval of a
loan application contingent upon a favorable
credit check.

Many activities are partially time-dependent
and partially condition-dependent. When
gathering data on these activities, it is impor-
tant to distinguish between the time actually
required to perform the activity and the time
spent waiting for resources to become avail-
able or other conditions to be met before the
activity can be performed. If, for example,
historical data is used to determine repair
times, the time spent doing the actual repair
work should be used without including the
time spent waiting for a repair person to
become available.

•Focus on essence rather than sub-
stance A system definition for modeling
purposes should capture the key cause-and-
effect relationships and ignore incidental
details. Using this “black box” approach to
system definition, we are not concerned

about the nature of the activity being per-
formed, but only the impact that the activity
has on the use of resources and the delay of
entity flow. For example, the actual opera-
tion performed on a machine is not impor-
tant, but only how long the operation takes
and what resources, if any, are tied up during
the operation. It is important for the modeler
to be constantly thinking abstractly about the
system operation in order to avoid getting
too caught up in the incidental details.

•Separate input variables from response
variables Input variables in a model define
how the system works (e.g., activity times,
routing sequences, etc.). Response variables
describe how the system responds to a given
set of input variables (e.g., work-in-process,
idle times, resource utilization, etc.). Input
variables should be the focus of data gather-
ing since they are used to define the model.
Response variables, on the other hand, are
the output of a simulation. Consequently,
response variables should only be gathered
later to help validate the model once it is
built and run.

These guidelines should help ensure that the sys-
tem is thought of in the proper light for simula-
tion purposes.

To help organize the process of gathering data for
defining the system, the following steps are rec-
ommended:

•Determine data requirements.
•Use appropriate data sources.
•Make assumptions where necessary.
•Convert data into a useful form.
•Document and approve the data.

Each of these steps is explained on the following
pages.

38 Chapter 3:
Steps for Doing Simulation
Determining Data Requirements
The first step in gathering system data is to deter-
mine what data is required for building the
model. This should be dictated primarily by the
scope and level of detail required to achieve the
model objectives as described earlier. It is best to
go from general to specific in gathering system
data. The initial focus should be on defining the
overall process flow to provide a skeletal frame-
work for attaching more detailed information.
Detailed information can then be added gradually
as it becomes available (e.g., resource require-
ments, processing times, etc.). Starting with the
overall process flow not only provides an orderly
approach to data gathering, but also enables the
model building process to get started which
reduces the amount of time to build and debug
the model later. Often, missing data becomes
more apparent as the model is being built.

In defining the basic flow of entities through the
system, a flow diagram can be useful as a way of
documenting and visualizing the physical flow of
entities from location to location. Once a flow
diagram is made, a structured walk-through can
be conducted with those familiar with the opera-
tion to ensure that the flow is correct and that
nothing has been overlooked. The next step
might be to define the detail of how entities move
between locations and what resources are used
for performing operations at each location. At
this point it is appropriate to identify location
capacities, move times, processing times, etc.

To direct data gathering efforts and ensure that
meetings with others, on whom you depend for
model information, are productive, it may be use-
ful to prepare a specific list of questions that
identify the data needed. A list of pertinent ques-
tions to be answered might include the following:

1. What types of entities are processed in the
system and what attributes, if any, distin-

guish the way in which entities of the same
type are processed or routed?

2. What are the route locations in the system
(include all places where processing or queu-
ing occurs, or where routing decisions are
made) and what are their capacities (i.e., how
many entities can each location accommo-
date or hold at one time)?

3. Besides route locations, what types of
resources (personnel, vehicles, equipment)
are used in the system and how many units
are there of each type (resources used inter-
changeably may be considered the same
type)?

4. What is the routing sequence for each entity
type in the system?

5. What activity, if any, takes place for each
entity at each route location (define in terms
of time required, resources used, number of
entities involved and any other decision
logic that takes place)?

6. Where, when and in what quantities do enti-
ties enter the system (define the schedule,
interarrival time, cyclic arrival pattern, or
condition which initiates each arrival)?

7. In what order do multiple entities depart
from each location (First in, First out; Last
in, First out)?

8. In situations where an output entity could be
routed to one of several alternative locations,
how is the routing decision made (e.g., most
available capacity, first available location,
probabilistic selection)?

9. How do entities move from one location to
the next (define in terms of time and
resources required)?

10. What triggers the movement of entities from
one location to another (i.e., available capac-
ity at the next location, a request from the
downstream location, an external condition)?

11. How do resources move from location to
location to perform tasks (define either in
terms of speed and distance, or time)?

 ProModel 39
User Guide
12. What do resources do when they finish per-
forming a task and there are no other tasks
waiting (e.g., stay put, move somewhere
else)?

13. In situations where multiple entities could be
waiting for the same location or resource
when it becomes available, what method is
used for making an entity selection (e.g.,
longest waiting entity, closest entity, highest
priority, preemption)?

14. What is the schedule of availability for
resources and locations (define in terms of
shift and break schedules)?

15. What planned interruptions do resources and
locations have (scheduled maintenance,
setup, changeover)?

16. What random failures do resources and loca-
tions experience (define in terms of distribu-
tions describing time to failure and time to
repair)?

Depending on the purpose of the simulation and
level of detail needed, some of these questions
may not be applicable. For very detailed models
additional questions may need to be asked.
Answers to these questions should provide nearly
all of the information necessary to build a model.

Using Appropriate Data Sources
Having a specific set of questions for defining the
system, we are now ready to search for the
answers. Information seldom comes from a sin-
gle source. It is usually the result of reviewing
reports, conducting personal interviews, personal
observation and making lots of assumptions. “It
has been my experience,” notes Carson (1986),
“that for large-scale real systems, there is seldom
any one individual who understands how the sys-
tem works in sufficient detail to build an accurate
simulation model. The modeler must be willing
to be a bit of a detective to ferret out the neces-
sary knowledge.” Good sources of system data
includes the following:

•Time Studies
•Predetermined Time Standards
•Flow Charts
•Facility Layouts
•Market Forecasts
•Maintenance Reports
•On-line tracking systems
•Equipment Manufacturers
•Managers
•Engineers
•Facility Walk-throughs
•Comparisons with Similar Operations

In deciding whether to use a particular source of
data, it is important to consider the relevancy,
reliability and accessibility of the source. If the
information that a particular source can provide is
irrelevant for the model being defined, then that
source should not be consulted. What good is a
maintenance report if it has already been decided
that downtimes are not going to be included in
the model? Reliability of the source will deter-
mine the validity of the model. A managers per-
ception, for example, may not be as reliable as
actual production logs. Finally, if the source is
difficult to access, such as a visit to a similar
facility in a remote site, it may have to be omit-
ted.

Making Assumptions
Not long after data gathering has started, you
may realize certain information is unavailable or
perhaps unreliable. Complete, accurate, and up-
to-date data for all the information needed is
rarely obtainable, especially when modeling a
new system about which very little is known. For
system elements about which little is known,
assumptions must be made. There is nothing
wrong with assumptions as long as they can be
agreed upon, and it is recognized that they are
only assumptions. Any design effort must utilize

40 Chapter 3:
Steps for Doing Simulation
assumptions where complete or accurate infor-
mation is lacking.

Many assumptions are only temporary until cor-
rect information can be obtained or it is deter-
mined that more accurate information is
necessary. Often, sensitivity analysis, in which a
range of values is tested for potential impact, can
give an indication of just how accurate the data
really needs to be. A decision can then be made
to firm up the assumptions or to leave them
alone. If, for example, the degree of variation in a
particular activity time has little or no impact on
system performance, then a constant activity time
may be used. Otherwise, it may be important to
define the exact distribution for the activity time.

Another approach in dealing with assumptions is
to run three different scenarios showing a “best-
case” using the most optimistic value, a “worst-
case” using the most pessimistic value, and a
“most-likely-case” using a best-estimate value.
This will help determine the amount of risk you
want to take in assuming a particular value.

Converting Data to a Useful Form
Data is seldom in a form ready for use in a simu-
lation model. Usually, some analysis and conver-
sion needs to be performed for data to be useful
as an input parameter to the simulation. Random
phenomena must be fitted to some standard, theo-
retical distribution such as a normal or exponen-
tial distribution (Law and Kelton, 1991), or be
input as a frequency distribution. Activities may
need to be grouped together to simplify the
description of the system operation.

Distribution Fitting To define a distribution using
a theoretical distribution requires that the data, if
available, be fit to an appropriate distribution that
best describes the variable. ProModel includes
the Stat::Fit distribution fitting package which
assists in fitting sample data to a suitable theoret-
ical distribution. An alternative to using a stan-

dard theoretical distribution is to summarize the
data in the form of a frequency distribution that
can be used directly in the model. A frequency
distribution is sometimes referred to as an empir-
ical or user-defined distribution.

Whether fitting data to a theoretical distribution,
or using an empirical distribution, it is often use-
ful to organize the data into a frequency distribu-
tion table. Defining a frequency distribution is
done by grouping the data into intervals and stat-
ing the frequency of occurrence for each particu-
lar interval. To illustrate how this is done, the
following frequency table tabulates the number
and frequency of observations for a particular
activity requiring a certain range of time to per-
form.

Frequency Distributions of Delivery Times

Delivery
Time
(days)

Number of
Observations Percentage

Cumulative
Percentage

0 - 1 25 16.5 16.5

1 - 2 33 21.7 38.2

2 - 3 30 19.7 57.9

3 - 4 22 14.5 72.4

4 - 5 14 9.2 81.6

5 - 6 10 6.6 88.2

6 - 7 7 4.6 92.8

7 - 8 5 3.3 96.1

8 - 9 4 2.6 98.7

9 - 10 2 1.3 100.0

Total Number of Observations = 152

While there are rules that have been proposed for
determining the interval or cell size, the best
approach is to make sure that enough cells are
defined to show a gradual transition in values, yet
not so many cells that groupings become
obscured.

 ProModel 41
User Guide
Note in the last column of the frequency table
that the percentage for each interval may be
expressed optionally as a cumulative percentage.
This helps verify that all 100% of the possibilities
are included.

When gathering samples from a static population,
one can apply descriptive statistics and draw rea-
sonable inferences about the population. When
gathering data from a dynamic and possibly time
varying system, however, one must be sensitive
to trends, patterns, and cycles that may occur
with time. The samples drawn may not actually
be homogenous samples and, therefore, unsuit-
able for applying simple descriptive techniques.

Activity Grouping Another consideration in
converting data to a useful form is the way in
which activities are grouped for modeling pur-
poses. Often it is helpful to group activities
together so long as important detail is not sacri-
ficed. This makes models easier to define and
more manageable to analyze. In grouping multi-
ple activities into a single activity time for simpli-
fication, consideration needs to be given as to
whether activities are performed in parallel or in
series. If activities are done in parallel or with
any overlap, the time during which overlapping
occurs should not be additive.

Serial activities are always additive. For example,
if a series of activities is performed on an entity at
a location, rather than specifying the time for
each activity, it may be possible to sum activity
times and enter a single time or time distribution.

Documenting and Approving the
Data
When it is felt that all relevant information has
been gathered and organized into a usable form,
it is advisable to document the information in the
form of data tables, relational diagrams and
assumption lists. Sources of data should also be
noted. This document should then be reviewed by

others who are in a position to evaluate the valid-
ity of the data and approve the assumptions
made. This document will be helpful later if you
need to make modifications to the model or look
at why the actual system ends up working differ-
ently than what was modeled.

In addition to including those factors to be used
in the model, the data document should also
include those factors deliberately excluded from
the model because they are deemed to be either
insignificant or irrelevant. If, for example, break
times are not identified in the system description,
a statement of explanation should be made
explaining why. Stating why certain factors are
being excluded from the system description will
help resolve later concerns that may question
why the factors were omitted.

Validating system data can be a time-consuming
and difficult task, especially when many assump-
tions are made. In practice, data validation ends
up being more of a consensus or agreement that is
obtained confirming that the information is good
enough for the purposes of the model. While this
approved data document provides the basis for
building the model, it often changes as model
building and experimentation get under way.

Step 3: Building the Model
Once sufficient information has been compiled to
define the basic system operation, the model
building activity can begin. While starting to
build a model too early can be a wasted exercise,
waiting until all of the information is completely
gathered and validated may unnecessarily post-
pone the building of the model. Getting the
model started before the data is completely gath-
ered may even help identify missing information
needed to proceed.

The goal of model building is to provide a valid
representation of the defined system operation.

42 Chapter 3:
Steps for Doing Simulation
Additionally, the model must be able to provide
any other statistical or graphical representation
needed to satisfy the objectives of the study. A
model is neither true nor false, but rather useful
or not useful. Once validated, a model is useful
when it provides the needed information to meet
the objectives of the simulation.

Progressive Refinement
One nice feature of simulation is that models do
not have to include all of the final detail before
they will run. This allows a progressive refine-
ment strategy to be used in which detail is added
to the model in stages rather than all at once. Not
only do models get built and running quicker this
way, but it also makes models easier to debug. In
the initial stages of a model, for example, attrac-
tive graphics are not very useful and, since they
are likely to be changed anyway, should not be
added until later when preparing for the final
model presentation.

The complexity of model building should never
be underestimated and it is always better to begin
simple and add complexity rather than create an
entire complex model at once. It is also easier to
add detail to a model than it is to remove it from a
model. Building a model in stages enables bugs
to be more readily identified and corrected.
Emphasizing the importance of applying progres-
sive refinement to model building, Law and Kel-
ton (1991) have advised:

Although there are few firm rules on how one
should go about the modeling process, one point
on which most authors agree is that it is always a
good idea to start with a simple model which can
later be made more sophisticated if necessary. A
model should contain only enough detail to cap-
ture the essence of the system for the purposes for
which the model is intended: it is not necessary to
have a one-to-one correspondence between ele-
ments of the model and elements of the system. A

model with excessive detail may be too expensive
to program and to execute.

Incremental Expansion
In addition to adding complexity to a model in
stages, models that have a broad scope are some-
times easier to build in phases where additional
sections are added incrementally to the model.
This method of "eating the elephant one bite at a
time" allows a portion of the model to be built,
tested and debugged before adding new sections
and makes a large task more manageable.

For unusually large models, it may be useful to
identify definable boundaries within a model to
permit model partitioning. Model partitioning is
the process of subdividing a model into two or
more modules that represent physically separate
sections within the system. The purpose of model
partitioning is to allow model sections to be built
and debugged, possibly even by separate individ-
uals, independently of each other. Once sections
are finished, they can be merged together to cre-
ate the overall model. This “divide-and-conquer”
method of model building can greatly reduce the
time and difficulty in building and debugging
large models.

Model Verification
Once a model is defined using a selected software
tool, the model must generally be debugged to
ensure that it works correctly. The process of
demonstrating that a model works as intended is
referred to in simulation literature as model veri-
fication. It is much easier to debug a model built
in stages and with minimal detail than to debug a
large and complex model. Eliminating bugs in a
program model can take a considerable amount
of time, especially if a general purpose program-
ming language (e.g., C++) in which frequent cod-
ing errors occur is used. Most simulation
languages provide a trace capability in the form

 ProModel 43
User Guide
of audit trails, screen messages, graphic anima-
tion, or a combination of all three. A trace
enables the user to look inside of the simulation
to see if the simulation is performing the way it
should. Good simulation products provide inter-
active debugging capability which further facili-
tates the debugging process. A thorough “walk-
through” of the model input is always advisable.

Model Validation
During the process of model building, the mod-
eler must be constantly concerned with how
closely the model reflects the system definition.
The process of determining the degree to which
the model corresponds to the real system, or at
least accurately represents the model specifica-
tion document, is referred to as model validation.
Proving absolute validity is a non attainable goal.
As Neelamkavil (1987) explains, “True valida-
tion is a philosophical impossibility and all we
can do is either invalidate or fail to invalidate.”
For this reason, what we actually seek to estab-
lish is a high degree of face validity. Face validity
means that, from all outward indications, the
model appears to be an accurate representation of
the system. From this standpoint, validating a
model is the process of substantiating that the
model, within its domain of applicability, is suffi-
ciently accurate for the intended application
(Schlesinger, 1979).

There is no simple test to establish the validity of
a model. Validation is an inductive process
through which the modeler draws conclusions
about the accuracy of the model based on the evi-
dence available. Gathering evidence to determine
model validity is largely accomplished by exam-
ining the model structure (i.e., the algorithms and
relationships) to see how closely it corresponds to
the actual system definition. For models having
complex control logic, graphic animation can be
used effectively as a validation tool. Finally, the
output results should be analyzed to see if the

results appear reasonable. If circumstances per-
mit, the model may even be compared to that
actual system to see how they correspond. If
these procedures are performed without encoun-
tering a discrepancy between the real system and
the model, the model is said to have face validity.

Step 4: Conducting Experi-
ments
The fourth step in a simulation study is to con-
duct simulation experiments with the model.
Simulation is basically an application of the sci-
entific method. In simulation, one begins with a
theory of why certain design rules or manage-
ment strategies are better than others. Based on
these theories the designer develops a hypothesis
which he tests through simulation. Based on the
results of the simulation the designer draws con-
clusions about the validity of his hypothesis. In a
simulation experiment there are input variables
defining the model which are independent and
may be manipulated or varied. The effects of this
manipulation on other dependent or response
variables are measured and correlated.

In some simulation experiments we are interested
in the steady-state behavior of the model. Steady-
state behavior does not mean that the simulation
produces a steady outcome, but rather the distri-
bution or statistical variation in outcome does not
change over time. For example, a distribution
warehouse may ship between 200 and 220 parts
per hour under normal operating conditions. For
many simulations we may only be interested in a
particular time period, such as a specific day of
the week. For these studies, the simulation may
never reach a steady state.

As with any experiment involving a system with
random characteristics, the results of the simula-
tion will also be random in nature. The results of
a single simulation run represent only one of sev-
eral possible outcomes. This requires that multi-

44 Chapter 3:
Steps for Doing Simulation
ple replications be run to test the reproducibility
of the results. Otherwise, a decision might be
made based on a fluke outcome, or at least an
outcome not representative of what would nor-
mally be expected. Since simulation utilizes a
pseudo-random number generator for generating
random numbers, running the simulation multiple
times simply reproduces the same sample. In
order to get an independent sample, the starting
seed value for each random stream must be dif-
ferent for each replication, ensuring that the ran-
dom numbers generated from replication to
replication are independent.

Depending on the degree of precision required in
the output, it may be desirable to determine a
confidence interval for the output. A confidence
interval is a range within which we can have a
certain level of confidence that the true mean
falls. For a given confidence level or probability,
say .90 or 90%, a confidence interval for the
average utilization of a resource might be deter-
mined to be between 75.5 and 80.8%. We would
then be able to say that there is a .90 probability
that the true mean utilization of the modeled
resource (not of the actual resource) lies between
75.5 and 80.8%.

Fortunately, ProModel provides convenient facil-
ities for conducting experiments, running multi-
ple replications and automatically calculating
confidence intervals. The modeler must still
decide, however, what types of experimentation
are appropriate. When conducting simulation
experiments, the following questions should be
asked:

•Am I interested in the steady state behavior
of the system or a specific period of opera-
tion?

•How can I eliminate start-up bias or getting
the right initial condition for the model?

•What is the best method for obtaining sam-
ple observations that may be used to estimate
the true expected behavior of the model?

•What is an appropriate run length for the
simulation?

•How many replications should be made?
•How many different random streams should
be used?

•How should initial seed values be controlled
from replication to replication?

Answers to these questions will be determined
largely by the following three factors:

1. The nature of the simulation (terminating or
nonterminating).

2. The objective of the simulation (capacity
analysis, alternative comparisons, etc.).

3. The precision required (rough estimate ver-
sus confidence interval estimates).

Terminating Versus
Non-terminating Simulations
As part of setting up the simulation experiment,
one must decide what type of simulation to run.
Simulations are usually distinguished as being
one of two types: terminating or non-terminating.
The difference between the two has to do with
whether we are interested in the behavior of the
system over a particular period of time or in the
steady-state behavior of the system. It has noth-
ing to do, necessarily, with whether the system
itself terminates or is ongoing. The decision to
perform a terminating or non-terminating simula-
tion has less to do with the nature of the system
than it does with the behavior of interest.

A terminating simulation is one in which the sim-
ulation starts at a defined state or time and ends
when it reaches some other defined state or time.
An initial state might be the number of parts in
the system at the beginning of a work day. A ter-
minating state or event might be when a particu-
lar number of jobs have been completed.
Consider, for example, an aerospace manufac-
turer that receives an order to manufacture 200
airplanes of a particular model. The company

 ProModel 45
User Guide
might be interested in knowing how long it will
take to produce the aircraft along with existing
workloads. The simulation run starts with the
system empty and is terminated when the 200th
plane is completed since that covers the period of
interest. A point in time which would bring a ter-
minating simulation to an end might be the clos-
ing of shop at the end of a business day, or the
completion of a weekly or monthly production
period. It may be known, for example, that a pro-
duction schedule for a particular item changes
weekly. At the end of each 40 hour cycle, the sys-
tem is “emptied” and a new production cycle
begins. In this situation, a terminating simulation
would be run in which the simulation run length
would be 40 hours.

Terminating simulations are not intended to mea-
sure the steady-state behavior of a system. In a
terminating simulation, average measures are of
little meaning. Since a terminating simulation
always contains transient periods that are part of
the analysis, utilization figures have the most
meaning if reported for successive time intervals
during the simulation.

A non-terminating or steady-state simulation is
one in which the steady-state behavior of the sys-
tem is being analyzed. A non-terminating simula-
tion does not mean that the simulation never
ends, nor does it mean that the system being sim-
ulated has no eventual termination. It only means
that the simulation could theoretically go on
indefinitely with no statistical change in behav-
ior. For non-terminating simulations, the modeler
must determine a suitable length of time to run
the model. An example of a non-terminating sim-
ulation is a model of a manufacturing operation
in which oil filters are produced on a continual
basis at the same pace. The operation runs two
shifts with an hour break during each shift in
which everything momentarily stops. Break and
third shift times are excluded from the model
since work always continues exactly as it left off

before the break or end of shift. The length of the
simulation is determined by how long it takes to
get a representative steady-state reading of the
model behavior.

Running Terminating Simulations
Experiments involving terminating simulations
are usually conducted by making several simula-
tion runs, or replications, of the period of interest
using a different random seed for each run. This
procedure enables statistically independent and
unbiased observations to be made on the system
response over the period simulated. Statistics are
often gathered on performance measures for suc-
cessive intervals of time during the period.

For terminating simulations, we are usually inter-
ested in final production counts and changing
patterns of behavior over time rather than the
overall average behavior. It would be absurd, for
example, to conclude that because two techni-
cians are busy only an average of 40% during the
day that only one technician is needed. This aver-
age measure reveals nothing about the utilization
of the technicians during peak periods of the day.
A more detailed report of waiting times during
the entire work day may reveal that three techni-
cians are needed to handle peak periods, whereas
only one technician is necessary during off-peak
hours. In this regard, Hoover and Perry (1990)
note:

It is often suggested in the simulation literature
that an overall performance be accumulated over
the course of each replication of the simulation,
ignoring the behavior of the systems at intermedi-
ate points in the simulation. We believe this is too
simple an approach to collecting statistics when
simulating a terminating system. It reminds us of
the statistician who had his head in the refrigera-
tor and feet in the oven, commenting that on the
average he was quite comfortable.

46 Chapter 3:
Steps for Doing Simulation
For terminating simulations, the three important
questions to answer in running the experiment
are:

1. What should be the initial state of the model?
2. What is the terminating event or time?
3. How many replications will you make?

Many systems operate on a daily cycle, or, if a
pattern occurs over a weeks time, the cycle is
weekly. Some cycles may vary monthly or even
annually. Cycles need not be repeating to be con-
sidered a cycle. Airlines, for example, may be
interested in the start-up period of production
during the introduction of a new airport which is
a one-time occurrence.

The number of replications should be determined
by the precision required for the output. If only a
rough estimate of performance is being sought,
three to five replications are sufficient. For
greater precision, more replications should be
made until a confidence interval with which you
feel comfortable is achieved.

Running Non-terminating
Simulations
The issues associated with generating meaningful
output statistics for terminating simulations are
somewhat different that those associated with
generating statistics for non-terminating sys-
tems. In steady-state simulations, we must deal
with the following issues:

1. Determining the initial warm-up period.
2. Selecting among several alternative ways for

obtaining sample observations.
3. Determining run length.

Determining the Warm-up Period In a steady-
state simulation, we are interested in the steady-
state behavior of the model. Since a model starts
out empty, it usually takes some time before it
reaches steady-state. In a steady-state condition,
the response variables in the system (e.g., pro-

cessing rates, utilization, etc.) exhibit statistical
regularity (i.e., the distribution of these variables
are approximately the same from one time period
to the next). The following figure illustrates the
typical behavior of a response variable, Y, as the
simulation progresses through N periods of a
simulation.

Period

1

2

3

4

5

6

7

8

Y

Steady State

Transient State

Behavior of Response Variable Y for Succes-
sive Periods During Simulation

The time that it takes to reach steady-state is a
function of the activity times and the amount of
activity taking place. For some models, steady-
state might be reached in a matter of a few hours
of simulation time. For other models it may take
several hundred hours to reach steady-state. In
modeling steady-state behavior we have the prob-
lem of determining when a model reaches steady-
state. This start-up period is usually referred to as
the warm-up period. We want to wait until after
the warm-up period before we start gathering any
statistics. This way we eliminate any bias due to
observations taken during the transient state of
the model.

While several methods have been presented for
determining warm-up time (Law and Kelton,
1991), the easiest and most straightforward
approach, although not necessarily the most reli-

 ProModel 47
User Guide
able, is to run a preliminary simulation of the sys-
tem, preferably with several (3 to 5) replications,
and observe at what time the system reaches sta-
tistical stability. The length of each replication
should be relatively long and allow even rarely
occurring events, such as infrequent downtimes,
to occur at least two or three times. To determine
a satisfactory warm-up period using this method,
one or more key response variables should be
monitored by period over time, like the average
number of entities in a queue or the average utili-
zation of a resource. This approach assumes that
the mean value of the monitored response vari-
able is the primary indicator of convergence
rather than the variance, which often appears to
be the case. If possible, it is preferable to reset the
response variable after each period rather than
track the cumulative value of the variable, since
cumulative plots tend to average out instability in
data. Once these variables begin to exhibit
steady-state, we can add a 20% to 30% safety
factor and be reasonably safe in using that period
as the warm-up period. This approach is simple,
conservative and usually satisfactory. Remember,
the danger is in underestimating the warm-up
period, not overestimating it. Relatively little
time and expense is needed to run the warm-up
period longer than actually required. The follow-
ing figure illustrates the average number of enti-
ties processed each hour for several replications.
Since statistical stability is reached at about 10

hours, 12 to 15 hours is probably a safe warm-up
period to use for the simulation.

Simulation Time (hrs)

2 4 14 166 188 2010 2212 24 26 28 30

100

90

80

70

60

50

40

30

20

10

Output
(per hr)

Plot of Hourly Entity Output to Identify Start of
Steady-State

End of Warm-up Period

Obtaining Sample Observations In a terminat-
ing simulation, sample observations are made by
simply running multiple replications. For steady-
state simulations, we have several options for
obtaining sample observations. Two widely used
approaches are running multiple replications and
interval batching. The method supported in Pro-
Model is running multiple replications.

Running multiple replications for non-terminat-
ing simulations is very similar to running termi-
nating simulations. The only difference is that (1)
the initial warm-up period must be determined,
and (2) an appropriate run length must be deter-
mined. Once the replications are made, confi-
dence intervals can be computed as described
earlier in this chapter. One advantage of running
independent replications is that samples are inde-
pendent. On the negative side, running through
the warm-up phase for each replication slightly
extends the length of time to perform the replica-
tions. Furthermore, there is a possibility that the
length of the warm-up period is underestimated,
causing biased results.

48 Chapter 3:
Steps for Doing Simulation
Interval batching (also referred to as the batch
means technique) is a method in which a single,
long run is made with statistics being reset at
specified time intervals. This allows statistics to
be gathered for each time interval with a mean
calculated for each interval batch. Since each
interval is correlated to both the previous and the
next intervals (called serial correlation or auto-
correlation), the batches are not completely inde-
pendent. The way to gain greater independence is
to use large batch sizes and to use the mean val-
ues for each batch. When using interval batching,
confidence interval calculations can be per-
formed. The number of batch intervals to create
should be at least 5 to 10 and possibly more
depending on the desired confidence interval.

Determining Run Length Determining run
length for terminating simulations is quite simple
since there is a natural event or time point that
defines it for us. Determining the run length for a
steady-state simulation is more difficult since the
simulation can be run indefinitely. The benefit of
this, however, is that we can produce good repre-
sentative samples. Obviously, running extremely
long simulations is impractical, so the issue is to
determine an appropriate run length that ensures
a sufficiently representative sample of the steady-
state response of the system is taken.

The recommended length of the simulation run
for a steady-state simulation is dependent upon
(1) the interval between the least frequently
occurring event and (2) the type of sampling
method (replication or interval batching) used. If
running independent replications, it is usually a
good idea to run the simulation enough times to
let every type of event (including rare ones) hap-
pen at least a few times if not several hundred.
Remember, the longer the model is run, the more
confident you can become that the results repre-
sent a steady-state behavior. If collecting batch
mean observations, it is recommended that run
times be as large as possible to include at least

1000 occurrences of each type of event (Thesen
and Travis, 1992).

Comparing Alternative Systems
Simulations are often performed to compare two
or more alternative designs. This comparison
may be based on one or more decision variables
such as buffer capacity, work schedule, resource
availability, etc. Comparing alternative designs
requires careful analysis to ensure that differ-
ences being observed are attributable to actual
differences in performance and not to statistical
variation. This is where running multiple replica-
tions may again be helpful. Suppose, for exam-
ple, that method A for deploying resources yields
a throughput of 100 entities for a given time
period while method B results in 110 entities for
the same time period. Is it valid to conclude that
method B is better than method A, or might addi-
tional replications actually lead the opposite con-
clusion?

Evaluating alternative configurations or operat-
ing policies can sometimes be performed by com-
paring the average result of several replications.
Where outcomes are close or where the decision
requires greater precision, a method referred to as
hypothesis testing should be used. In hypothesis
testing, first a hypothesis is formulated (e.g., that
methods A and B both result in the same through-
put) and then a test is made to see whether the
results of the simulation lead us to reject the
hypothesis. The outcome of the simulation runs
may cause us to reject the hypothesis that meth-
ods A and B both result in equal throughput capa-
bilities and conclude that the throughput does
indeed depend on which method is used.

Sometimes there may be insufficient evidence to
reject the stated hypothesis and thus the analysis
proves to be inconclusive. This failure to obtain
sufficient evidence to reject the hypothesis may
be due to the fact that there really is no difference

 ProModel 49
User Guide
in performance, or it may be a result of the vari-
ance in the observed outcomes being too high
given the number of replications to be conclu-
sive. At this point, either additional (perhaps time
consuming) replications may be run or one of
several variance reduction techniques might be
employed (see Law and Kelton, 1991).

Factorial Design
In simulation experiments we are often interested
in finding out how different input variable set-
tings impact the response of the system. Rather
than run hundreds of experiments for every possi-
ble variable setting, experimental design tech-
niques can be used as a “short-cut” to finding
those input variables of greatest significance.
Using experimental-design terminology, input
variables are referred to as factors, and the output
measures are referred to as responses. Once the
response of interest has been identified and the
factors that are suspected of having an influence
on this response defined, we can use a factorial
design method which prescribes how many runs
to make and what level or value to be used for
each factor. As in all simulation experiments, it is
still desirable to run multiple replications for each
factor level and use confidence intervals to assess
the statistical significance of the results.

One's natural inclination when experimenting
with multiple factors is to test the impact that
each individual factor has on system response.
This is a simple and straightforward approach,
but it gives the experimenter no knowledge of
how factors interact with each other. It should be
obvious that experimenting with two or more fac-
tors together can affect system response differ-
ently than experimenting with only one factor at a
time and keeping all other factors the same.

One type of experiment that looks at the com-
bined effect of multiple factors on system
response is referred to as a two-level, full-facto-

rial design. In this type of experiment, we simply
define a high and low level setting for each factor
and, since it is a full-factorial experiment, we try
every combination of factor settings. This means
that if there are five factors and we are testing
two different levels for each factor, we would test
each of the 25 = 32 possible combinations of high
and low factor levels. For factors that have no
range of values from which a high and low can be
chosen, the high and low levels are arbitrarily
selected. For example, if one of the factors being
investigated is an operating policy for doing work
(e.g., first come, first served; or last come, last
served), we arbitrarily select one of the alterna-
tive policies as the high level setting and a differ-
ent one as the low level setting.

For experiments in which a large number of fac-
tors are being considered, a two-level full-facto-
rial design would result in an extremely large
number of combinations to test. In this type of
situation, a fractional-factorial design is used to
strategically select a subset of combinations to
test in order to “screen out” factors with little or
no impact on system performance. With the
remaining reduced number of factors, more
detailed experimentation such as a full-factorial
experiment can be conducted in a more manage-
able fashion.

After fractional-factorial experiments and even
two-level full-factorial experiments have been
performed to identify the most significant factor
level combinations, it is often desirable to con-
duct more detailed experiments, perhaps over the
entire range of values, for those factors that have
been identified as being the most significant. This
provides more precise information for making
decisions regarding the best factor values or vari-
able settings for the system. For a more concise
explanation of the use of factorial design in simu-
lation experimentation see Law and Kelton
(1991).

50 Chapter 3:
Steps for Doing Simulation
Use of Random Streams
One of the most valuable characteristics of simu-
lation is the ability to reproduce and randomize
replications of a particular model. Simulation
allows probabilistic phenomena within a system
to be controlled or randomized as desired for con-
ducting controlled experiments. This control is
made available through the use of random
streams.

A stream is a sequence of independently cycling,
unique random numbers uniformly distributed
between 0 and 1 (see the figure on next page).
Random number streams are used to generate
additional random numbers from other probabil-
ity distributions (Normal, Beta, Gamma). After
sequencing through all of the random numbers in
the cycle, the cycle starts over again with the
same sequence. The length of the cycle before it
repeats is called the cycle period and is usually
very long.

.52

.31

.60

.95

.66

.07

.25

.80

Example of a Random Stream Cycle with a
Very Short Period

A random stream is generated using a random
number generator or equation. The random num-
ber generator begins with an initial seed value
after which, each successive value uses the previ-
ous value as input to the generator. Each stream

used in a simulation has its own independent seed
and tracks its own values for subsequent input to
the generator. Where the sequence begins in the
cycle depends on the initial seed value used by
the generator.

Any time a particular number seeds a stream, the
same sequence of values will be repeated every
time the same seed is used to initialize the stream.
This means that various elements within a model
can be held constant with respect to their perfor-
mance while other elements vary freely. Simply
specify one random number stream for one set of
activities and another random number stream for
all other activities.

Because the same seed produces the same
sequence of values every time it is used, com-
pletely independent functions within a model
must have their own streams from the start. For
example, arrival distributions should generally
have a random number stream used nowhere else
in the entire model. That way, activities added to
a model that sample from a random number
stream will not inadvertently alter the arrival pat-
tern because they do not affect the sample values
generated from the arrival distribution.

To show an example of how multiple streams can
be useful, consider two copy machines, Copy1
and Copy2, which go down approximately every
4 hours for servicing. To model this, the fre-
quency or time between failures is defined by a
normal distribution with a mean value of 240
minutes and a standard deviation of 15 minutes,
N(240,15). The time to repair is 10 minutes. If no
stream is specified in the normal distribution, the
same stream will be used to generate sample val-
ues for both machines. So, if the next two num-
bers in the stream number are .21837 and .86469,
Copy1 will get a sample value from the normal
distribution that is different from Copy2. There-
fore, the two machines will go down at different
times.

 ProModel 51
User Guide
Suppose, however, that the resource servicing the
machines must service them both at the same
time, so we would like to have the machines go
down at the same time. Using the same stream to
determine both downtimes will not bring them
down at the same time, because a different ran-
dom number will be returned from the stream
with each call to generate a random normal vari-
ate. Using two different streams, each dedicated
to a machine's downtime and each having the
same initial seed, will ensure that both machines
go down at the same time every time. The two
streams have the same starting seed value so they
will produce exactly the same sequence of ran-
dom numbers.

Step 5: Analyzing the Output
Output analysis deals with drawing inferences
about the actual system based on the simulation
output. When conducting simulation experi-
ments, extreme caution should be used when
interpreting the simulation results. Since the
results of a simulation experiment are random
(given the probabilistic nature of the inputs), an
accurate measurement of the statistical signifi-
cance of the output is necessary.

People doing simulation in academia are often
accused of working with contrived and often
oversimplified assumptions, yet are extremely
careful about ensuring the statistical significance
of the model results. Simulation practitioners in
industry, on the other hand, are usually careful to
obtain valid model data, only to ignore the statis-
tical issues associated with simulation output.
Maintaining a proper balance between establish-
ing model validation and establishing the statisti-
cal significance of simulation output is an
important part of achieving useful results.

The most valuable benefit from simulation is to
gain insight, not necessarily to find absolute
answers. With this in mind, one should be careful

about getting too pedantic about the precision of
simulation output. With more than 60 combined
years of experience in doing simulation model-
ing, Conway, Maxwell and Worona (1986) cau-
tion that attaching a statistical significance to
simulation output can create a delusion that the
output results are either more or less significant
than they really are. They emphasize the practi-
cal, intuitive reading of simulation results. Their
guideline is "If you can't see it with the naked
eye, forget it."

The goal of conducting experiments is not just to
find out how well a particular system operates,
but hopefully to gain enough insight to be able to
improve the system. Unfortunately, simulation
output rarely identifies causes of problems, but
only reports the symptomatic behavior of prob-
lems. Bottleneck activities, for example, are usu-
ally identified by looking for locations or queues
that are nearly always full which feed into one or
more locations that are sometimes empty. Detect-
ing the source of the bottleneck is sometimes a
bit trickier than identifying the bottleneck itself.
Bottlenecks may be caused by excessive opera-
tion times, prolonged delays due to the unavail-
ability of resources, or an inordinate amount of
downtime. The ability to draw correct inferences
from the results is essential to making system
improvements.

Step 6: Reporting the Results
The last step in the simulation procedure is to
make recommendations for improvement in the
actual system based on the results of the simu-
lated model. These recommendations should be
supported and clearly presented so that an
informed decision can be made. Documentation
of the data used, the model(s) developed and the
experiments performed should all be included as
part of a final simulation report.

52 Chapter 3:
Steps for Doing Simulation
A simulation has failed if it produces evidence to
support a particular change which is not imple-
mented; especially if it is economically justified.
The process of selling simulation results is
largely a process of establishing the credibility of
the model. It is not enough for the model to be
valid, the client or management must also be con-
vinced of its validity if it is to be used as an aid in
decision making. Finally, the results must be pre-
sented in terms that are easy to understand and
evaluate. Reducing the results to economic fac-
tors always produces a compelling case for mak-
ing changes to a system.

In presenting results it is important to be sensitive
to the way in which recommendations are made.
It helps to find out whether recommendations are
being sought or whether a simple summary of the
results is wanted. It is generally wise to present
alternative solutions and their implications for
system performance without suggesting one
alternative over another, particularly when per-
sonnel changes or cuts are involved. In fact,
where there may be careers on the line, it is best
to caution the decision maker that your simula-
tion study looks only at the logistical aspects of
the system and that it does not take into account
the potential reactions or potential difficulties
employees may have in accepting a particular
solution.

Animation and output charts have become an
extremely useful aid in communicating the
results of a simulation study. This usually
requires that some touch-up work be done to cre-
ate the right effect in visualizing the model being
simulated. In preparing the results, it is often nec-
essary to add a few touch-ups to the model (like a
full dress-rehearsal) so the presentation effec-
tively and convincingly presents the results of the
simulation study.

After the presentation is finished and there is no
further analysis to be conducted (the final presen-
tation always seems to elicit further suggestions

for trying this or that with the model), the model
recommendations, if approved, are ready to be
implemented. If the simulation has been ade-
quately documented, it should provide a good
functional specification for the implementation
team.

Pitfalls in Simulation
If the steps that have been outlined are followed,
the chances of performing a successful simula-
tion project are very good. Typical reasons why
simulation projects fail include the following:

•Failure to state clear objectives at the outset.
•Failure to involve individuals affected by
outcome.

•Overrunning budget and time constraints.
•Failure to document and get a consensus on
input data.

•Including more detail than is needed.
•Including variables that have little or no
impact on system behavior.

•Failure to verify and validate the model.
•Basing decisions on a single run observa-
tion.

•Basing decisions on average statistics when
the output is actually cyclical.

•Being too technical and detailed in present-
ing the results to management.

Summary
A simulation project has distinct phases that must
be understood and followed in order to be suc-
cessful. Simulation requires careful planning
with realistic goals and expectations. Steps to
performing a simulation study include planning
the study, defining the system, building the
model, conducting experiments, analyzing the
output, and presenting the results. Systematically
following these steps will help avoid the pitfalls

 ProModel 53
User Guide
that frequently occur when conducting a simula-
tion study.

Building a Model
ProModel gives you the flexibility to create a
model in several ways—the easiest is to use the
graphical point-and-click approach. To build a
model, you should first define any locations in
the system. With locations defined, you are ready
to create entities (parts, customers, calls, etc.) and
schedule their arrivals to the locations you cre-
ated. Next, specify the process logic for entities at
each location (this will establish the entity flow
throughout the model). Finally, define any
optional model elements such as attributes, vari-
ables, or arrays that you will use in processing
entities.

Modeling Scenario
Before we actually begin building a model, let's
look at a fictitious scenario for our model build-
ing session.

Cogswell Cogs has just secured a contract to pro-
duce a new cog for production of the X-95C
Family Space Cruiser. The current capacity of the
Cogswell facility is not adequate to handle any
additional work load while continuing to fill
existing orders. Therefore, Mr. Cogswell has
ordered the I.E. department to simulate the design
of a new workcell dedicated to the production of
the new cog.

The process consists of loading a cast blank onto
an NC mill for milling of the outside splines.
Once the splines have been cut, the cog must be
degreased, inspected and loaded with an inner
bearing. All operations, including inspection, are
to be performed by a single operator.

Model Elements
In building this model we must define all of the
basic modeling elements and a few of the
optional elements.

54 Chapter 3:
Building a Model
Locations

We need some type of receiving location to hold
incoming entities. We also need processing loca-
tions where entities have value added to them.
For the given production rate, Cogswell's engi-
neers have determined that the workcell will
require two NC_300 series numerically con-
trolled mills, a degreasing machine, and an
inspection/assembly station.

Entities (Parts)

The entity types in this system include Pallets,
each carrying six cast Blanks. Blanks become
Cogs after processing, and Bearings are loaded at
the Inspect station. If a Cog fails the inspection it
will be called a Reject.

Arrivals

Cogswell's engineers have determined that Pal-
lets should arrive at the rate of 1 Pallet every 45
minutes.

Processing

The operation at each mill requires an operator to
load the Blank, which takes a normally distrib-
uted amount of time with a mean of 3 minutes
and standard deviation of .2 minutes (i.e.,
N(3,.2)). After a blank has been loaded, the
machining time is a constant 5.7 minutes.

Cogs are then removed from the mill and placed
in the degreasing machine. The degreasing
machine has capacity for 2 Cogs, and has a cycle
time of 5 minutes.

Once the Cogs have been degreased, they are
inspected for proper spline depth, and a bearing is
installed in the center hole. This process requires
the cell operator, and takes U(3.2,.3) minutes for
the inspection and U(1.5,.2) minutes for the Bear-
ing to be installed. If the Cog fails inspection, no
Bearing is installed.

Resources

A single operator, CellOp, performs all manual
operations.

Path Networks

In order to make CellOp a mobile resource, we
must define a path network. We'll call it CellNet.

Attributes

An attribute is simply a “numeric tag” attached to
either an entity (entity attribute) or a location
(location attribute). Since each Cog is inspected
for proper spline depth, we attach an attribute
called Test to each Cog, specifying the Pass/Fail
status of the Cog.

User Distributions

We will sample from a user defined distribution
and set the Test attribute to either 1 (for pass) or 0
(for fail). Ninety six percent of the Cogs pass
inspection and have their Test attribute set to one.
Four percent fail the inspection and have their
Test attribute set to zero.

Phased Modeling Approach
Instead of trying to build a model all at once, you
may want to implement a phased modeling
approach where you build the model in stages.
This will help you understand the basic modeling
elements before moving on to more complex
ones like attributes and IF-THEN logic. The fol-
lowing elements are those components normally
entered during each phase of the model building
process.

Phase 1: Basic Model Elements

In the first phase you input all of the basic model
elements: General Information, Locations, Enti-
ties, Arrivals, and Processing. You also import a
background graphic to help in placing the loca-

 ProModel 55
User Guide
tions in the layout window. Upon completion of
this phase you have a fully working model, ready
to animate and collect output.

Phase 2: Adding Resources & Variability

The second phase normally consists of expanding
the model by adding resources and the corre-
sponding path network needed to move entities,
using resources, from location to location.

Phase 3: Additional Operations

The final phase usually consists of adding addi-
tional reality to the model—that is, adding those
nuances that make the model an accurate repre-
sentation of a real system. These include:

•Adding Quantity and Time_in_system
attributes.

•Changing operational times from simple
time constants to distributions.

•Adding features that ensure accurate entity
processing.

•Adding variables for on-screen display.
•Defining appropriate downtimes.

Phase 1: Basic Model Elements
The first step in building the model is to define
the model's basic elements.

General Information
The General Information dialog box, accessed
through the Build menu, allows you to name your
model and specify default information such as
time and distance units. You also specify the

name of the graphics library to use. By default it
will be PROMOD5.GLB.

Importing a Background Graphic
Simple background graphics are imported easily
through the Background Graphics Editor. Pro-
Model also allows you to import complex graph-
ics files such as AutoCAD drawings to use as the
background for your simulations. For more infor-
mation on how to import a background graphic,
see “Graphic Editor” on page 312.

Often, importing a background graphic makes the
process of placing locations easier, or altogether
eliminates the need to create graphic icons for
locations.

56 Chapter 3:
Building a Model
Defining Locations
Locations are defined easily by selecting the
desired icon and placing it in the layout window.
Each time a location is placed in the layout win-
dow, a corresponding record is entered in the
Location edit table. This table lists each location
along with location parameters such as the capac-
ity, number of units, and downtime information.
For more information on how to define a loca-
tion, see “Locations” on page 96.

Layout Window (maximized)

Location Edit Table

Defining Entities
Once all locations have been defined, we define
entities in a similar way by selecting an icon for
each entity type. As we do this, a record is cre-
ated in the Entity edit table for each entity type.

For more information on how to define entities,
see “Entities” on page 118.

In this model the Speed (fpm) column is irrele-
vant since all entities move according to the defi-
nition of the mobile resource CellOp. Also, the
Stats column shows that we desire detailed statis-
tics for all entity types. “Time series” statistics
include throughput history of the entity. “Basic”
statistics include only the total exits of each entity
type from the system and the final quantity of
each entity type in the system.

Defining Arrivals
Of the four entity types, only one needs to be
scheduled to arrive in the system. Every 45 min-
utes one Pallet arrives at the Receiving location.
The word “INFINITE” in the Occurrences col-
umn means that one pallet continues to arrive
every 30 minutes as long as the simulation runs.
For more information on defining arrivals, see
“Arrivals” on page 163.

Defining Process Logic
The last step in defining Phase 1 of our model is
to define the processing of entities at each loca-
tion. ProModel simplifies this task by allowing
you to select an entity type and then use the
mouse to click on the locations in the order in
which they will process the entity. Each time you
click on a location, a new processing record is
added to the Process edit table, defining the pro-
cess for that entity type at that location. For more

 ProModel 57
User Guide
information on defining process logic, see “Pro-
cessing” on page 149, and “Operation Logic” on
page 299.

Once the basic entity flow has been defined using
the point and click method, operation statements
are added to the processing logic. The processing
logic can be as simple as a constant operation
time or as complex as a nested IF...THEN...ELSE
statement.

Process editing actually involves two edit tables
that normally appear side by side. The Process
edit table specifies what happens to an entity
when it arrives at a location, and the Routing edit
table specifies where an entity is to be sent once
processing is complete.

Process Edit Table

Routing Edit Table

Process and Routing Logic

The entire process and routing tables for the
Phase 1 model are shown next. The table reads as
follows:

1.When an entity called Pallet arrives at location
Receive there is no operation time or processing
logic (it's just a storage location). The resulting
output is six entities called Blank that are routed
to the FIRST available destination of either
NC_301L or NC_302L.

2.When Blanks arrive at NC_301L or NC_302L,
the processing time is a normal distribution with
a mean of 3 and a standard deviation of .2 min-
utes. The name of the entity is now changed to
Cog, and the Cog is sent to the Degrease location
(FIRST is the default routing rule).

3.Two Cogs are accumulated at Degrease and
processed for 5 minutes. When the degrease
cycle is complete, Cogs are routed to location
Inspect.

4.The inspection time is a uniform distribution
with a mean of 3.2 and a half range of .3 minutes.
Ninety six percent of the Cogs pass inspection
and exit the system, while four percent of the
Cogs fail inspection and become Rejects.

Process Table Routing Table

Entity Location Operation (min) Blk Output Destination Rule Move Logic
Pallet Receive 1 Blank NC_301L FIRST 6 MOVE FOR .5

Blank NC_302L FIRST MOVE FOR .5
Blank NC_301L WAIT N(3,.2) 1 Cog Degrease FIRST 1 MOVE FOR .5
Blank NC_302L WAIT N(3,.2) 1 Cog Degrease FIRST 1 MOVE FOR .5
Cog Degrease ACCUM 2

WAIT 5
1 Cog Inspect FIRST 1 MOVE FOR .5

Cog Inspect WAIT U(3.2,.3) 1 Cog EXIT 0.960 1
Reject EXIT 0.040

58 Chapter 3:
Building a Model
Phase 2: Adding Resources &
Variability
In this phase we wish to add the operator, CellOp,
to move entities from location to location, and to
perform the loading, unloading, and inspection
operations. ProModel requires that all dynamic
resources travel on a path network. Therefore, for
Phase 2, we need to define resources and path
networks.

Defining Path Networks
Path Networks consist of nodes and path seg-
ments which connect nodes to other nodes. Each
location where a resource may stop to pick up,
drop off, or process entities must interface with a
path node.

We define path networks through the Path Net-
work edit table similar to the previous edit tables.
For each network we specify the nodes and path
segments connecting the nodes. Some of the
heading buttons, such as Paths and Interfaces,
bring up other edit tables such as the Path Seg-
ment Edit table shown below. For more informa-
tion on defining path networks, see “Path
Networks” on page 123.

Path Network Edit Table

Path Segment Edit Table

Defining Resources
Resources are defined in much the same way as
entities. When in the Resource module we simply
select an icon to represent the resource and then
specify the characteristics of the resource in the
Resource edit table. For more information about
defining resources, see “Resources” on page 132.

 ProModel 59
User Guide
The Resource edit table shown below contains
fields for specifying the name and number of
units of a resource. It also has fields for specify-
ing resource downtimes (DTs...), the level of sta-
tistics to collect (Stats...), which path network
used for travel (Specs...), and any work and park
search routines (Search...). Clicking the mouse on
any of these buttons brings up separate edit tables
for specifying this data.

Process Editing
Now that we have defined a resource, we must
specify how and when that resource is used in the
processing logic.

In the Phase 1 model we used only constant pro-
cessing times. Now, due to variability associated
with the operator, we must represent the loading
and inspection times as distributions.

In the example below, CellOp loads the blank at
mill NC_302L and is then FREEd to perform
other operations. When the Blank has finished
processing, the entity is moved with the CellOp
to the degreasing machine.

Process Edit Table and corresponding
operation logic

Routing Edit Table

Process and Routing Logic
The complete process and routing logic is shown
below, with CellOp used to perform the loading
operations at each mill and inspect the Cogs at
the Inspect location. CellOp is also used to trans-
port entities from location to location. All addi-
tions or changes to the Phase 1 model are shown
in bold type.

60 Chapter 3:
Building a Model
Process Table Routing Table

Entity Location Operation (min) Blk Output Destination Rule Move Logic
Pallet Receive 1 Blank NC_301L FIRST 6 MOVE WITH CellOp

Blank NC_302L FIRST MOVE WITH CellOp
Blank NC_301L WAIT N(3,.2)

FREE CellOp
WAIT 5.7

1 Cog Degrease FIRST 1 MOVE WITH CellOp

Blank NC_302L WAIT N(3,.2)
FREE CellOp
WAIT 5.7

1 Cog Degrease FIRST 1 MOVE WITH CellOp
 THEN FREE

Cog Degrease ACCUM 2
WAIT 5

1 Cog Inspect FIRST 1 MOVE WITH CellOp

Cog Inspect WAIT U(3.2,.3)
FREE CellOp

1 Cog EXIT 0.960 1
Reject EXIT 0.040

With the new processing now defined, we have
specified all of the necessary modeling elements.
We are now ready for the model execution phase.
Once again, we shall defer discussion of model
execution until we have finished the final phase
of the model.

 ProModel 61
User Guide
Phase 3: Additional Operations
In the final phase of our modeling session we
want to demonstrate an assembly operation by
using the operator to install a Bearing into the
center hole of the Cog if (and only if) the Cog
passes inspection.

Once we have defined the attribute and distribu-
tion table, we must return to the Locations, Enti-
ties and Arrivals modules to define a new
location called Bearing_Que, a new entity called
Bearing, and an arrival schedule for the Bearings.

In addition, we also need to specify a usage based
downtime for mills NC_301L and NC_302L
from the Location module.

The final step in completing this phase of the
model is to edit the processing logic to include
the assembly. We will use the built-in JOIN con-
struct to accomplish the assembly.

Defining Attributes
The Attribute module allows you to enter the
Attribute edit table to define an Entity Attribute
called Test that holds integer values. We set this
attribute to one if the Cog passes the inspection,
or zero if it fails the inspection. For more infor-
mation about defining attributes, see “Attributes”
on page 225.

Defining a Distribution
In order to determine if an entity passes or fails
the inspection, you sample from a user-defined
distribution called Dist1 (alternately, you could
use the RAND() function). To define the distribu-
tion, simply click the mouse on the Table... but-
ton and fill in the distribution parameters. In this

case, 96% of the entities pass inspection and 4%
fail.

New Location, Entity, and Arrival
Before we can assemble the Cog at the Inspect
location we must first define the new entity type
called Bearing in the Entities module. We must
also define a new location, Bearing_Que, to hold
the Bearings, and an arrival schedule for the
Bearings. To do this we simply open the appro-
priate module as in Phase 1 and supply the infor-
mation. For simplicity we'll skip the details and
move on to downtime specification.

Defining Location Downtimes
In order to represent machine failure times for the
two mills, NC_301L and NC_302L, we click on
the DT... button in the Location edit table shown
below. This brings up another edit table for spec-
ifying a downtime based on machine usage. For
more information about defining location down-
times, see “Location Downtimes” on page 107.

62 Chapter 3:
Running a Model
In the example above, we have defined failures to
occur according to an exponential distribution
with a mean of 30 minutes. When a machine
fails, resource CellOp is required to service the
machine.

Process and Routing Logic
The process and routing table below shows all of
the changes and additions to the Phase 2 model in
bold text.

Process Table Routing Table

Entity Location Operation (min) Blk Output Destination Rule Move Logic
Pallet Receive 1 Blank NC_301L FIRST 6 MOVE WITH CellOp

Blank NC_302L FIRST MOVE WITH CellOp
Blank NC_301L WAIT N(3,.2)

FREE CellOp
WAIT 5.7

1 Cog Degrease FIRST 1 MOVE WITH CellOp

Blank NC_302L WAIT N(3,.2)
FREE CellOp
WAIT 5.7

1 Cog Degrease FIRST 1 MOVE WITH CellOp
 THEN FREE

Cog Degrease ACCUM 2
WAIT 5

1 Cog Inspect FIRST 1 MOVE WITH CellOp
 THEN FREE

Cog Inspect WAIT U(3.2,.3)
Test = Dist1()
IF Test = 1 THEN
 BEGIN
 JOIN 1 Bearing
 WAIT U(1.2,.2)
 FREE CellOp
 ROUTE 1
 END
ELSE
 BEGIN
 FREE CellOp
 ROUTE 2
 END

1 Cog EXIT FIRST 1
2 Reject EXIT FIRST 1

Bearing Bearing_Que 1 Bearing Inspect JOIN 1 MOVE FOR .05

This concludes the final phase of our model
building session. We now turn our focus to run-
ning the model.

Running a Model
Running a model is a fun and easy process. Mod-
els are compiled automatically at runtime, keep-
ing you apart from any complex compilation
process. If your model contains any errors, a
detailed message explains the nature of the error
and points to the module and line number where
the error occurred. In most cases you are permit-
ted to make changes on the fly.

ProModel uses concurrent animation, which
means that the animation occurs while the simu-

 ProModel 63
User Guide
lation is running. Concurrent animation has many
advantages over post-simulation animation. By
eliminating the two-step process of running the
simulation and then animating it, you save valu-
able time. Concurrent animation immediately
allows you to see if a model is working properly.

Simulation Options
When you select Options from the Simulation
menu, ProModel displays the Simulation Options
dialog. This dialog contains several options for
controlling the simulation, such as the run length,
warm-up period, clock precision, and the name of
the output file. You can also set the number of
replications and the level of detail to be collected
for the statistics. For more information about
Simulation options, see “Simulation Menu” on
page 347.

The maximum run length depends on the clock
precision and the time unit selected as shown in
the following table.

CLOCK PRECISION
Time Unit .01 .001 .0001 .00001

Seconds
(sec)

11,930 hrs 1,193 hrs 119 hrs 11 hrs

Minutes
(min)

715,827 hrs 71,582 hrs 7,158 hrs 715 hrs

Hours (hr) 42,949,672
hrs

4, 294,967
hrs

429,496
hrs

42,949
hrs

Days (day) 1,030,792,1
28 hrs

103,079,2
08 hrs

10,307,90
4 hrs

1,030,77
6 hrs

Animation Screen
The ProModel animation screen has a menu of its
own, with selections for controlling many simu-
lation parameters (such as run speed). You can

also control the animation through panning,
zooming, and pausing.

Speed Control Bar

Clock Selection Button

The screen above shows the speed control bar,
along with the clock selection button for control-
ling the format of the clock readout.

The File menu includes an option for viewing a
text file of the model as the model is running.
This is an excellent way of checking to make sure
the model is doing what it is supposed to do!

Next we'll take a look at two of the other menu
items: Options and Information.

64 Chapter 3:
Running a Model
Options Menu
The Options menu contains several options that
allow you to track events in the system as they
occur. The Debugger is a convenient and effi-
cient way to test or follow the processing of any
logic defined in your model. The debugger is
used to step through logic one statement at a time
and examine variables and attributes while a
model is running. A Step Trace allows you to
step through the system events one at a time by
clicking on the left mouse button. A Continuous
Trace allows you to step through system events
continuously without clicking the mouse.

The following Trace window shows system
events as they occur in the animation. The num-
ber in the left hand column represents the simula-
tion time when the event occurred, while the text
describes the event. Stepping through the events
is an excellent way to verify and debug a model.

Other options include: Animation Off, which
makes the simulation run considerably faster;
Zoom, which allows you to zoom in or out to any
degree on the animation; Views, which allows
you to quickly and easily access specific areas of
the model Layout window (see “Layout Settings”
on page 86); and User Pause, which allows you to
specify the time of the next simulation pause.

Information Menu
The Information menu contains selections for
obtaining system information during the run. For
up-to-the-minute location information, such as
current location contents and total number of
entries, select Locations from the Information
menu.

 ProModel 65
User Guide
Viewing Model Statistics &
Reports
The purpose of any simulation model is to gain a
deeper understanding of the system under study.
ProModel's Output Viewer 3DR helps you to see
the interactions between various system elements
through tabular and graphical representation of
system parameters such as resource utilization,
throughput history, cycle time, and work-in-pro-
cess levels.

After each simulation run, you are prompted to
view the model output. You can select yes to
view the results immediately, or select no to con-
tinue with some other task. Selecting yes opens
the Output Viewer 3DR and automatically loads
the output of the most recent model run.

The Output Viewer 3DR can be run directly from
within ProModel, or as an independent applica-
tion separate from ProModel. You can load a sin-
gle results file or several results files from
different models for comparison of selected sta-
tistics.

Model output is written to several output files
according to the type of data being collected. The
main output file contains information of a sum-
mary nature such as overall location utilization
and number of entries at each location. Other
files keep track of information such as location
contents over time and the duration of each entity
at each location.

In order to see the power and flexibility of the
ProModel output generator, see “Reports and

Graphs” on page 373 for detailed examples of the
output generated by the Output Viewer 3DR.

66 Chapter 3:
Viewing Model Statistics & Reports

 ProModel 67
User Guide
Chapter 4: Modeling Envi-
ronment

The Modeling Environment is everything con-
tained within the ProModel window.

When you open a model or select New from the
File menu, your screen appears with a menu bar
across the top of the screen and a layout window.
You will also be given access to the ProModel
Shortcut Panel. For now, let's look briefly at the
Shortcut Panel and then the menus accessible
from the menu bar.

From the ProModel shortcut panel seen above,
you may quickly access some of ProModel’s
commonly used features:

•Open a model Opens an existing model.
•Install model package Loads an existing
model package.

•Run demo model Allows you to run a
demonstration model.

•www.promodel.com Immediately con-
nects you with the ProModel support page
on the PROMODEL Web site.

•SimRunner Launches SimRunner.
•Stat::Fit Launches Stat::Fit.

To simply begin working on a new model, close
the Shortcut Panel and select New from the File
menu. The Shortcut Panel can be opened again
from the View menu.

Menu Bar
All of the tools necessary to build and run a
model and view the corresponding output are
accessed through the menu bar. The menu bar is
located just beneath the ProModel caption bar
and contains the selections listed on the following
page. These selections access other menus with
selections related to the menu heading.

•File The File menu allows you to open new
models, save current models, and merge two
or more models into one. It also allows you
to view a text version of the model and print
either the model text file or the graphic lay-
out of the model. For more information, see
“File Menu” on page 68.

•Edit The Edit menu contains selections for
editing the contents of edit tables and logic
windows. The selections available from this
menu will change according to the module
from which the Edit menu is selected. They
also vary according to the currently selected
window. For more information, see “Edit
Menu” on page 76.

•View The View menu lets you control Pro-
Model’s appearance. From this menu you
can control layout settings, hide or view hid-
den paths, operate the zoom controls, and
more. For more information, see “View
Menu” on page 83.

•Build The Build menu contains all of the
modules for creating and editing a model.

68 Chapter 4:
File Menu
This includes the basic modules such as
Locations, Entities, Arrivals and Processing,
and the optional modeling elements such as
Variables, Attributes, Arrays, and Subrou-
tines. For more information, see “Build
Menu” on page 95.

•Simulation The Simulation menu controls
the execution of a simulation and contains
options for running a model, defining model
parameters, and defining and running scenar-
ios. For more information, see “Simulation
Menu” on page 347.

•Output The Output selection starts the Pro-
Model Output Viewer 3DR for viewing
model output. It also allows you to view the
trace generated during run-time. For more
information, see “Reports and Graphs” on
page 373.

•Tools The Tools menu contains various
utilities including the Graphics Editor for
creating and modifying graphic icons and a
search and replace feature for finding or
replacing expressions throughout a model.
For more information, see “Tools Menu” on
page 307.

•Window The Window menu allows you to
arrange the windows (or iconized windows)
that are currently displayed on the screen
such that all windows are visible at once. It
also allows you to bring any individual win-
dow to the forefront of the display. For more
information, see “Window Menu” on
page 91.

•Help The Help menu accesses the Pro-
Model Online Help system. For more infor-
mation, see “Help Menu” on page 91.

File Menu
The File menu is the first selection on the menu
bar and consists of five major sections divided by
horizontal lines. The file management section
contains functions related to model files such as
saving and retrieving. The view/print section
allows the user to view a text listing of the current
model and print that listing or model layout. The
model packaging section allows the user to create
and install model packages consisting of models
with associated files. Exit quits ProModel, and
the model history section lists the five most
recently opened models for quick retrieval.
Choosing any model in the model history will
open and retrieve that model.

File management

View/Print

Model packaging

File Management
The File menu provides five functions related to
model files such as saving and retrieving. Files
in the ProModel format use the MOD extension.
The following table defines each of the selections

 ProModel 69
User Guide
available from the file management section
shown previously.

New Closes any currently opened model so a
new model can be built. This command is unnec-
essary if no other model is open. If the currently
opened model has changed, ProModel will ask if
you want to save the model before closing it.

Open Opens a user-specified model and clears
previous model data.

Merge Merges a selected ProModel model or
submodel into the current model. The same sub-
model can be merged multiple times into the
same model. See “Merge Model” on page 70.

Save Saves an open model under the current file
name. If no file name has been given, the user is
prompted for a file name.

Save As Saves an open model under a new file
name specified by the user. The old file name still
exists.

Models saved in current versions of ProModel
are not always compatible with previous versions
of ProModel.

However, models may be saved as previous ver-
sions in order to allow those models created in
recent versions of ProModel to be shared with
others who may be running a previous version of
ProModel.

Models created in version 5.4 or higher must be
saved as:

•version 5.0 to run with versions 5.0, 5.1, 5.2
or 5.3.

•version 4.5 to run with version 4.5.
•version 4.0 to run with versions 4.0 or 4.2.

Please note

There is also an Autosave feature that saves the
model file every n minutes as specified in the .INI
file. This feature can be disabled. See the discus-
sion later in this section.

File Management Procedures

How to create a new model:

1. Select New from the File menu.

2. Define model elements using their corre-
sponding modules.

How to open an existing model:

1. Select Open from the File menu.

2. Enter the necessary information in the
Load Model dialog box.

70 Chapter 4:
File Menu
How to save a model:

• Select Save from the File menu. If the
model does not already have a name, the
Save As dialog box will appear.

How to save a model with a new
name:

1. Select Save As from the File menu.

2. Enter the new file name in the Save As dia-
log box as shown in the following dialog box.

3. Select OK.

Backup File
ProModel also creates a backup file every time a
model is saved. The backup file is named the
same as the model file, only with a .BAK exten-
sion.

Model Merging
Model merging is a powerful feature that allows
large or complex models to be built in smaller
segments. A model segment may be as small as a
single workstation or as large as an entire depart-

ment. After all segments are ready, they can be
merged together to form a single model.

The Merge feature consists of two options:
Merge Model and Merge Submodel.

Merge Model
The Merge Model option allows two or more
independent (complete or incomplete) models to
be merged into a single model. Duplicate ele-
ments found in the base model and the merging
model are treated differently according to the ele-
ment type.

1. Entity and attribute names common to both
models are considered common elements in
the merged model. For example, if both
models contain the entity type In-Box, the
merged model will contain only the record
from the base model in the Entities table for
In-Box.

2. Duplicate locations, resources or path net-
works must first be renamed or deleted from
the merging model. Otherwise, an error
message occurs and the merge will termi-
nate.

3. If the two models use different graphic
libraries, ProModel will give the user the
choice to append the merging model's
graphic library to the base model's graphic
library.

4. All other duplicate model elements cause a
prompt to appear with the choice to delete
the duplicate element from the merging
model or cancel the merge process.

 ProModel 71
User Guide
Merge Submodel
The Merge Submodel option allows commonly
used submodels to be merged into an existing
model in one or more places. Submodels are cre-
ated just like any other model and may be com-
plete or incomplete models.

When specifying a submodel, you are prompted
for a “tag” to be attached to each element of the
submodel as either a prefix or suffix. For exam-
ple, you may be developing a model with four
workstations. Instead of creating workstations
individually, you could create a submodel with
only the common elements (e.g., in-box, out-box,
telephone, variables, arrays, etc.) and merge the
submodel into the main model four times. In the
resulting model, you would then fill in the unique
portions of each workstation. Entity and attribute
names will not be tagged.

In the following example, the tag “A_” is
attached as a prefix to every element of the sub-
model. A location called Queue1 in the submodel
becomes A_Queue1 in the main model and so on.
Likewise, a variable called Rejects becomes
A_Rejects in the merged model.

Please note

Tags used as prefixes must begin with a letter, A
through Z, or an underscore. For example, the

tag “3C_” is invalid and would produce an error
message.

How to merge a model or sub-
model into an existing model:

1. Open the initial (base) model.

2. From the File menu select Merge.

3. Select Model or Submodel from the sub-
menu.

4. Specify the name of the model to be
merged in the following dialog box.

5. If you select Submodel, specify a prefix or
suffix to be attached to each element of the
submodel.

6. Click on the layout where you want the
model or submodel to appear. A bracket
appears on the screen, representing the
upper left corner of the merging model’s lay-
out. This bracket moves as you move the
mouse, allowing you to correctly position the
layout to be merged.

7. Next, you will be asked if you would like to
append the graphic library file from the
model or submodel to the current graphic
library file. Select yes or no depending on
your preference.

8. When the model is merged in, the graphi-
cal elements remain selected so that you

72 Chapter 4:
File Menu
can position the merged model exactly
where you want it.

Please note

When merging models, if the zoom factors and
grid scales are not the same, ProModel will
adjust the sizes of graphical elements in the
merging model to the scale of the original model.

View/Print Model Text
The modular nature of ProModel makes it easy to
focus on the individual elements of a model.
However, it can still be useful to see an entire
model with all of the model elements in view at
one time. ProModel provides two ways to accom-
plish this. The first is through the View Text
option and the second is through the Print Text
and Print Layout Options.

The second major division of the File menu con-
tains the following options.

Each menu selection is covered in detail in the
following pages.

•View Text Displays the text of the current
model data in a window.

•Print Text Prints the text of the current
model to either a file or the printer.

•Print Layout Prints the model layout to a
printer.

•Printer Setup Opens a dialog box to allow
printers to be selected and controlled.

View Text
The View Text option displays the text of the cur-
rent model data in a window. This window may
be sized or shrunk to an icon for later viewing.

How to view the text of a model:

• Select View Text from the File menu. The
model's text is displayed in a window as
shown in the following example.

Only the first 30 characters of names will appear
in the names column.

Please note

You may leave the View Text window open for
reference while editing the model. However, any
updates will not appear until you close the win-
dow and select View Text again.

Print Text
The Print and Print Layout options allow you to
print a model to any printer configured for use

 ProModel 73
User Guide
with Windows. You may also save a text copy of
the file to disk.

How to save a text copy of the
current model:

1. Select Print Text... from the File menu.

2. Select To Text File from the submenu.

3. Supply a name for the file in the Print to
Text File dialog box. The default file extension
is TXT.

How to print the current text to a
printer:

1. Select Print Text... from the File menu.

2. Select To Printer from the submenu.

3. Select the desired options from the Print
dialog box and click OK.

Please note

The entire layout may also be copied to the clip-
board for editing and printing in another appli-
cation.

Print Layout
You may print the layout of any model including
all locations, path networks, resources, variables
and background graphics to any printer config-
ured for use with Windows. Regardless of the
size of the model layout, the layout will be pro-
portioned automatically to print on one standard
size sheet of paper.

How to print a model layout:

1. Select Print Layout from the File menu.

2. Select the desired options from the Print
dialog box and click OK.

74 Chapter 4:
File Menu
3. Choose the elements to be included in the
layout.

Printer Setup
ProModel allows you to print to any printer con-
figured for use with Windows. At times you may
need to switch from the default printer to another
printer or plotter. This can be done easily
through the Setup option on the print dialog box.

How to change the printer set-
tings:

1. Select Printer Setup... from the File menu to
access the Print Setup dialog box.

2. Select the desired options and click OK.

Model Packaging/Data Pro-
tection
Model packaging and Data Protection are power-
ful tools that allow you to distribute copies of
your model for others to examine and review, yet
maintain the integrity of the model. When you
create a model package, ProModel builds an
archive of files necessary to run the model and
allows you to distribute a copy of the model’s
graphics library. When you apply Data Protec-
tion, you can prevent others from viewing or
altering logic contained in your model.

Create Model Package Copies the current
model and its associated files to a specific direc-
tory or disk as <model name>.pkg.

Install Model Package Copies the files in a
*.pkg file to the destination directory you wish to
use.

Creating a Model Package
The Create Model Package option allows you to
copy the current model and its associated files to
a specific directory as a single file entitled
<model name>.PKG. This file includes the model
file (*.MOD), the graphic library (unless you
check the Exclude Graphic Library option), and
any external files you defined (e.g., read files,
arrivals files, and shift files)—the model package
automatically includes bitmaps imported into the
background graphics.

When you create a model package, two options
are available:

•Exclude Graphic Library Excludes the
graphics library file from the model pack-
age—if not required—and creates a smaller
package file.

 ProModel 75
User Guide
•Protect Model Data Prevents those who
install the model package from viewing or
editing the model data. When you load a
model package, ProModel disables the View
Text, Print Text, and Expression Search fea-
tures, plus the Build menu and portions of
the run-time Options and Information
menus.

Please note

You may NOT use dynamic plots with protected
models.

How to create a model package:

1. Select Create Model Package from the
File menu.

2. Enter the name you wish to use for the
model package (by default, ProModel uses
the name of the current model with a *.pkg
extension). You may also use the Browse...
button to select the model name and direc-
tory.

3. Check the Exclude Graphics Library box if
you want to package the model without the
graphics library.

4. Check the Protect Model Data box if you
want to protect your model data and pre-
vent other users from changing or viewing the
model data.

5. Click OK.

Installing a Model Package
Install Model Package copies all files in a model
package to a specified destination directory and
gives you the option to load the model.

How to install a model package:

1. Select Install Model Package... from the
File Menu.

2. Select the model package (*.pkg) from
the Install Model Package dialog.

3. In the Destination field, type the name of
the directory to which you want to copy the
model package.

4. Select OK. After you install the model
package, a dialog will appear and allow you
to load the model.

76 Chapter 4:
Edit Menu
Edit Menu
The Edit menu is the second selection on the
menu bar. It changes forms depending on which
window is currently active when choosing Edit.

•If the active window is an edit table such as
the Locations edit table, the Edit menu con-
tains options for inserting, deleting and mov-
ing records.

•If the active window is the Processing edit
table, the Edit menu contains two additional
options for copying and pasting completed
process and routing records.

•If the active window is a Notes window, the
Edit menu contains selections for cutting,
copying, and pasting text within the current
window or transferring it to another window.

•If the active window is a logic window, such
as the one for the operation column of the
processing module, the Edit menu contains
an additional selection, Compile, which
checks the syntax of the logic in the logic
window. This option is additional to the cut
and paste functions normally available in a
notes window.

•Finally, if the active window is either the
Graphic or Background Editor, the Edit
menu contains three sections. The first sec-
tion has choices for cutting, copying, and
pasting graphic objects to and from Pro-
Model's internal clipboard. The second has
options to cut and paste items to and from
the Windows Clipboard. The third has
options to import and export graphics from
other applications.

Please note

The Edit menu is accessible only while working
inside a module such as a processing edit table or
a Notes edit window. If no module is currently
open, the Edit selection is not available. Because

multiple edit tables and windows may appear on
the screen at the same time, the Edit menu com-
mands pertain only to the currently active win-
dow. (To activate a window, click anywhere
inside it.)

Editing Tables
When creating or modifying records in an edit
table such as a Locations or Entities table, the
Edit menu appears as follows.

The following table briefly lists the function of
each selection of the Table Edit menu.

Delete Deletes a record from the table.

Insert Inserts a record in the table above the cur-
rent record.

Append Appends a record to the end of the
table.

Move Marks a record for moving to a new posi-
tion in the table. Only one record may be marked
at a time.

Move to Moves the previously marked record
in the table above the current record.

How to delete a record from a
table:

1. Select the desired record by clicking in any
field of the record.

2. Select Delete from the Table Edit menu.

 ProModel 77
User Guide
How to insert a record in a table:

1. Position the cursor in the record below
where you wish the new record to be
inserted.

2. Select Insert from the Table Edit menu.

How to append a record to the
end of a table:

1. Position the cursor in any record of the
table.

2. Select Append from the Table Edit menu.
A new record will appear below the last
record of the table.

How to move a record to a new
position in a table:

1. Select the record to be moved by placing
the cursor in any field of the desired record.

2. Select Move from the Table Edit menu.

3. Position the cursor in the record that is
below the final destination of the selected
record and select Move to from the Table Edit
menu.

Editing Process Records
When editing the records in the Processing edit
table, two additional options for copying and

pasting entire process and routing records appear
in the Edit menu.

The Processing Edit menu's first five selections
are identical to the Table Edit menu. The two
additional menu items are as follows:

Copy Record Copies all fields of the current
record for subsequent pasting.

Paste Record Places a copy of the most
recently copied record above the current record.

Please note

Notes on editing process records:

1. A process record consists of all fields in the
Process edit table, as well as all corresponding
routing records defined in the Routing edit table
for the given process.

2. From a Routing edit table, you may only use
the Copy Record and Paste Record options to
copy routing information to another routing
record.

3. These options cannot be used to copy process-
ing or routing records from one model to
another.

78 Chapter 4:
Edit Menu
How to copy information from
another record:

1. Select the information to copy from field of
the desired record.

2. From the Edit menu, select Copy Record
(or press CTRL + C) to copy the information.

3. In the field you want to place the informa-
tion, select Paste Record from the Edit menu
(or press CTRL + V).

Please note

Alternately, you may copy information between
records using the right-click menu.

Editing Notes Windows
You may annotate individual records of the loca-
tions, resources and entities tables through Notes
windows. When editing the text of a notes win-
dow, the Edit menu changes to the following
form.

How to annotate a record:

1. Click inside the record to be annotated.

2. Click on the Notes button at the right of
the table.

The selections available from the Notes Edit
menu are defined as follows.

Cut Removes the selected text and places it in
the clipboard.

Copy Copies the current text and places it in the
clipboard.

Paste Inserts the contents of the clipboard at the
cursor.

Clear Deletes the selected text without placing a
copy in the clipboard.

In addition to the options in the edit menu, the
notes window itself contains four buttons. There
are three edit buttons, Cut, Copy, and Paste
which work exactly the same as the correspond-
ing options in the Edit menu, and a Print button.
The print button prints the text in the notes win-
dow. A status bar appearing at the bottom of the
Notes edit window shows the current line posi-
tion of the cursor (e.g., Line: 2).

Editing Logic Windows
All multi-line logic windows, such as the opera-
tion logic window of the Process edit table,
include the editing function buttons shown in the

 ProModel 79
User Guide
following example. These buttons include cut,
copy, paste, undo, local find and replace, build,
compile, print, and help. Using the Cut, Copy, or
Paste button works exactly the same as using the
corresponding option from the Edit menu.

Build The Logic Builder, which may also be
accessed by clicking the right mouse in the logic
window button, is a tool that allows you to build
logic without typing a single keystroke. Primarily
for building logic in the logic windows, it may
also be used for building expressions in expres-
sion fields.

Compile The Compile menu item checks the
logic in the edit window to see if it is complete
and syntactically correct. If an error is found, an
information box with details regarding the
error(s) appears. For example, the following error

is a result of the incorrectly spelled statement
“Acum 2.”

Print Prints text, such as the operation logic for a
single location, in a logic window and is helpful
when you are trying to debug a model and need to
work with particularly complex logic at certain
locations.

Help Provides context-sensitive help. ProModel
will provide help with select words or any word
with the cursor next to it.

Please note

A status bar is displayed at the bottom of a Logic
edit window, and shows the current line position
of the cursor (e.g., Line: 2).

80 Chapter 4:
Edit Menu
Editing Background Graphics
When working with graphic objects in the Back-
ground Graphics module, the Edit menu appears
as follows.

Cut Removes the selected object(s) and makes a
temporary copy that may be pasted back into the
layout window.

Copy Makes a temporary copy of the selected
object(s) for pasting later.

Paste Adds the most recently cut or copied
object(s) to the layout window.

Please note

While in the Background Graphics module, CUT,
COPY, and PASTE all use ProModel's internal
clipboard. Any objects copied to this clipboard
cannot be pasted into other Windows applica-
tions. To copy objects to other applications, use
COPY TO CLIPBOARD.

Delete Deletes the selected objects from the
layout window.

Select All Selects all of the objects in the layout
window.

Copy to Clipboard Copies the entire contents
of the workspace to the Windows clipboard.
Objects cannot be copied individually to the clip-
board. ProModel copies the workspace as a bit-
map or windows metafile for easy transfer to
other graphics packages that use the Windows
clipboard.

Paste WMF Pastes a Windows metafile (WMF)
from the Windows clipboard into the Edit win-
dow. You must have previously copied a Win-
dows metafile to the Windows clipboard.

Paste BMP Pastes a bitmap file (BMP) from the
Windows clipboard into the Edit window. You
must have previously copied a bitmap to the Win-
dows clipboard.

Import Graphic Imports a WMF, BMP, PCX
or GIF file into the layout window.

Export Graphic Exports the graphic in the lay-
out window to a WMF or BMP file.

How to edit background graphics:

1. Right click on the background graphic you
wish to edit.

2. Select Edit Background Graphic from the
right-click menu.

3. Edit the graphic as desired.

 ProModel 81
User Guide
Editing & Moving Graphics
ProModel allows easy adjustment and fine tuning
of the graphics in one window rather than open-
ing individual modules to move each object. This
makes it possible to move or rearrange a whole
submodel or model after it has been merged. To
move any or all graphics in a model, ProModel
must be in common mode (all modules must be
closed, leaving only the layout window open).

While in common mode, graphics that can be
moved and arranged in the layout window
include locations, path networks, static and
dynamic resources, variables, and background
graphics. Multiple graphics can be selected and
moved simultaneously. When graphics are
selected, the layout can be scrolled and the graph-
ics will remain selected.

How to move graphics:

1. Close all build modules leaving only the
layout window open.

2. Left click and drag the selected graphic to
the desired position.

3. To move multiple graphics, hold down the
Shift key while left clicking the desired graph-
ics to select them and then drag them to the
desired position. Using the shift key with a left
click deselects a selected graphic.

4. Fine tune the position of the selected
graphic(s) by using the arrow keys on the key-
board to move one pixel at a time.

When a submodel or model is merged into
another model, all graphics associated with it are
selected. This allows for immediate movement
by left clicking on the graphics and dragging
them to the desired position in the Layout win-

dow. You may also scroll the layout first and then
move the selected graphics.

Please note

Multiple graphics can also be selected by drag-
ging a bounding box around the graphics. Hold-
ing the left mouse button down, drag the mouse
from one corner of the graphics to the opposite
corner. The bounding box must completely
enclose the graphics you wish to select.

Special Considerations for Moving
Graphics
Locations When you click on a location with
multiple graphics defined for it (i.e., counter, sta-
tus light, label) in common mode, it is selected as
one graphic. Multiple units of a location can be
moved individually. Adjusting the position of an
individual graphic in a multiple graphic location
must be done in the locations module.

Routing Paths Routing paths defined in the Pro-
cessing module cannot be selected for movement
but will move when a location to which they are
connected is moved. If a routing path has multi-
ple segments, only the segment connected to the
location being moved gets readjusted. However,
when both locations on the routing path are

82 Chapter 4:
Edit Menu
moved simultaneously, the whole routing path is
moved.

In the examples above, the machine on the right
is moved. The routing paths remain connected to
each graphic while the path segment connected to
the moved graphic is adjusted accordingly.

Path Networks Path networks are not resized
when moved. Any resource points defined for a
dynamic resource are moved when the path net-
work is moved. The resource points remain rela-
tive to the node for which they were defined.

Resources When a dynamic resource is moved,
the resource point associated with it moves but
not the entire path network.

Sizing Graphics cannot be sized in common
mode.

Snap-to-Grid Graphics will not snap to the grid
in common mode, but their position can be fine-
tuned using the arrow keys on the keyboard to
move the selected graphic(s) one pixel at a time.

Labels To view the label or edit a location, path
network, resource, or variable graphic, right click
on the item. If you double left click on an item,
ProModel opens the build module and highlights
the record where you defined the element.

 ProModel 83
User Guide
View Menu
The View menu provides options for modifying
the model editing environment. These options are
defaults, used each time the program is started
and are not specific to any particular model. The
View menu consists of three categories:
Switches, Settings, and Commands. Each of
these categories is explained in the following sec-
tions.

How to access the View menu:

• Select View from the menu bar.

Switches
The following selections are available from the
switches section of the View menu. Switches are

options you can check or uncheck to turn on or
off.

Snap to Grid Check this switch to cause any
object subsequently drawn or placed on the lay-
out to be positioned on the nearest grid line. Snap
to grid snaps the upper left corner of a graphic.

Show Grid Check this switch to show the grid in
the layout window.

Show Layout Coordinates Displays cursor’s
the coordinates in the upper-left-hand side of the
layout window.

Show Hidden Networks Check this switch to
show the invisible path networks during editing.
A path network can be made to be invisible by
selecting the “invisible” option for the particular
network while in the Path Networks editor.

Show Routing Paths Causes routing paths to be
visible during run time as well as edit time. If the
option is not checked, the routing paths are visi-
ble only while in the processing editor.

Toolbars
Allows you to toggle the various ProModel tool-
bars on and off. See “Toolbars” on page 92 for
more infomation on each toolbar.

Settings
The following table defines each of the selections
available from the settings section of the View

84 Chapter 4:
View Menu
menu. These selections and their submenus are
discussed in more detail on the following pages.

Views Allows you to define, then quickly and
easily access specific areas of the model layout.
Once the view is defined, you can select it while
editing or running the simulation.

Zoom to Fit Layout Shrinks or enlarges the lay-
out to include the entire model.

Zoom Allows you to shrink or enlarge the lay-
out by the percentage selected.

Views
The Views feature allows you to define, then
quickly and easily access specific areas of the
model layout. Selecting a view scrolls the layout
window and adjusts the zoom so you see a spe-
cific region of the layout regardless of the layout
window’s size. Once a view is defined, you can
select it while editing or running the simulation
by selecting the view from the View menu or by
using the keyboard shortcut.

Defining & Selecting Views

How to define a view:

1. At edit time, select the View menu.

2. Select the Views item. If no defined views
exist, the Views dialog is displayed and not

the submenu shown here. If the Views dialog
appears, skip step 3.

3. Click Define from the extended menu and
the Views dialog appears.

4. With the Views dialog open, select the
area in the layout window you want to define
as a view using the scroll bars and zoom fea-
ture in the View menu. Or size the layout win-
dow to the desired view.

5. With the layout window set, type a name
for your view in the View Name field at the
bottom of the Views dialog, and then click
the Add button to define the view you have
selected in the current layout window.

6. The name you have entered will appear in
your list of views.

Please note

Views cannot be defined at run time.

 ProModel 85
User Guide
How to select a view from the
menu:

1. At edit time or run time, select the View
menu.

2. Select the Views menu item to display the
submenu list.

3. Click on the desired view from the sub-
menu.

How to select a view with shortcut
key CTRL + n:

• Press CTRL + n to select the desired view
where n is the number (1-9) of its position in
the view list (e.g., pressing CTRL + 1 would
access Single Screen Zoom from the view list
above and CTRL + 3 would access the Wait-
ing Time Zoom view). Views beyond nine will
not have a CTRL + n shortcut key.

Managing Your Views
When you click on Define from the Views menu,
the Views dialog is displayed. It lists the defined
views in the Views List and provides buttons for
adding views, removing views, and managing the
list. The function of each button is described
next.

Add Adds the view, which you have named in
the View Name field, to the list of views.

Remove Deletes the currently highlighted
view from the View List.

Move Up Moves the currently highlighted
view up one position in the list creating a corre-
sponding change to the menu and CTRL+ n
order.

Move Down Moves the currently highlighted
view down one position in the list creating a cor-
responding change to the menu and CTRL+ n
order.

Rename Renames the currently selected view
to the name you have typed into the View Name
field.

Set View Sets the highlighted name in the View
list to the portion of the model currently visible in
the Layout window.

View Name This is the field where you type
the name of the view you wish to add.

Show View Checking this box will cause your
views to be displayed in the Layout window as
you select them in the list.

Using Views at Run-time
When the simulation is running, you may choose
the active view by picking its name from the
Views menu or the Views Panel.

The Views menu is accessible during run-time
from either the Menu Bar’s Option menu or the
Right-Click menu.

The Views menu will display a list of your
defined views. There is also an option to open the
Views Panel.

86 Chapter 4:
View Menu
The Views Panel is a dialog window with a list of
your defined views.

The Views Panel may be moved or resized, and
will remain on top of the simulation window until
the Panel is closed.

Simply click on the name of a view in the Panel
to switch to that view.

Referencing a View in Model
Logic
Once a view has been defined, it may be refer-
enced in the model using the VIEW statement
(e.g., VIEW “Service Office”). This is useful for
illustrating certain parts of the model at specific
times during run-time. For syntax and examples,
see “View” on page 576.

Zoom Feature
The Zoom feature allows you to shrink or enlarge
the layout by the percentage selected.

How to zoom in or out on the lay-
out:

1. Select Zoom from the View menu.

2. Choose any preset zoom level, or the Cus-
tom Zoom option.

Preset Zoom Levels

Please note

The minimum and maximum zoom levels are cal-
culated automatically depending on the total size
of the layout at 100% zoom.

Layout Settings
The following selections are available from the
Settings section of the View menu.

The Layout Settings submenu contains selections
for changing the grid characteristics, color of the
layout window background, and the routing
arrow colors. These, as well as default setting
changes, apply to any currently loaded model. To
change any of these items for the current model
only, use the options provided in the General
Information dialog. The routing path color can be
changed for the current model only by selecting
the Path Options button in the Processing mod-
ule.

 ProModel 87
User Guide
The following table defines each of the selections
available from the Layout Settings submenu.

Grid Settings Provides options to control the
amount of space between grid lines. It also pro-
vides the option to define the grid units in terms
of distance and time per grid unit.

Background Color Allows the user to change
the background color in the layout window.

Routing Path Color Provides the option to
change the routing color used in processing logic.

Please note

Changes to these settings are saved as the default
settings.

Grid Size
By using the grid dialog box, you may set the res-
olution of the grid lines to your preference.

Please note

You may save the grid settings for the model by
checking the Save as default grid settings check
box.

How to change the colors and
resolution of the grid lines:

1. Select Layout Settings from the View menu.

2. Select Grid Settings from the Layout Set-
tings submenu.

3. Select the Ones or Tens option button.

4. Select the desired color.

5. Use the scroll bar to adjust the resolution.

88 Chapter 4:
View Menu
Please note

To change the color of the grid lines, select the
Ones button and choose a color. To change the
color of every tenth grid line, select the Tens but-
ton and choose a color.

Grid Scale
In addition to setting the resolution of the grid
lines, you may also associate a time and distance
value to each grid unit. This is extremely useful
when you are creating conveyors, queues, or path
networks to scale and you want the time or dis-
tance between nodes to be based on the number
of grid units between the nodes.

How to set the default time and
distance per grid unit:

1. Select Layout Settings from the View menu.

2. Select Grid Settings from the Layout Set-
tings submenu.

3. Select the Scale button from the Grid Dia-
log.

4. Enter the desired time and distance per
grid unit.

Please note

The “Recalculate path lengths when adjusted”
option applies to path networks, conveyors, and
queues. For details regarding recalculation of
times and distances when editing path segments,
see “Path Networks” on page 123.

Background Color
The Background Color option allows the user to
change the background color in the layout win-
dow.

How to set the background color
of the layout:

1. Select Layout Settings from the View menu.

2. Select Background Color from the Layout
Settings submenu.

3. Select the desired color.

4. Click OK.

Custom Colors
ProModel allows you to create up to 16 custom
colors for use anywhere a color selection is avail-
able. Entity, location, and resource icons, as well

 ProModel 89
User Guide
as background graphics, can use any custom
color defined in the colors menu.

When creating a custom color, the nearest solid
color is shown next to the dithered color for refer-
ence.

How to create a custom color and
add it to the color menu:

1. Select Layout Settings from the View menu.

2. Select Background Color... from the Layout
Settings submenu.

3. Move the cursor to the area on the multi-
color chart closest to the custom color you
desire and click the left mouse button.

4. Adjust the color by moving the custom
color adjustment slider up or down until the
desired shade is obtained. Alternately, you
can manually adjust any of the color defini-
tion fields (Hue, Sat, Lum, Red, Green, Blue).

5. Select Add to Custom Colors. The color
now appears in one of the 16 custom color
boxes.

Routing Path Color
ProModel allows you to select which colors to
use when showing selected, unselected and
related routings in the Processing module. This
helps in visually identifying the origin and desti-
nation of a process routing.

How to specify the routing colors:

1. Select Routing Path Color from the View
menu.

2. Click on the desired routing type, Unse-
lected, Selected, or Related from the menu.

3. Select the desired color.

4. Click OK.

Routing Path Types

Unselected All routing lines not for currently
highlighted process record.

Selected Routing line for currently highlighted
routing record.

Related Routing lines for highlighted process
record, except highlighted routing record.

90 Chapter 4:
View Menu
Edit Tables

Edit Table Fonts
Edit tables are used extensively in ProModel for
data entry. ProModel allows you to specify the
font used in these tables.

How to change the edit table font:

1. Select Edit Tables from the View menu.

2. Select Font from the Edit Tables submenu.

3. Choose the desired font by scrolling
through the Font selection list box.

4. Choose the Font Style.

5. Choose the Font Size.

6. Click OK.

Edit Table Color
ProModel allows you to specify the table color
used in edit tables.

How to change the edit table
background color:

1. Select Edit Tables from the View menu.

2. Select Color from the Edit Tables submenu.

3. Choose the desired color.

4. Click OK.

Please note

For information on creating custom colors, see
“Background Color” on page 88.

Commands
The Commands section of the View menu con-
tains various selections for controlling the model-
ing environment.

Refresh Layout Clears and redraws the graphics
in the layout window.

Reset Window Positions Causes all edit tables
to return to their original positions and sizes.

 ProModel 91
User Guide
Window Menu
The Window menu allows you to rearrange win-
dows and icons and select the active window.
These functions are standard to all Windows™
applications.

Tile Causes all open windows to fit in the avail-
able screen space. Windows that may be hidden
behind other windows become visible.

Cascade Causes all open windows to overlap
such that the title bar of each window is visible.

Arrange Icons Causes all icons representing
iconized applications to be arranged neatly along
the bottom of the screen.

Please note

Below Arrange Icons is a list of the open win-
dows. The window with the check next to it is the
active window.

How to reset the windows to their
default positions:

• Choose Reset Window Positions from the
View menu.

Help Menu
The ProModel Help menu is a convenient, quick
way to look up information about a task you are
performing, a feature you would like to know
more about, or a command you want to use. Pro-
Model Help is available whenever you see a Help
command button, or Help as an item on a menu
bar.

The selections from the Help Menu are as fol-
lows:

Index Brings up the Main Help Index.

Context Opens the help system to the topic
related to the currently active window.

ProModel Support on the Web When you
select this option from the help menu, ProModel
automatically connects you with the ProModel
customer service page on the PROMODEL web
site.

About ProModel Displays a message contain-
ing information about the product.

92 Chapter 4:
Toolbars
Toolbars
The ProModel toolbars provides quick access to
many of the options found in the menu bar.

The toolbar space may contain up to nine tool-
bars, which can be be toggled on or off in the
View menu. These toolbars are described below.

File

New Closes any currently opened model so a
new model can be built. This command is unnec-
essary if no other model is open. If the currently
opened model has changed, ProModel will ask if
you want to save the model before closing it.

Open Opens a user-specified model and clears
previous model data.

Save Saves an open model under the current
file name. If no file name has been given, you
will be prompted for a file name.

Create Package Bundles all files used for a
model into one package. See “Creating a Model
Package” on page 74 for more information.

Install Package Copies all files in a model
package to a specified destination directory and
gives you the option to load the model. See
“Installing a Model Package” on page 75 for
more information.

Layout

Show Grid Check this switch to show the grid
in the layout window.

Show Hidden Networks Check this switch to
show the invisible path networks during editing.
A path network can be made to be invisible by

selecting the “invisible” option for the particular
network while in the Path Networks editor.

Show Routing Paths Causes routing paths to be
visible during run time as well as edit time. If the
option is not checked, the routing paths are visi-
ble only while in the processing editor.

View

Views Allows you to define, then quickly and
easily access specific areas of the model layout.
Once the view is defined, you can select it while
editing or running the simulation. See “Views”
on page 84 for more information.

Zoom to Fit Shrinks or enlarges the layout to
include the entire model.

Zoom Allows you to shrink or enlarge the lay-
out by the percentage selected.

Build Basic

The options in this toolbar open the respective
build modules. Mouse over a toolbar button to
see its function and then refer to Chapter 5 for
information of that build module.

Build Advanced

The options in this toolbar open the respective
build modules. Mouse over a toolbar button to
see its function and then refer to Chapter 6 for
information of that build module.

 ProModel 93
User Guide
Simulation

Simulation Options Opens the simulation
options dialog. See “Simulation Options” on
page 348 for more information.

Scenarios Opens the scenarios dialog. See
“Scenarios” on page 353 for more information.

Play Begins the simulation

Pause Pauses and unpauses the simulation
when it is running.

Stop Ends the simulation and prompts you
whether to collect and view statistics up to the
point where the simulation was stopped.

Animation On/Off Toggles the animation on
and off

View Statistics Opens Output Viewer 3DR.

Simulation Information

Location Information Select this option and
choose a location to view an information box
with real time information about the location.
Information for all locations may also be dis-
played.

Variable Information Select this option to show
the current state of all real and integer global
variables.

Array Information Select this option to show
the current value of all cells for arrays of up to
three dimensions.

Define Dynamic Plots Allows you to define
Dynamic Plots. See “Dynamic Plots” on
page 364 for more information.

View Dynamic Plots Allows you to view previ-
ously defined Dynamic Plots. See “Dynamic
Plots” on page 364 for more information.

Debug

User Pause by Time Allows you to specify by
clock time when the simulation should pause
next.

User Pause by Date Allows you to specify by
calander date when the simulation should pause
next. This option is not available when you are
not running the simulation by calandar date.

Trace Step Select this option to step through
the trace listing one event at a time. Each time
you click the left mouse button, the trace will
advance one event. Clicking and holding the right
mouse button while in this mode generates a con-
tinuous trace.

Filtered Trace Opens the Filtered Trace dialog.
See “Trace Mode” on page 361 for more infor-
mation.

Debug Opens the Debug dialog. See “Debug
Option” on page 357 for more information.

Tools

Graphic Editor Opens the Graphic Editor. See
“Graphic Editor” on page 312 for more informa-
tion.

Simrunner Opens Simrunner.

Stat::Fit Opens Stat::Fit.

3D Animator Opens 3D Animator.

94 Chapter 4:
Right-Click Menu
Right-Click Menu
To simplify many of the steps required to per-
form common modeling operations, ProModel
includes a variety of right-click menus. From
these menus, you can access context-sensitive
options and settings for variables, locations, pro-
cessing, path networks, resources, and other com-
ponents. The following menu appears when you
right-click on the layout.

The right-click layout menu includes the follow-
ing options:

Edit Background Graphic Only when you
have a background graphic defined, this option
appears and lets you edit the graphic.

Snap to Grid Selecting this option snaps all
graphics to the grid.

Show Grid When you select this option, Pro-
Model displays the background grid.

Show Layout Coordinates Displays cursor’s
the coordinates in the upper-left-hand side of the
layout window.

Show Hidden Networks Displays all hidden
networks.

Show Routing Paths Displays all routing paths
used in the model.

Views From this option, you may select from
the views defined in the model.

Zoom to Fit Layout This option resizes the
model to fit the entire image in the layout win-
dow.

Zoom Allows you to select the zoom percent-
age.

Layout Settings From here, you may select and
define the grid settings, background color, and
routing color.

Refresh Layout This option refreshes the image
to reflect recent changes.

Please note

For information about the right-click menus for
model elements (e.g., locations, variables, rout-
ings, resources, path networks, queues, and con-
veyors), see “Building the Model: Advanced
Elements” on page 225.

 ProModel 95
User Guide
Chapter 5: Building the
Model: General Elements

Build Menu
The Build Menu is the gateway to all modeling
elements used to define a model. Through this
menu you specify the locations, entity types,
arrival rates, resources, path networks, down-
times, processing logic, variables, attributes,
arrays, macros, and subroutines that provide the
flexibility needed to model your system.

Any element represented by a graphic in the lay-
out window can be edited by holding the CTRL
key while clicking on the graphic representing
that element.

How to access the Build menu:

• Select Build from the menu options bar.

Each selection from the Build Menu is covered in
detail in the following sections of this chapter.

96 Chapter 5:
Locations
Locations
Locations represent places in the system where
entities are routed for processing, storage, or
some other activity or decision making. Loca-
tions should be used to model elements such as
delivery locations, warehouse locations, network
servers, and transaction processing centers.

Every location has a name and a name-index
number. The name-index number is the loca-
tion’s numerical position in the list of locations.
Logic which refers to a location, such as routing
logic, can use either the location's name, or the
LOC() function to refer to the location. The
LOC() function allows a location whose index
number has been stored in an attribute or variable
to be referenced. See “Loc()” on page 511.

Locations are defined in the Locations Editor,
which is accessed through the Build menu.

How to create and edit locations

• Select Locations from the Build menu. The
Locations Editor appears.

or...

• Right click on the existing location and
select Edit.

Locations Editor
The Locations Editor consists of three windows:
the Location Graphics window in the lower left
portion of the screen, the Location edit table
along the top of the screen, and the Layout win-
dow in the lower-right portion of the screen.
These windows can be moved and resized using
the mouse.

Layout Window

Location Edit TableLocation Graphics

Window

The Location edit table contains information
about every location in the model, including
characteristics such as capacity and number of
units. The Location Graphics window is a tool
box used for creating, editing, and deleting loca-
tions graphically. Locations are positioned in the
Layout window.

 ProModel 97
User Guide
Location Edit Table
A location's characteristics can be modified with
the Location edit table. The Location edit table
contains fields for displaying the graphic icon,
specifying the location name, and defining other
characteristics of each location. Each of these
fields is explained below. You can edit the
desired field directly in some cases, or by select-
ing a record and clicking the column heading but-
ton of the desired field.

Icon The graphic icon used to represent the
location. Changing location graphics is done
using the tools in the Location Graphics window.
If multiple graphics have been used to define a
location, the first graphic used is shown here.
Clicking on the Icon button brings the graphic for
the current location into view if it is not currently
showing in the layout window.

Name The name of each location. Names can
be up to 80 characters in length and must begin
with a letter (for more information on naming
items, see “Names” on page 404). A location's
name can be changed by editing this field. The
Search and Replace is automatically called when
the name is changed.

Cap. The capacity of the location refers to the
number of entities the location can hold or pro-
cess at any one time. A location's maximum
capacity is 999999. Entering INF or INFINITE
will set the capacity to the maximum allowable
value. If this field contains an expression, it will
be evaluated at the start of the simulation before
any initialization logic. Accordingly, a location's
capacity will not vary during the simulation run.

Please note

Individual units of a multi-unit location may dif-
fer in capacity only if every unit's capacity is
greater than 1. For example, in a location with
two units, one may have a capacity of 5 and the
other a capacity of 10. However, one unit may
not have a capacity of one and the other a capac-
ity of five. (See “Multi-Capacity, Multi-Unit, and
Multiple Locations” on page 106.)

Units The number of units of a location, up to
999. A multi-unit location works like several
locations with common characteristics. (See
“Multi-Capacity, Multi-Unit, and Multiple Loca-
tions” on page 106.)

DTs Click on this heading button to define loca-
tion downtimes, including any setup times. (See
“Location Downtimes” on page 107.)

Stats Click on this heading button to specify the
level of statistical detail to be gathered for the
location. (To view a location's statistics after a
simulation run, choose View statistics from the
Output menu.) Three levels of data collection are
available:

•None No statistics will be collected.
•Basic Only utilization and average time in

location will be collected.
•Time Series Collects basic statistics and

time series tracking the contents of the
location over time.

Rules This field defines (1) how a location
selects the next incoming entity from several that
are waiting to enter this location, (2) how multi-
ple entities at a location queue for output, and (3)
which unit of a multi-unit location is selected by
an incoming entity. (See “Rules Dialog Box” on
page 115.) To edit any of this information at a

98 Chapter 5:
Locations
location, click on the heading button to open the
Location Rules dialog box.

Notes Enter any optional notes about a location
in this field or click on the heading button to open
a larger Notes window.

Location Graphics Window
The Location Graphics window provides a graph-
ical means for creating locations and changing
their icons.

New Box

Counter
Gauge/Tank

Status Light
Entity Spot

Text Label

Region

Conveyor/Queue

Icons added to the layout will either represent a
new location or be added to an existing location's
icon depending on whether the New box at the
top left of the window is checked or unchecked.

New Mode
Allows you to create a new location record each
time you place any location graphic on the lay-
out. The new location is given a default name
which may be changed if desired. New mode is
selected by checking the New box [X] at the top
of the Graphic Tools window.

Edit Button Displays the Library Graphic Dialog
Box used to change the color, dimensions, and
orientation of the location graphic.

Erase Button Erases the selected location
graphic in the Layout window without deleting
the corresponding record in the Location edit
table.

View Button Brings the selected location in the
edit table into view on the Layout window.

How to define a new location
graphically:

1. Check the New Box in the Location Graph-
ics window.

2. Select a location symbol or icon from the
Location Graphics window.

3. Click on the Layout window where you
want the location to appear.

4. A new record is added automatically to
the Location edit table. You may now
change the default name to the desired
location name.

How to define multiple locations,
each having the same graphic:

1. Check the New box inside the Location
Graphic window.

2. Select the desired graphic.

3. While holding down the SHIFT key, click on
the Layout window where each location
should appear.

 ProModel 99
User Guide
How to move a location graphic
on the layout:

• Drag the graphic to the desired spot on the
layout.

How to move all graphics defined
for a single location:

• Drag inside the dashed box surrounding
the graphic (do not drag on an individual
graphic inside the box).

How to move multiple graphics for
two or more locations at once:

1. Click outside of any graphic and drag to
create a rectangle encompassing all of the
graphics to be moved.

2. Drag the rectangle to the desired position
on the layout.

How to delete a location:

1. Select the location record to be deleted in
the Location edit table.

2. Select Delete from the Edit menu.

or...

1. Right-click on the location graphic in the
layout window.

2. Select Delete [location name].

How to erase a location graphic:

1. Select the location graphic to erase.

2. Select the Erase button in the Location
Graphics window or press the <Delete> key.
The location graphic disappears, but the
location record still exists in the Location edit
table.

or...

1. Right-click on the location graphic in the
layout window.

2. Select Delete Graphic. The location
graphic disappears, but the location record
still exists in the Location edit table.

How to bring a location graphic
into view that is off the layout:

1. Highlight the record of the desired location
in the Location edit table.

2. Select the View button in the Location
Graphics window or click on the icon head-
ing button.

100 Chapter 5:
Locations
Add Mode
Allows you to add additional graphics to an exist-
ing location, such as a text label, an entity spot, or
a status light. A location with multiple graphics
will be enclosed by a dashed box. Add mode is
selected by unchecking the New box [] at the top
of the Graphic Tools window.

How to add an icon or symbol to
an existing location:

1. Uncheck the New Box in the Location
Graphics window.

2. Select a location symbol or icon from the
Location Graphics window.

3. Click on the Layout window where you
want the additional icon to appear.

4. The graphic or symbol is added to the
location.

Location Graphics
A location may have any one or more of the fol-
lowing graphics selected from the Location
Graphics window.

Counter A counter representing the current
number of entities at a location. The options
available with counters are explained next.

Gauge A vertical or horizontal sliding bar
showing the location's current contents during the
simulation (shown as a percentage of the capac-
ity). This graph will be updated constantly as a
simulation runs. The options available with
gauges are explained below.

Tank A vertical or horizontal sliding bar show-
ing the continuous flow of liquids and other sub-
stances into and out of tanks or similar vessels.
This continuous modeling capability can be com-

bined with discrete-event simulation to model the
exchange between continuous material and dis-
crete entities such as when a liquid is placed in
containers.

Conveyor/Queue A symbol representing a
conveyor or a queue. To create joints in a con-
veyor or queue, click on the conveyor or queue
with the right mouse button. Drag the joints to
achieve the desired shape. Right click on a joint
to delete it. The options available with conveyors
and queues are described next.

Label Any text used to describe a location. The
label is initially synchronized with the name of
the location and changes whenever the location
name is changed. The name, size, and color of the
text may be edited by double clicking on the label
or selecting it and clicking on the edit button (see
“Text Tool” on page 324). Once the name on a
label is edited, it will no longer be automatically
changed when the location name is changed.

Status Light A circle that changes color during
the simulation to show the location’s status. For a
single capacity location, the states displayed are
idle/empty, in operation, blocked, down, and in
setup. For multi-capacity locations, the displayed
states are up (operational) and down (off-shift, on
break, disabled).

Entity Spot An assignable spot on the layout
where the entity or entities will appear while at
the location. While an entity is at a location, the
entity’s alignment spot (defined in the Graphic
editor) will appear exactly on top of the location's
entity spot, allowing the two graphics to align
exactly as desired. A multi-capacity location will
use as many entity spots as defined (in the order
defined) up to the capacity of the location. Enti-
ties in excess of entity spots will continue to pile
up on the last entity spot defined.

Region A boundary used to represent a loca-
tion's area. A region may be placed in the layout
over an imported background such as an

 ProModel 101
User Guide
AutoCAD drawing to represent a machine or
other location. This technique allows elements in
the imported background to work as locations.

Library graphic Any of the graphics appearing
in the library graphic menu. Use the scroll bar to
view all available graphics. Library graphics may
be created or modified through the Graphic Edi-
tor. The name for the graphic, the default name of
any location created with that graphic, can be
saved in the Graphic Editor (see “Naming a
Graphic” on page 322).

How to edit a graphic already on
the layout:

• Double click on the graphic.

or...

1. Select the graphic.

2. Click on the Edit button inside the Location
Graphics window.

or...

1. Right-click on the graphic in the layout.

2. Select Edit Graphic from the menu.

Please note

Location graphics notes:

1. Location graphics are painted on the layout
in the order of the location list and, for any given
location having multiple graphics, in the order
that the graphic was added to the layout.

2. A location may include any of the above
graphics and symbols. However, a location can
have no more than one counter, one gauge, one
tank, one queue, one status light, or one region.

3. Clicking on a layout graphic with no edit
table on the screen displays the name of the ele-
ment (location, etc.) represented by the graphic.
With any edit table showing, hold down the CTRL
key while clicking on the graphic to display the
location name.

Counter Dialog Box
To edit the appearance of a counter, double click
on the counter on the layout, select the counter
and click on the Edit button, or right click on the
counter and select edit. The counter dialog box
allows you to choose the appearance of a graphic
counter that is used to display the contents of a
location. To change the digit color of the counter,
click on the Digit Color button. To change the
counter's background and border, click on the
Frame button. The digit's font size and style may
be changed by clicking on the Font button.

Gauge/Tank Dialog Box
When you create a gauge or tank, ProModel will
prompt you to specify which type you wish to use
before you paste it in the layout. To edit a gauge

102 Chapter 5:
Locations
or tank on the layout, double click on the gauge
or tank to display the gauge/tank dialog box,
select the gauge/tank and click on the Edit button,
or right click on the gauge or tank and select edit
graphic. From the gauge/tank dialog, you may
change a gauge to a tank and define its appear-
ance, orientation, and fill direction. You may also
access this dialog by selecting the gauge or tank
and clicking on the Edit button.

Text Dialog Box
To edit the appearance of a location label, you
may double-click on the text once it is on the lay-
out, select the text and click on the Edit button, or
right click on the text and select edit. The text is
typed in an edit window with several edit features
available via buttons above the window. The
font, color, alignment, rotation and frame may be
changed from this dialog box. A sample of the

currently chosen options is shown in the lower-
left corner.

Library Graphic Dialog Box
To change or edit a library graphic that represents
a location, you may double click on the library
graphic on the layout, select the graphic and click
on the Edit button, or right click on the graphic
and select edit.

This gives the option to change the icon, orienta-
tion, color, or graphic dimensions of the graphic.
The default dimensions for the graphic, which are

 ProModel 103
User Guide
created in the Graphic Editor, are displayed
above the graphic. To change the dimensions of
the graphic, click on the Dimensions button. This
gives you the ability to specify horizontal or ver-
tical and feet or meters to change the graphic
dimensions.

Queue/Conveyor Dialog Box
To control the look and operation of a conveyor
or a queue, you may double click on the con-
veyor/queue in the Layout window, select the
graphic and click on the Edit button, or right click
on the conveyor/queue and choose edit graphic.
The Queue/Conveyor dialog box appears. It also
allows you to specify whether you wish to define
the location as a conveyor or queue. Use the
scroll bar to set the width of the queue or con-
veyor. Select the style by clicking on solid, roller
(i.e., roller conveyor) or line. Click on the border
color or fill color to change the color of the
queue. If you want the queue to be visible during
edit time and invisible during run time, click on
the Invisible During Simulation option. See the
discussion on conveyors and queues later in this
section for more information.

Queues
A queue is a location that imitates the progressive
movement and queuing of waiting lines. When an
entity enters a queue, ProModel executes any
operation logic for the entity and then moves it to
the end of the queue. To have processing logic
execute after an entity arrives at the end of a
queue, use a MOVE statement in the operation
logic. A MOVE statement causes the entity to
move to the end of the queue where any addi-
tional operation logic defined will be processed.
Operation logic following a MOVE statement
actually gets processed after the elapsed time that
the entity would have reached the very end of the
queue if no other entities were ahead of it. Fol-
lowing a MOVE statement, any operation state-
ment is valid except for CREATE, SPLIT AS,
UNGROUP, UNLOAD, or another MOVE state-
ment.

If a MOVE statement is specified that includes a
move time (e.g., MOVE for 5.2 sec), the entity
speed and length of the queue are ignored. If a
move time is not included with the MOVE state-
ment, the move time is based on the entity speed
and length of the queue (if no queue length or
entity speed is defined, the move time is zero).

Entities in a queue may not be preempted by
other entities and, once entities begin movement
in a queue, are not allowed to pass each other.
After the specified move time, however, entities
continue processing any additional operation and
output logic. A “No Queuing” rule specified for a
queue location allows entities to depart in any
order after completing their move time.

Queues are drawn from the beginning to the end
of the center-line and are assigned a default
length based on the graphic scale. However, the
default queue length may be overridden by enter-
ing a different length. When a queue is modified
graphically, the length will automatically be
recalculated based on the graphic scale unless

104 Chapter 5:
Locations
you checked the “Recalculate path lengths when
adjusted” option. You can access this option from
the Tools menu under Options.

Conveyors
A conveyor is a location that simulates the move-
ment of entities on either an accumulating or non-
accumulating conveyor and appears with a con-
veyor graphic. Entities can only enter a conveyor
at the beginning and leave at the end. For accu-
mulating conveyors, if the lead entity is unable to
exit the conveyor, trailing entities queue up
behind it. For non-accumulating conveyors, if the
lead entity comes to a stop, the conveyor and all
other entities stop. Entities on a conveyor may
not be preempted by other entities.

The capacity assigned to a conveyor limits the
number of entities that can access a conveyor.
However, the cumulative total length or width of
the entities on the conveyor cannot exceed the
conveyor length. In fact, the utilization statistics
for a conveyor reflect the amount of space uti-
lized on the conveyor throughout the simulation,
not the number of entities occupying the con-
veyor. Unlike other locations, an entity is not
routed to the conveyor until there is room at the
beginning for the entity to fit, even if the con-
veyor has capacity to hold it.

ProModel executes operation logic for entities
entering a conveyor as soon as they enter unless
the logic follows a MOVE statement. If no
MOVE statement is encountered, entities begin
their move on the conveyor after processing any
logic. If a MOVE statement is encountered, entity
movement is initiated. Any logic defined after a
MOVE statement is processed when the entity
reaches the very end of the conveyor.

Move time on a conveyor is based on the length
and speed of the conveyor, as well as the length
or width of the entity. The move time for an

entity on a conveyor is calculated using the fol-
lowing formula:

Time = (Conveyor Length - Entity Length or
Width)/Conveyor Speed

And the percentage utilization is calculated using
this formula:

Util % =
entities

∑ tc

T

Ccall

Where:

tc = the time the entity spent on the conveyor
whether moving or not

Cc = the conveyor capacity for that entity

T = the total simulation time

Please note

Unlike queues, MOVE statements for conveyors
may not include a move time. Processing logic
executed at the end of the conveyor may contain
any operation statement except for CREATE,
SPLIT AS, UNGROUP, or UNLOAD. Addition-
ally, the ACCUM, COMBINE, and GROUP
statements are not allowed at the end of non-
accumulating conveyors.

Due to the space limitations of a conveyor, cer-
tain operation statements at the beginning of a
conveyor are invalid including ACCUM, COM-
BINE, CREATE, GROUP, SPLIT AS,
UNGROUP, and UNLOAD.

The default conveyor length is determined by the
graphic scale, although this may be overridden by
entering a different length. When a conveyor is
modified graphically, the length will automati-

 ProModel 105
User Guide
cally be recalculated based on the graphic scale
unless you uncheck the “Recalculate path lengths
when adjusted” option. You can access this
option from the Tools menu under Options.

Conveyor Graphics Display

When you use conveyors and want the graphics
to display properly on the conveyor with no over-
lapping and little space between entities, use the
following:

Entity
Orientation
on Conveyor Requirements

Width-wise 1. Entity width on conveyor
should equal horizontal dimen-
sion.

2. Entity length on conveyor
should equal vertical dimension.

Length-wise 1. Entity width on conveyor
should equal vertical dimension.

2. Entity length on conveyor
should equal horizontal dimen-
sion.

Conveyor Animation

The animation of entities traveling along convey-
ors is displayed according to the logical length or
width of the entity, not the scaled length or width
of the entity graphic.

How to define a conveyor graphi-
cally:

1. Select the conveyor/queue symbol from
the Location Graphics window.

2. Click on the Layout window with the left
mouse button where the conveyor should
start.

3. Add bends to the conveyor by moving the
mouse and clicking the left mouse button.

4. Move the mouse in the desired direction
and click on the right mouse button to end
the conveyor.

How to create bends in an
existing conveyor:

1. Click on the conveyor with the right mouse
button. From the menu that appears, select
Add Joint. A small black square appears on
the conveyor.

2. Using the left mouse button, drag the
square in the direction you desire to bend.

Conveyor Options Dialog Box

The conveyor options dialog box is used to define
the specifications for a conveyor. To access the
conveyor options dialog box, you may double
click on a conveyor, select the conveyor and click
on the Edit button from the Location Graphics
window, or right-click on the conveyor and select
edit. This opens the Conveyor/Queue dialog box
from which the Conveyor Options dialog box can
be opened by clicking on the Conveyor Options
button. The Conveyor Options dialog box pre-
sents the following options:

Accumulating Select or deselect this option
depending on whether the conveyor is to be accu-
mulating or non-accumulating.

106 Chapter 5:
Locations
Entity Orientation Select Lengthwise or Width-
wise depending on whether the entity is traveling
on the conveyor in the direction of the entity
length or in the direction of the width.

Length The length of the conveyor expressed in
either feet or meters depending on the default
specified in the General Information dialog.

Speed The speed of the conveyor in feet or
meters per minute. The distance units can be set
in the General Information dialog box.

Capacities and Units

Capacities
A location capacity is the maximum number of
entities it can hold at any one time. In general,
multi-capacity locations are used to model loca-
tions such as queues, waiting areas, or any other
type of location where multiple entities may be
held or processed concurrently. Consider the fol-
lowing multi-capacity location:

Units
A location unit is defined as an independently
operating station. When multiple, independently
operating stations all perform the same operation
and are interchangeable, they form a multi-unit
location. Consider the following multi-unit loca-
tion:

Multi-Capacity, Multi-Unit, and
Multiple Locations
Sometimes it can be unclear whether to use
multi-capacity, multi-unit, or multiple locations
when defining parallel workstations. Suppose, for
example, we have three parallel stations, each
performing the same operation as shown below.
There are three possibilities for defining the
machines: (1) as a multi-capacity location, (2) as
a multi-unit location, or (3) as multiple locations.
The method you choose to define the locations
depends on your application.

For many situations modeling parallel stations as
a multi-capacity location works fine. By placing
an additional graphic for each station, both the
logic and visual effects of having parallel stations
can be achieved. However, you should use a
multi-unit location instead of a multi-capacity
location when any of the following situations
exist:

•Individual units have independent down-
times.

•It is important to collect individual statistics
on each unit.

•It is important, for visual effect, to see enti-
ties select individual units by a routing
rule other than First Available (e.g., By

 ProModel 107
User Guide
Turn, Fewest Entries, Longest Empty,
etc.).

•It is important, for visual effect, to have a
status light assigned to each unit.

In some situations, it may even be desirable to
model multi-unit locations as totally separate
locations. Multiple locations should be used
instead of multi-unit locations when:

•A path network is defined but each location
must interface with a different node on the
network.

•Different units have different processing
times.

•The input for each unit comes from different
sources.

•The routing is different for each unit.

Defining a Multi-Unit Location

To create a multi-unit location, enter a number
greater than one as the number of units for a loca-
tion. A corresponding number of locations will
be copied below the multi-unit location record in
the Location edit table, each with a numeric
extension designating the unit number of that
location. Successive graphics, representing indi-
vidual units will be drawn to the right of the orig-
inal location, but may be moved normally.

The original location record becomes the proto-
type for the unit records. Each unit will have the
prototype's characteristics unless the individual
unit's characteristics are changed. In the table
below, each unit of the location has a clock-based
downtime defined because the parent location,
Loc2, was assigned a clock-based downtime.
However, Loc2.1 has an additional entry-based
downtime and Loc2.2 has an additional usage-
based downtime. Any other characteristic,

including the icon, can be changed as if the unit
were an independent location.

If the number of units is changed, the individual
unit location records are automatically created or
destroyed accordingly.

Individual units of a multi-unit location can be
selected to process an entity according to the
Selecting Incoming Entities option in the Rules
dialog box. (See the discussion regarding the
Rules dialog box later in this section.)

In the output report, scheduled hours for the par-
ent location will be the sum of the scheduled
hours for the individual units.

Please note

Multi-Unit notes:

1. It is not possible to create a path network to
interface with each unit of a multi-unit location.
You must define the locations individually and
use multiple locations as discussed above.

2. It is not possible to route an entity to a spe-
cific unit of a multi-unit location. For example,
typing Loc2.3 in the destination field of the Rout-
ing edit table is not allowed.

Location Downtimes
A downtime stops a location or resource from
operating. A down resource or location no longer
functions and is not available for use. Downtimes
may represent scheduled interruptions such as
shifts, breaks, or scheduled maintenance. Or, they

108 Chapter 5:
Locations
may represent unscheduled, random interruptions
such as equipment failures. Downtimes may also
be given preemptive or non-preemptive priority
and may require one or more resources for repair
times.

For single capacity locations, downtimes may be
based on clock time, usage time, number of enti-
ties processed,a change in entity type, or called
using the DOWN statement. Multi-capacity loca-
tions have only clock and called downtimes. If a
downtime is occurring at a location and any other
downtime starts (except a setup downtime), the
two downtimes are processed together, not
sequentially (i.e., downtimes overlap).

How to specify a location down-
time:

1. Select the desired location in the edit
table.

2. Click on the DTs... button. This brings up the
downtime selection menu shown here for sin-
gle-capactiy locaitons. (Multi-capacity loca-
tions will only have the Clock and Called
options.)

3. Each selection opens an edit table for
specifying the required elements of the
downtime.

Please note

An alternative and more straightforward method
for defining downtimes due to breaks or shifts is
to use the Shift Editor. The Shift Editor also has

the advantage of allowing a downtime to be
defined for an entire group of locations.

Clock Downtime Editor
Clock downtimes are used to model downtimes
that occur depending on the elapsed simulation
time, such as when a downtime occurs every few
hours, no matter how many entities a location has
processed.

The Clock Downtime Editor consists of the edit
table shown below. To access the Clock Down-
time Editor, select Clock from the menu that
appears after clicking the DT... heading button.
Most expressions, including distributions, can be
included in the Frequency, First Time, and Prior-
ity fields. (See the “Appendix A” on page 587 to
see if the specific statement or function is valid in
a particular field.)

Frequency The time between successive down-
time occurrences. This option may be an expres-
sion. This field is evaluated as the simulation
progresses, so the time between downtimes can
vary.

First Time The time of the first downtime occur-
rence. If this field is left blank, the first clock
downtime will occur according to the frequency
field. This time is evaluated after any initializa-
tion logic.

Priority The priority (0-999) of the downtime
occurrence. The default priority is 99, the highest
non-preemptive priority.

Scheduled... Select YES if the downtime is to
be counted as a scheduled downtime. Select NO

 ProModel 109
User Guide
if the downtime is to be counted as a non-sched-
uled downtime.

All scheduled downtimes will be deducted from
the total scheduled hours reported in the output
statistics and, therefore, will not be considered in
computing utilization, percent down, and so on.

Logic Enter any logic statements to be pro-
cessed when the downtime occurs. When the
logic has completed, the location becomes avail-
able. In the most simple case, the logic is simply
a WAIT statement with a time value or expres-
sion which represents the duration of the down-
time. Click on the heading button to open a larger
edit window.

Disable Select YES to temporarily disable the
downtime without deleting it from the table.

The example above shows a simple clock-based
downtime where the location is down for 10 min-
utes every 2 hours (120 min). Because this time
should not be included in the total scheduled or
available hours, YES is selected in the “Sched-
uled” column.

Entry Downtime Editor
Entry downtimes are used to model downtimes
when a location needs to be serviced after pro-
cessing a certain number of entities. For example,
if a printer needs a new cartridge after printing
2000 shipping orders, an entity downtime should
be defined. The downtime occurs after the entity
that triggered the downtime leaves the location.

The Entry Downtime Editor consists of the edit
table shown below. To access the Entry Down-
time editor, select Entry from the menu that
appears after clicking the DT... heading button.
Entry downtimes are only available for single
capacity locations. The Downtime Editor con-
tains fields for defining downtimes based on the
number of entries processed at a location. Most
functions, including distributions, can be

included in the Frequency and First Occurrence
fields. (See the “Appendix A” on page 587 to see
if the specific statement or function is valid in a
particular field.)

Frequency The number of entities to be pro-
cessed between downtime occurrences. This may
be a constant value or a numeric expression and
is evaluated as the simulation progresses.

First Occurrence The number of entities to be
processed before the first downtime. This may be
a value or a numeric expression. If left blank, the
first downtime will be based on the frequency
entered.

Logic Any logic statements to execute when the
downtime occurs. Normally, this logic is simply a
time expression representing the length of the
downtime. Click on the heading button to open a
larger edit window.

Disable Select YES to temporarily disable the
downtime without deleting it from the table.

In the example above, Robot1 will go down
every 100 entries, with the first downtime occur-
ring after only 50 entries. When the downtime
occurs, it will require a resource (M1) to service
the machine for some amount of time between
3.8 and 4.2 minutes. If resource M1 is unavail-
able when requested, the robot will remain down
until M1 becomes available.

Please note

Entry-based downtimes do not accumulate. For
example, if a downtime cannot occur because the
priorities of the entities being processed are at
least 2 levels higher than the priority of the

110 Chapter 5:
Locations
downtime, only the first downtime resumes after
processing the entities. All others are ignored.

Usage Downtime Editor
Usage downtimes are used to model downtimes
that occur after a location has been operating for
a certain amount of time, such as if a machine
fails due to wear after so many hours of opera-
tion. Usage downtimes are different from clock
downtimes because usage downtimes are based
on location operation time, which does not
include blocked time. Clock downtimes are based
on total elapsed simulation time (operation time,
blocked time, idle time). Usage downtimes are
available only for single-capacity locations.

The Usage Downtime Editor consists of the edit
table shown below. It contains fields for defining
location downtimes based on the actual time in
use. Most functions, including distributions can
be included in the Frequency, First Time, and Pri-
ority fields. (See the “Appendix A” on page 587
to see if a specific function is valid in a particular
field.)

Frequency The usage time between down-
times.

First Time The time in use before the first down-
time occurrence. Leave blank if the first time is to
be based upon the frequency entered.

Priority The priority, between 0 and 999 of the
downtime. The default priority is 99, which is the
highest non-preemptive priority. Generally,
usage downtimes tend to be preemptive and
should have priority values greater than 100.

Logic Any logic statements to be processed
when the downtime occurs. Typically, this field
contains a time expression representing the
length of the downtime. Click on the heading but-
ton to open a larger edit window.

Disable Select YES to temporarily disable the
downtime without deleting it from the table.

In this example, Robot2 will experience break-
downs according to a Gamma distribution with
shape and scale parameters 1.7 and 2.3. Mainte-
nance resource M1 will be used to service the
robot. The repair time is normally distributed
with a mean of 2.4 minutes and a standard devia-
tion of .3 minutes.

Please note

Usage-based downtimes do not accumulate. For
example, if a downtime cannot occur because the
priorities of the entities being processed are at
least 2 levels higher than the priority of the
downtime, only the first downtime resumes after
processing the entities. All others are ignored.

Setup Downtime Editor
Setup downtimes should be used to model situa-
tions where a location can process different types
of entities, but needs to be setup to do so. Setup
downtimes will not overlap but will preempt
other downtimes in a manner similar to that of an
entity. Setup downtimes are only available for
single capacity locations.

Note that a setup downtime is assumed to occur
only when an entity arrives at a location and is
different from the previous entity to arrive at the
location. Consequently, the word ALL in the
prior entity field means all except the same entity
type.

 ProModel 111
User Guide
The Setup Downtime Editor consists of the edit
table shown below. It contains fields for defining
location downtimes based on the arrival of a new
entity type.

Entity The incoming entity for which the setup
occurs. If the setup time for all entity types is
identical when shifting from the same prior
entity, the reserved word ALL may be entered.

Prior Entity The entity preceding the entity for
which the setup occurs. If the setup is the same
regardless of the preceding entity, you may enter
the reserved word ALL.

Logic Enter any logic statements to be pro-
cessed when the downtime occurs. Click on the
heading button to open a larger edit window.

Disable Select YES to temporarily disable the
downtime without deleting it from the table.

This example shows that the time to setup Robot3
depends on the arriving entity and the prior
entity. If a GearB follows a GearC, the setup time
for the machine will be based on a Lognormal
distribution with a mean of 4.5 minutes and a
standard deviation of .95 min. But if a GearC fol-
lows a GearA, the setup time will be based on a
Lognormal distribution with a mean of 2.3 min
and a standard deviation of .2 min.

Called Downtime Editor
Called downtimes are used in conjunction with
the DOWN statement to make a location go
down. When the name of the called downtime is
referenced during simulation by the DOWN

statement, the called downtime will execute its
logic.

Name The name of the called downtime. This
is the name that will be referenced by the DOWN
statement.

Priority The priority (0-999) of the downtime
occurrence. The default priority is 99, the highest
non-preemptive priority.

Scheduled... Select YES if the downtime is to
be counted as a scheduled downtime. Select NO
if the downtime is to be counted as a non-sched-
uled downtime.

All scheduled downtimes will be deducted from
the total scheduled hours reported in the output
statistics and, therefore, will not be considered in
computing utilization, percent down, and so on.

Logic Enter any logic statements to be pro-
cessed when the downtime occurs. When the
logic has completed, the location becomes avail-
able. In the most simple case, the logic is simply
a WAIT statement with a time value or expres-
sion which represents the duration of the down-
time. Click on the heading button to open a larger
edit window.

For more information on the DOWN statement,
see “Down” on page 470.

Location Priorities and Preemption
Priorities determine which entity or downtime
uses a location when more than one entity or
downtime is contending for it. Priorities may be
any value or expression between 0 and 999, with
higher values having higher priority. For simple
prioritizing, you should use priorities from 0 to

112 Chapter 5:
Locations
99. Priorities greater than 99 are used for pre-
empting (bumping or displacing) entities or
downtimes currently occupying a location.

Priority values are divided into ten levels (0 to
99, 100 to 199, ..., 900 to 999), with values
beyond 99 used for preempting entities or down-
times of a lower priority level. Multiple preemp-
tive levels make it possible to preempt entities or
downtimes that are themselves preemptive. This
means that an entity, EntA, with a priority of 99
can be preempted by another entity, EntB, with a
higher priority level of 199. In turn, another
entity, EntC, with a priority of 299 can preempt
EntB at the same location.

To preempt an entity currently using a location, a
preempting entity or downtime must have a prior-
ity at least ONE level higher than the entity cur-
rently at the location. To preempt a downtime in
effect at a location, a preempting entity must
have a priority at least TWO levels higher than
the current downtime. Since all overlapping loca-
tion downtimes are processed concurrently
(except setup downtimes), a downtime cannot, in
effect, preempt another downtime.

A preempted entity will resume processing where
it left off unless the location was in the middle of
a setup downtime. If the entity initiated a setup
downtime before being preempted, it will begin
processing the setup logic from the beginning
when it resumes.

Assigning Priorities

An entity or downtime accesses a location based
on its priority. An entity is assigned a priority for
accessing a location in the Destination column of
the Routing edit table. A downtime is assigned a
priority in the appropriate Downtime edit table.
The first of the following examples shows a pri-
ority of 100 assigned to EntA as it tries to claim
Loc2. This priority is high enough to preempt any
entity at the location having a priority less than
100. It is not high enough, however, to preempt
any downtimes at the location.

Process Table

Entity Location Operation (min)
EntA Loc1 USE Res1 FOR N(3,.1)

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Loc2, 100 First 1 MOVE FOR 1

This example shows a priority of 200 assigned to
a usage-based downtime at Loc4. This priority
can preempt any entity at the location with a pri-
ority less than 200.

The following table shows the minimum priority
level requirements for an incoming entity or an
upcoming downtime to preempt the current entity
or downtime at the location.

 ProModel 113
User Guide
Minimum Required Priority Levels for
Preempting at a Location

To preempt
the
Current Entity

To preempt the
Current
downtime

Incoming
Entity

1 priority level
higher

2 priority levels
higher

Upcoming
Downtime

1 priority level
higher

Downtimes over-
lap

•The upper left quadrant shows that for an
entity to gain access to a location already
processing another entity, the incoming
entity must have a priority at least one
level higher than the current entity's prior-
ity.

•The upper right quadrant shows that for an
incoming entity to gain access to a loca-
tion where a downtime is currently in
effect, the entity must have a priority at
least two levels higher than the downtime's
priority.

•The lower left quadrant shows that a for a
downtime to preempt an entity currently
processing, the downtime must have a pri-
ority one level higher than the currently
processing entity.

•The lower right quadrant shows that all loca-
tion downtimes (except setup) are concur-
rent or overlapping. Setup downtimes
preempt as if they were entities.

The following examples demonstrate the expla-
nations above in greater detail.

Example 1

The following example demonstrates what hap-
pens when Ent 1 with a priority of 99 is pre-
empted by Ent 2 which has a priority of 100 or
greater.

Entity Preempting an Entity

Ent 1

Ent 2
Time

T1 T2 T3 T4

Ent 1 processing resumes upon
completion of Ent 2 processing

Example 2

This example demonstrates what happens when a
downtime having a priority of 99 is preempted by
an entity having a priority of 200 or greater.

Entity Preempting a Downtime

DT

Entity
Time

T1 T2 T3 T4

Downtime resumes immediately upon
completion of entity processing

114 Chapter 5:
Locations
Example 3

This example demonstrates the behavior when an
entity with a priority of 99 is preempted by a
downtime with a priority value of 100 or greater.

Downtime Preempting an Entity

Entity

DT Time

T1 T2 T3 T4

Remaining entity processing time
resumes upon completion of downtime

Example 4

This example illustrates how, regardless of the
downtime priority values, downtimes will over-
lap. The exception is setup downtimes, which
preempt downtimes exactly like entities (see
Example 5).

DT 1

DT 2

Overlap

Time

Total Downtime
T1 T2 T4T3

Overlapped/Concurrent Downtimes

Example 5

This example demonstrates what happens when a
setup downtime with a priority of 99 is pre-
empted by a normal downtime having a priority
of 100 or greater.

Downtime Preempting Entity in Setup

Entity setup

DT
Time

T1 T2 T3 T4

Remaining setup time resumes upon
completion of downtime

Example 6

This example demonstrates what happens when
Ent 1 setup downtime with a priority of 99 is pre-
empted by Ent 2 having a priority of 100 or
greater.

Entity Preempting Entity in Setup

Ent 1 setup Ent 1 setup

Ent 2

Time

T1 T2 T3 T4

Ent 1 setup must start over upon completion
of Ent 2 processing

 ProModel 115
User Guide
Special Notes Regarding Location
Downtimes
1. When an entity preempts another entity

(Example 1), or when an entity preempts a
downtime (Example 2), or when a downtime
preempts an entity (Example 3), any
resources owned by the preempted entity or
downtime will be freed temporarily until the
preempting entity or downtime finishes at
the location. At that time, the original entity
or downtime will seek to claim the exact
units of the resource or resources it owned
before the preemption occurred.

2. As shown in examples 5 and 6, an entity that
requires a location setup will be treated dif-
ferently depending on the preempting activ-
ity. If the preempting activity is another
entity, the current setup in process will have
to start over from the beginning. However, if
the preempting activity is a downtime, the
remaining setup time will finish upon com-
pletion of the preempting downtime.

3. Locations will not go down if they are in a
blocked state. A location is blocked if it has
an entity that cannot be routed because of the
unavailability of the next location. This may
also include the time an entity waits to enter
a location based on a routing condition, such
as LOAD.

4. Locations will not go down if any of the
occupying entities are waiting for a resource
or are waiting at any downtime inhibiting
statement.

Downtime inhibiting statements

WAIT UNTIL

ACCUM

COMBINE

MATCH

GROUP

JOIN

LOAD

5. In cases where a downtime or other entity
attempts to preempt an entity’s use of a loca-
tion, a preemption process may be defined to
override the default way of handling the pre-
emption. See “Preemption Process Logic” on
page 300.

Rules Dialog Box
The Rules dialog box, selected by clicking on the
Rules button in the Locations edit table, is used to
choose the rule for ProModel to follow when
making the following decisions:

•Selecting incoming entities
•Queuing for output
•Selecting a unit

116 Chapter 5:
Locations
Selecting Incoming Entities
When a location becomes available and there is
more than one entity waiting to enter, a decision
must be made regarding which one to admit. The
primary determining factor is the priority of the
input routing. The entity with the highest routing
priority will be admitted regardless of the incom-
ing selection rule. However, if two or more enti-
ties have the same priority for claiming the
location, then the location selects an incoming
entity based on the incoming selection rules listed
below.

Oldest by Priority Selects the entity waiting the
longest among those having the highest routing
priority.

Random Selects randomly with equal probabil-
ity among all waiting entities.

Least Available Capacity Selects the entity
coming from the location having the least avail-
able capacity. Ties are broken by the entity wait-
ing the longest.

Last Selected Location Selects the entity com-
ing from the location that was selected last. Ties
are broken by the entity waiting the longest. If no
entities are waiting at the last selected location,
the Oldest by Priority rule takes effect.

Highest Attribute Value Selects the entity with
the highest attribute value for a specified
attribute. Ties are broken by the entity that has
been waiting the longest. Location attributes are
also valid entries.

Lowest Attribute Value Selects the entity
which has the lowest attribute value for a speci-
fied attribute. Ties are broken by the entity wait-
ing the longest. Location attributes are also valid
entries.

Queuing For Output
When an entity finishes its operation at a loca-
tion, other entities to finish ahead of it may not
have departed. A decision must be made to allow
the entity to leave or to wait according to some
queuing rule. If one of the following queuing
rules is not specified, “No Queuing” will be used.

No Queuing Entities that have completed their
operations at the current location are free to route
to other locations independent of other entities
that have finished their operations. If this option
is selected it is not displayed in the Rules Box.

First In, First Out (FIFO) The first entity complet-
ing operation must leave for its next location
before the second entity completing its operation
can leave, and so on.

Last In, First Out (LIFO) Entities that have fin-
ished operations queue for output LIFO so the
last one finished is the first to leave.

By Type Entities that have finished operations
queue for output FIFO by entity type so the rout-
ing for each entity type is processed indepen-
dently of routings for all other types.

Highest Attribute Value Entities that have
completed operations queue for output according
to the highest value of a specified attribute.

Lowest Attribute Value Entities that have com-
pleted operations queue for output according to
the lowest value of a specified attribute.

Selecting a Unit
If the location has multiple units, then incoming
entities must select which available unit to use.
One of the following rules may be selected.
These decision rules apply to multi-unit locations
only.

First Available Selects the first available unit.

 ProModel 117
User Guide
By Turn Rotates the selection among the avail-
able units.

Most Available Capacity Selects the unit hav-
ing the most available capacity. This rule has no
effect with single capacity units.

Fewest Entries Selects an available unit with the
fewest entries.

Random Selects an available unit randomly.

Longest Empty Selects the unit that has been
empty the longest.

When specifying the decision rules for selecting
incoming entities at a location, it is important to
remember that the routing of an entity is also
dependent on the queuing for output decision
rules at the previous location. The following
example will clarify this principle.

Rules Dialog Box Example
Consider a location, Loc1, which has a “Last In,
First Out (LIFO)” as the queuing for output rule.
Suppose that two other locations, Loc2 and Loc3,
have “No Queuing” for the output rule. The three
locations, Loc1, Loc2, and Loc3 feed into Loc4

which has an “Oldest by Priority” rule for select-
ing incoming entities.

Two parts are queued for output at Loc1. The part
waiting the longest, EntA, at Loc1 has been wait-
ing 10 minutes. The other part, EntB, which
queued for output after EntA, has been waiting 5
minutes. At Loc2, the part queued for output,
EntC, has been waiting 7 minutes. At Loc3, the
part queued for output that has been waiting the
longest, EntD, has waited 3 minutes.

The part to enter Loc4 first is EntC at Loc2 which
waited 7 minutes. Even though EntA has been
waiting ten minutes, it must wait until EntB has
been routed, because EntB is ahead of it in the
output queue according to the LIFO queuing rule.
Once Loc4 finishes processing EntC, EntB at
Loc1 enters Loc4. EntB enters before EntA
because entities must be output before a destina-
tion selects incoming entities. Next, EntA at Loc1
enters Loc4 after which EntD at Loc3 enters
Loc4.

118 Chapter 5:
Entities
Entities
Anything that a model processes is called an
“Entity.” Documents, people, or phone calls
should be modeled as entities. Entities may be
grouped, such as when several boxes are stacked
on a pallet (through the GROUP statement); con-
solidated into a single entity, such as when two or
more documents are joined together (through the
JOIN statement); split into two or more entities,
such as when a box is opened and the contents
removed (through the SPLIT AS statement); or
converted to one or more new entities (through
the RENAME or CREATE statement or by defin-
ing multiple outputs in the routing).

Each entity type has a name and a name index
number. In logic and expressions, an entity can
be referred to by name or by its name-index num-
ber using the ENT() function. The ENT() func-
tion allows a statement requiring an entity name
to use an expression that may change to reference
different entity names as a simulation progresses.
See “Ent()” on page 476 for more information.

Entities may also have user-assigned attributes to
represent such things as dimensions, weights,
pass/fail status, and group identifiers.

How to access the entities editor:

• Select Entities from the Build menu.

or...

• Right click on the existing entity and select
Edit.

Entities Editor
Entity types are created and edited with the Enti-
ties Editor. The Entities Editor consists of (1) an
edit table to define the name and specifications of
each entity type in the system, and (2) the Entity
Graphics window for selecting one or more icons

 ProModel 119
User Guide
to represent each entity. The fields of the edit
table are explained below.

Icon This is the graphic icon used to represent
the entity during the animation. Entity graphics
are defined or modified using the Entity Graphics
window. This icon can vary during the simula-
tion. See “Defining Multiple Entity Graphics” on
page 120.

Name The entity name. See “Names” on
page 404 for more information on naming.

Speed This entry is optional and applies to self-
moving entities such as humans. It defines the
speed in feet or meters (depending on the dis-
tance units chosen in the General Information
Dialog box) per minute to be used for any of the
entity's movement along a path network. When
creating a new entity, a default value of 150 fpm
(or 50 mpm for metric systems) is automatically
entered. This is roughly the speed of a human
walking.

Stats The level of statistical detail to collect for
each entity type: None, Basic, or Time Series.
Time series statistics must be selected if you wish
to view a time series plot in the output module.

Notes Any information you wish to enter about
the entity, such as material, supplier name.

Defining Entities
Entities are typically defined graphically by
clicking on a desired library graphic in the Entity
Graphics window. Alternatively, you may define
entities by simply entering their names and char-
acteristics in the Entity edit table. Entity graphics
are optional.

How to define entities graphically:

1. Select Entities from the Build menu.

2. Check the New box in the Entity Graphics
window.

3. Select an icon for the entity. (Use the
Graphic Editor to create new icons.)

4. Edit the name and other default entries for
the entity in the Entity edit table.

Entity Graphic Dimensions
An entity has two sets of dimensions, a logical
(length and width) dimension, and a graphical
(horizontal and vertical) dimension. An entity's
length and width are used to determine the num-
ber of entities that can fit on a conveyor, and do
not affect the size of the graphic on the screen

120 Chapter 5:
Entities
during a simulation. They are changed in the
fields labeled Length and Width in the Entity
Graphics window. If multiple graphics are
defined for an entity, each graphic can have a dif-
ferent length and width. Which side a user
chooses to call the length or width is unimportant
as long as the proper side is referenced when
defining a conveyor. If no conveyors are defined
in the model, no specifications of a length and
width are necessary.

An entity's horizontal and vertical dimensions are
used to determine the size of the graphic on the
screen. These dimensions can be changed in two
ways. The scroll bar to the right of the graphic
will scale the graphic. In addition, the horizontal
and vertical dimensions can be changed by click-
ing on the Edit button, then clicking on the
Dimensions... button from the resulting dialog
box. The default dimensions are determined
when an icon is created to scale in the Graphic
Editor. If the size is changed using the scroll bar,
the change will be reflected in the dimensions
listed. If you change either the horizontal or verti-
cal dimension from the dialog box, the size of the
icon will change accordingly.

Please note

Since the horizontal and vertical dimensions must
remain proportional, only one of the dimensions
needs to be changed. The other dimension

changes automatically to maintain proportional-
ity.

Defining Multiple Entity Graph-
ics
Entity types can be assigned more than one
graphic to represent the entity at various stages of
production or traveling in different directions. An
entity representing a loan application could be
assigned three graphics: the first representing the
application before a credit check has been
received, the second representing the application
after receiving the credit check but before the
loan is approved, and the third representing the
application after the loan is approved. During the
simulation, the application’s status could be
shown by adding additional graphics to represent
each state of the loan process using the
GRAPHIC statement (see “Graphic” on page 492
for information).

 ProModel 121
User Guide
How to define multiple graphics
for an entity type:

1. Uncheck the New box on the Entity Graph-
ics window. Numbered graphic cells appear
in the Entity Graphics window.

Multiple
graphic
cells

2. Click on the desired cell.

3. Select a library graphic from the graphics
menu.

4. Repeat steps two and three until all the
desired graphics have been assigned to the
entity type.

The graphic that represents an entity during a
simulation will be the first in this series until an
entity's graphic is changed with the GRAPHIC
statement.

Preemptive Entities
Often during a simulation, it is desirable to have
an entity preempt an activity at a location or
resource in order to gain access to that location or
resource. These situations can be modeled using

preemptive priorities. An entity with a high
enough priority can take over a location process-
ing an entity or a location that is down. An entity
with high enough priority can also take over a
resource when it is being used by another entity
or when it is off shift. When an entity takes over a
location that was down or in use by another
entity, the entity has preempted the downtime or
the other entity.

In a multi-capacity location, the occupying entity
will be preempted only if there is no more capac-
ity at the location and the occupying entity is
undergoing an operation time. Further, the occu-
pying entity cannot be one that has been split,
created, grouped, combined, ungrouped, or
unloaded at the location.

An entity must have a priority one level higher
than an occupying entity to preempt the occupy-
ing entity. An entity must have a priority that is
two levels higher than a downtime to preempt the
downtime. If an entity does not have a high
enough priority to preempt another entity or
downtime at a location, it waits in line (oldest by
priority) to access the location (see “Location Pri-
orities and Preemption” on page 111).

Note that the priority of an entity is not defined
for the entity itself. For claiming a location, it is
defined in the destination field of the routing. For
capturing a resource it is defined as part of the
GET, JOINTLY GET, or USE statement. A pri-
ority may, however, be assigned to an attribute of
a referenced entity when it attempts to access a
resource or location.

Example of Preemptive Entities
In this example entity (EntA) arrives at location
Loc1. Immediately upon arrival it requests to use
resource Res1 for a normally distributed amount
of time. The priority for obtaining the resource is
99, which means that it is a non-preemptive
request. When Res1 becomes available, EntA

122 Chapter 5:
Entities
will be first in line because it has the highest non-
preemptive priority possible. When processing is
complete for this entity, it is routed to Loc2 with
priority 200. This means that it can preempt
another entity or a downtime that may already be
in process at Loc2. (See “Location Downtimes”
on page 107 and “Resource Downtimes” on
page 138 for more details on entity preemption.)

Process Table

Entity Location Operation (min)
EntA Loc1 Use Res1,99 For N(3,.1)

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Loc2,200 First 1 MOVE FOR

2.5

 ProModel 123
User Guide
Path Networks
When resources are modeled as dynamic
resources which travel between locations, they
follow path networks. Entities moving by them-
selves between locations may also move on path
networks if referenced in the move logic of the
routing. Otherwise, they follow the routing path.
Multiple entities and resources may share a com-
mon path network. Movement along a path net-
work may be defined in terms of speed and
distance, or simply by time. See discussion on
Automatic Time and Distance Calculation, later
in this section, for more information about move-
ment according to speed and distance or by time.

There are three types of path networks: passing,
non-passing, and crane. A passing network is
used for open path movement where entities and
resources are free to overtake one another. Non-
passing networks consist of single-file tracks or
guide paths such as those used for AGVs where
vehicles are not able to pass. Crane path networks
are described in more detail in the section “Crane
Systems” on page 269.

Passing and non-passing networks consist of
nodes, which are connected by path segments.
Path segments are defined by a beginning and an
ending node and may be uni-directional or bi-
directional. Multiple path segments, which may
be straight or jointed, may be connected at path
nodes. For all path networks, path nodes define
the points where the resources using the network
interface with processing locations.

Path Networks are defined in the Path Networks
Editor, which is accessed from the Build menu.

How to create or edit a path net-
work:

• Select Path Networks from the Build menu.

or...

• Right click on the existing path network
and select Edit.

Path Networks Editor
The Path Networks Editor consists of an edit
table with fields for defining basic information
about each network, such as the network name,
the type of network (Non-Passing or Passing),
and the basis for movement along the network
(Speed and Distance or Time). Clicking on the

124 Chapter 5:
Path Networks
appropriate heading button will bring up a table
for defining nodes, path segments, and location
node interfaces.

The following explains each field of the Path
Networks edit table.

Graphic For passing or non-passing path net-
works, this button displays the Path Color dialog,
which allows you to define the color of the path
network. Click on the heading button or double
click in this field to bring up the graphic dialog.
Both dialogs allow you to specify whether or not
the network will be visible at run time.

Name A name that identifies the path network.
For more information about valid names, see
“Names” on page 404.

Type Set this field to Non-Passing if you want
entities and resources to queue behind one
another on the path network. If a path is Non-
Passing, entities may not pass each other, even if
an entity is traveling at a faster speed than the one
in front of it. Set this field to Passing if you want
entities or resources to pass each other on the
path network.

A "Crane" option is also available, which is
described in more detail in the section “Crane
Systems” on page 269.

T/S Set to either Time or Speed and Distance
as the basis for measuring movement along the
network. See the discussion on Automatic Time
and Distance Calculation later in this section for
more information.

Paths The number of path segments in the net-
work. Clicking on the heading button opens the
Path Segment edit table where the user may
define the network's node to node connections.

The Path Segment edit table is covered in more
detail later in this section.

Interfaces The number of location-node inter-
faces in the path network. If an entity will be
picked up or dropped off at a particular location
by a resource, that location must connect to a
node through a location-node interface. Clicking
on the heading button opens the Interfaces edit
table where the user may define nodes that con-
nect to processing locations. The Interfaces edit
table is covered in more detail later in this sec-
tion.

Mapping The number of entries in the Mapping
edit table. Clicking on the heading button opens
the Mapping edit table where the user may map
destinations to particular branches of the net-
work. (The Mapping edit table is covered in more
detail later in this section.)

Nodes The number of nodes defined in the
Nodes edit table. Nodes are created automatically
when graphically defining path segments. Click
on this heading button to open the Node edit
table, which may be used to define nodes manu-
ally or set Node Limits on one or more nodes.
Nodes may also be used to control a resource's
behavior through node logic or search routines
such as work and park searches (see “Resources”
on page 132). The Nodes edit table is covered in
more detail later in this section.

How to create a path network
graphically:

1. Set the default time and distance values
per grid unit from the Grid dialog box.

2. Choose Path Networks... from the Build
menu.

3. Enter the name of the network in the Path
Networks edit table.

 ProModel 125
User Guide
4. Select either Passing or Non-passing as the
network type.

5. Select either Speed and Distance or Time
as the travel basis.

6. Click on the Paths... heading button to
open the Path Segment edit table.

7. Lay out the network using the mouse but-
tons as described below.

How to create path segments:

1. Left click to create a node and begin a
path segment.

2. Additional left clicks produce path joints.

3. A right click ends the segment and creates
a new node.

How to modify path segments:

To create a new path from an existing
node
• Left click on that node.

To delete a joint
• Right click on an existing joint.

To add a joint
1. Right-click anywhere on a path segment.

2. Select Add Node from the menu.

3. Drag the joint to the desired position.

Please note

If you hold down the CTRL key and move the cur-
sor over a path segment or joint, the Add/Delete
joint cursor will appear. From here, left click to
add or delete a joint.

To highlight a path on the layout and in
the Path Segment edit table
• Left click on that path.

How to create additional nodes or
move existing nodes:

1. Click on the Nodes heading button in the
Path Networks edit table.

2. Click the left mouse button to create a
node both on the layout and in the Nodes
edit table.

3. Drag an existing node to move that node.

How to move a path network:

1. Click on the Paths heading button in the
Path Networks edit table.

2. Left click on any path segment and drag
to the desired position. The entire network will
move.

A Typical Path Network
The following diagram shows a path network
consisting of seven nodes (N1 to N7) connected
by path segments. Path segments may be straight
lines from one node to another, as in the segment

126 Chapter 5:
Path Networks
from node N7 to node N6, or they can have any
number of joints, such as the segment from node
N2 to node N5.

Path Segment Edit Table
This table is used to define the Path Segments
that make up a path network. When specifying
travel according to time between nodes, the head-
ing “Distance” changes automatically to “Time.”

The following defines the fields of the Path Seg-
ment edit table.

From The beginning node of the path segment.

To The ending node of the path segment.

BI Set to Uni-directional or Bi-directional
depending on whether traffic can travel in only
one or either direction.

Time If travel along the network is to be mea-
sured in time rather than in speed and distance,
then enter the time required for a resource or
entity to traverse the path segment. This value
may be any numeric expression except for
resource and downtime system functions. When
travel along a path is measured in time, all
resources and entities traveling along the path
take the same amount of time to travel it, regard-
less of their speed. This field's title changes to
“Distance” if the T/S field in the Path Networks
edit table is set to Speed and Distance.

Distance If travel along the network is to be
measured in terms of speed and distance, enter
the length of the segment which determines the
travel time along the path in conjunction with the
speed of the resource or entity.

The value entered may be any numeric expres-
sion except for attributes, arrays, and system
functions. This expression is evaluated only
when the simulation begins.

The distance may be followed by a comma and a
speed factor between .01 and 99. This speed fac-
tor may be used to model any circumstance
affecting the speed of items traveling the path.
For example, a resource may normally travel at
150 fpm, but may slow down as it goes around a
corner to 80% of the original speed, 120 fpm.
This would be entered as 100, .8 for a path seg-
ment 100 feet long which traversed the corner.
This field's title changes to “Time” if the T/S
field in the Path Networks edit table is set to
Time.

Please note

Path segment editing notes:

1. If no path segments have been defined for a
network, resources and entities will move from
node to node in zero time. See “Processing” on

 ProModel 127
User Guide
page 149 for more information about the Routing
Move dialog box.

2. To move nodes already defined on the layout,
click on the Nodes button and move the desired
nodes.

3. To insure that all nodes can be seen by the
user, two nodes cannot be located at the same
point.

Automatic Time and Distance
Calculation
The distance between two successive nodes or
the time required to traverse a segment between
two successive nodes is calculated according to
the number of grid units between the nodes and
the default time and distance values per grid unit.
ProModel automatically enters this time or dis-
tance in the Time/Distance column of the Path
Segments edit table. Although the calculated time
or distance may be edited later, relying on the
automatic time and distance calculation feature
allows path networks to be built to scale and
saves time when defining path networks graphi-
cally. The time or distance for a path is automati-
cally recalculated whenever the path is edited
(lengthened or shortened) unless you unchecked
the “Recalculate path lengths when adjusted” box
under Options in the Tools menu.

How to set the default time and
distance values per grid unit:

1. Select Layout Settings from the View menu.

2. Select the Grid Settings button.

3. Click on the Scale... button in the Grid dia-
log box.

4. Enter the time and distance values as
shown below.

Please note

To set these values as defaults, you must check
the Save as Default Grid Settings option on the
grid dialog box.

Interfaces Edit Table
If an entity will be picked up or dropped off at a
particular location by a resource, that location
must connect to a node through a location-node
interface. The Interfaces edit table is used to
define location-node interfaces. The graphic
below shows how to set node N1 to interface with
location Loc1, node N3 to interface with Loca-

128 Chapter 5:
Path Networks
tion Loc2, and so on, as in the example at the
beginning of this section.

The fields of the Interfaces edit table are
described as follows.

Node The node name.

Location The name of any locations which
interface with the node. Nodes can interface with
several locations, but a location may interface
with only one node on the same path network.

How to create location-node
interfaces

1. Left click on the desired node to begin
rubber-banding a link or interface.

2. Left click on the desired location to com-
plete the interface.

Please note

A node on a path network may not interface with
a particular unit of a multi-unit location (i.e.,
Loc1.2). A node may interface only with the
“parent” location (i.e., Loc1) of a multi-unit
location.

Mapping Edit Table
If there are multiple paths emanating from one
node to another node, the default path selection
will be based on the shortest distance for speed &
distance networks, and the least number of nodes
for time based networks. These defaults can be
overridden by explicitly mapping some destina-
tion nodes to specific branches that entities and
resources will take when traveling out of a
“from” node.

The fields of the Mapping edit table are described
as follows.

From Entities and resources traveling out of this
node will use this mapping record to decide
which of the alternate branches will be taken
next.

To The “from” node and the “to” node together
define the branch to be taken next. This might
also be interpreted as the node which entities and
resources will go through, to reach one of the
destination nodes.

Dest. Entities and resources whose ultimate des-
tination is one of these nodes will be forced to
take the branch that directly connects the “from”
node to the “to” node.

 ProModel 129
User Guide
Please note

When your simulation is compiled and run, Pro-
Model will automatically define destinations for
your network mapping, if you have not defined
them yourself. These computer-generated map-
pings will not appear in the Dest. column of the
Mappings table, but the From and To columns
will contain information on these mappings. Do
not delete the information in these collumns.

How to create mappings using the
mapping edit table:

1. Click on the Mapping... heading button in
the Path Network edit table. This will open the
Mapping edit table.

2. Click on the From heading button and
select the node to be mapped.

3. Click on the To heading button and select
the terminating node for the branch to be
mapped.

4. Click on the Destination heading button
and select the desired node(s).

How to create mappings graphi-
cally:

1. Click on the Mapping... heading button in
the Path Network edit table. This will open the
Mapping edit table.

2. Click on the from node in the Layout Win-
dow. This places the selected node in the
From field.

3. Click on the to node in the Layout Win-
dow. Note that the to node must be directly
connected to the from node with a single
branch.

4. Click on the destination node(s) in the Lay-
out Window. This places the selected node(s)
in the Destination field.

Please note

ProModel automatically calculates and uses the
shortest paths on unmapped portions of networks
(if the network is time based, the path having the
least number of nodes is used). Explicitly indicat-
ing shortest paths using mapping constraints will
speed up the translation process, especially for
models with complex networks.

An example of mapping two branches of a net-
work is given on the following pages.

Mapping Example
The following example uses a path network dia-
gram to demonstrate mapping.

In this example, we wish to force resources and
entities enroute from Loc1 to Loc4, Loc5, or
Loc6 to take the branch directly connecting node
N2 and node N5 to avoid traffic congestion at the
intersection of the two main branches at node N3.
Since there are multiple ways to go from N2 to
N5, a decision as to which alternative will be
used has to be made at N2.

In addition, we want resources and entities to fol-
low the same path in the opposite direction when
enroute from Loc4, Loc5, or Loc6 to Loc1. In
this case, the decision must be made at N5.

Because the combined length of segments con-
necting N2 to N3 and N3 to N5 is shorter than the
length of the single segment from N2 to N5,
resources and entities based on speed and dis-
tance will normally take the former path to travel.

130 Chapter 5:
Path Networks
To force them to take the longer path, we must
specify mapping constraints.

This case requires two explicit mapping con-
straints to override the selection of default paths
in each direction: The first table entry forces enti-
ties and resources en-route from Loc1 to Loc4,
Loc5, or Loc6 to override the default path and
take the direct branch from N2 to N5. The second
table entry forces entities and resources traveling
from N5 (originally from Loc6, Loc5 or Loc4) to
Loc1 to take the direct branch from N5 to N2.
Entries 3 and 4 are optional, and might be useful
to speed up translation, since the restrictions they
impose allow the shortest path calculations to be
bypassed.

There is a shortcut to force the same non-default
path selection constraint to a number of destina-
tion nodes: For instance, if the vertical arm of the

path network extended up to include many other
nodes N8, N9, ..., and locations Loc7, Loc8, ...,
then we would change the Mapping edit table as
follows:

1. Delete line 1 in the Mapping edit table.
2. Make sure that line 3 is there (it is not

optional any more).
3. Include a line which reads: “From: N2, To:

N5, Dest:<BLANK>”.

The empty destination column will be interpreted
as “all other destination nodes” by ProModel.

Please note

For a “from” node (unless there is a branch map
with a blank destination column), any nodes not
explicitly listed in the destination columns of
existing mapping records will be reached via the
default path selections.

Nodes Edit Table
The Nodes edit table lists the nodes that make up
a path network and is used to limit the number of
resources and entities that may occupy a node at
any given time. In addition to controlling traffic
on a path network, nodes also define where
resources interface with locations or where enti-
ties enter and leave the path network. Nodes may

 ProModel 131
User Guide
also be used solely to control a resource or
entity's behavior through node logic or search
routines such as work and park searches (see
“Resources” on page 132).

The following defines the fields of the Nodes edit
table.

Name The node name.

Limit The maximum number of resources and
entities that may occupy a node at any given
moment. A blank entry means there is no limit.

Pre-translation check for Path
Networks
When you run your simulation, ProModel will
compile your model and check your path net-
works for errors. If your model has large, com-
plex path networks, this could cause your
model’s compilation time to run quite long.

To combat this, ProModel will perform a pre-
translation check for path networks. This means
that the first time your model compiles, it will
check your path networks for errors. It will then
save this information.

Every subsequent time your model compiles, it
will read the saved information about your path
networks and not check the path networks for

errors. This saves compilation time on large mod-
els.

However, if you edit one or more of your path
networks, ProModel will once again check the
modified path networks for errors during compi-
lation. ProModel will consider a path network to
have been modified if its name was at any time,
since the last compile, highlighted in the Path
Network dialog window.

132 Chapter 5:
Resources
Resources
A resource is a person, piece of equipment, or
some other device used for one or more of the
following functions: transporting entities, assist-
ing in performing operations on entities at loca-
tions, performing maintenance on locations, or
performing maintenance on other resources.
Resources consist of one or more units with com-
mon characteristics, such as a pool of service
technicians or a fleet of lift trucks. Resources
may be dynamic, meaning that they move along a
path network, or static, in which no movement
occurs. Resources may also have downtimes.

Every resource has a name and a name-index
number. Logic referring to a resource, such as the
GET statement, can use either the resource's
name, or the RES() function to refer to the
resource. The RES() function allows a statement
using a resource name to refer to different
resources as a simulation progresses. See “Name-
Index Numbers” on page 406 and “Res()” on
page 543 for more information.

Resources are defined in the Resources Editor,
accessed through the Build menu.

How to create and edit resources:

• Select Resources... from the Build menu.

or...

• Right click on the existing location and
select Edit.

Typical Use of Resources
The diagram below shows two types of
resources: forklifts and an operator. Forklifts are
used as resources to transport entities from Loc1
to any of the processing locations, Loc2 through
Loc6. The forklifts are dynamic resources and
travel along the path network, Net1, explained
previously in “Path Networks” on page 123. The
operator inspects all parts at Loc7 and never
moves from that location. Therefore, the operator
is a static resource and does not need a path net-
work.

The remainder of this section defines the ele-
ments and the procedures necessary for specify-
ing static and dynamic resources.

 ProModel 133
User Guide
Resources Editor
The Resources Editor consists of the Resources
edit table and the Resource Graphics window.
These windows are used together to specify the
characteristics of a resource.

Resources edit table Appears along the top of
the workspace with fields for specifying the name
of each resource, the number of identical units of
a resource, the downtime characteristics of each
resource, and other important information, such
as the path network the resource uses for move-
ment.

Resource Graphics window Contains graphic
icons that may be selected to represent a resource
during simulation. A resource may have more
than one icon to represent different views of the
resource, or its status. This window also allows
you to define multi-unit resources graphically on
the layout. Defining a resource is as simple as
selecting an icon from the Resource Graphics
window, giving the resource a name, and specify-
ing the characteristics of the resource.

Resources Edit Table
The Resources edit table defines the characteris-
tics of each resource in the system. The fields of
this table are defined below.

Icon The icon selected for this resource. Icons
are selected using the Resource Graphics Win-
dow. If more than one icon is selected for the
resource, the first icon is shown here.

Name The name of the resource.

Units The number of units represented by this
resource name between 0 and 999 (or a macro). If
the entry is a numeric expression, the expression
will be evaluated at the start of the simulation
run. Consequently, the number of resource units
cannot be changed during the simulation run. If
you would like to vary the number of units of a
resource during runtime, use downtimes to vary
the number of resources available at a given time.
(See also “Resource Downtimes” on page 138.)

Please note

When you use a macro with a value of zero in the
units field, you can use SimRunner to find the
optimal number of resources needed for your
model.

DTs... Select this field to define any optional
downtimes for this resource. Only clock and
usage based downtimes are permitted for
resources.

Stats... The desired statistics, if any, to gather
for this resource. Statistics can be collected as a
summary report over all units of a resource, or

134 Chapter 5:
Resources
individually for each unit of a resource. The
options are as follows:

•None: No statistics are gathered.
•Summary: Average utilization and activity

times are recorded collectively for all units
of the resource.

•By Unit: Statistics are gathered for each
unit individually as well as collectively.

Specs... Select this field to open the Resource
Specifications dialog box. From here you can
assign a path network, set the resource speed, and
define pickup and deposit times. For more infor-
mation on the Specification dialog, see
“Resource Specifications Dialog Box” on
page 143.

Search... If a path network has been assigned,
select this field to access the Work Search and
Park Search edit tables, used to define optional
work and park searches.

Logic... If a path network has been assigned,
select this field to define any optional logic to be
executed whenever a resource enters or leaves a
particular path node. If you have defined a node
entry and exit logic, the logic field will show the
number of nodes where node entry and exit logic
has been defined.

Pts... If a path network has been assigned, select
this field to define resource points. Resource
points are auxiliary points where multiple
resources may appear graphically when parked or
in use at a multi-capacity node.

Notes... Enter any notes in this field, or click on
the heading button to open a larger Notes window
for entering notes.

Resource Graphics Window
The Resource Graphics Window appears when
the Resources module is opened and is used to
assign graphic symbols to resources. If the New

box is checked in the window, selecting a graphic
creates a new resource. Multiple graphics are
defined for a given resource by selecting the
desired resource and unchecking New. This pro-
cedure causes a scrollable row of graphic cells to
appear which are automatically and sequentially
numbered beginning with 1. Graphics may be
added or replaced for a given resource by click-
ing on the desired cell and selecting a library
graphic from the graphics menu.

By using the GRAPHIC statement in resource
downtime logic, or in the case of a dynamic
resource, node logic, any of the multiple graphics
assigned to a resource may be activated during
simulation. For static resources, you may define a
second or third graphic to be used automatically
when the resource is busy or down, respectively.

Resource graphics may be sized using the scroll
bar or edited by clicking the edit button. Edit
options include rotating, flipping horizontally or
vertically, and changing the color of the graphic.
In addition, you can specify the dimensions of the

 ProModel 135
User Guide
resource graphic. For more information, see
“Dimension” on page 318.

The Layout Position allows you to add or delete
resource graphics on the layout. When adding a
resource graphic to the layout, ProModel auto-
matically adds a unit and a resource point. When
deleting a resource graphic from the layout, Pro-
Model deletes the resource point but leaves the
number of units in the units field unchanged.

Static Resources
Static resources are resources not assigned to a
path network and therefore do not visibly move.
A static resource may be needed to perform an
operation at only one location, such as an inspec-
tion operator, and will appear during the entire
simulation in the same place it was defined
graphically. Although a static resource is station-
ary and does not visibly move between locations,

it may be used at more than one location or to
move entities between locations.

How to define a static resource:

1. Select Resources from the Build menu. This
automatically brings up the Resources edit
table and the Resource Graphics window,
used together to define all resources in the
model.

2. Choose a graphic icon for the resource
from the Resource Graphics window.

3. Select the Add button in the Resource
Graphics window.

4. Click on the layout at the desired position
of the resource graphic.

5. Add additional resource graphics for the
same resource if desired. Every time a
resource graphic is placed on the layout for
the same resource in the edit table, a new
resource point is created.

6. Supply any optional information about the
resource, such as downtimes.

Please note

Static resources notes:

1. When defining the static resource specifica-
tions, the default for Resource Search is Least
Utilized. The default for Entity Search is Longest
Waiting. You may only specify Pick-up and
Deposit Time in the Motion box.

2. There is not a status light for a static resource;
however, a second and third graphic may be
defined for use when the resource is busy or
down, respectively. If no second and third
graphic are defined, the resource graphic

136 Chapter 5:
Resources
changes color to green when in use and red when
down.

Dynamic Resources
Dynamic resources are resources that move along
an assigned path network and may transport enti-
ties between locations as a forklift would. They
may also need to process entities at several loca-
tions, such as an operator performing tasks at
more than one location. For these reasons, it is
usually preferable to model the resource's move-
ment using a path network. Defined properly, the
resource will travel along the path network dur-
ing the simulation run.

How to create a dynamic
resource:

1. Create a path network using the Path Net-
work Editor.

2. Select Resources from the Build menu. This
automatically brings up the Resources edit
table and the Resource Graphics window,
which are used together to define all
resources in the model.

3. Choose a graphic icon for the resource
from the Resource Graphics window.

4. Click the Specs... button to open the Spec-
ifications Dialog.

5. Assign a path network to the resource.

6. If desired, place units of the resource on
the layout by selecting the Add button in the
Resource Graphics window and clicking on
the layout. Every time you create and place
a resource graphic on the layout for the
same resource in the edit table, ProModel
creates a new resource point. See “Resource
Points” on page 147 for more information.

7. Supply any optional information about the
resource including number of units, down-
times, work and/or park searches, and node
logic in the Resources edit table.

Please note

Dynamic resources notes:

1. When defining the resource specifications, the
default Resource Search for dynamic resources is
Closest Resource. The default for Entity Search is
Closest Entity.

2. More than one resource can use the same path
network.

Multiple Resource Graphics
ProModel allows you to define several different
graphic icons for the same resource. For example,
you may wish to change the color of a resource
whenever it becomes unavailable due to an
unscheduled downtime. Resource graphics for
dynamic resources may be changed during a sim-
ulation by using the GRAPHIC statement (see
“Graphic” on page 492) in either the node or
downtime logic. The GRAPHIC statement for
static resources can only be used in downtime
logic, however, any second and third graphics are
automatically used when static resources are busy
or down, respectively. If no second and third
graphics are defined, the resource graphic turns
green when in use and red when down.

How to assign multiple graphics to
a resource:

1. Select Resources from the Build menu.

 ProModel 137
User Guide
2. Highlight the desired resource in the
Resources edit table.

3. Uncheck the New box in the Resource
Graphics window.

4. Click on the next blank resource graphic
cell in the Resource Graphics window.

5. Select the desired resource icon.

6. Change the color, rotation, or other
aspect of the new graphic by clicking on the
Edit button.

An example of a single resource with multiple
graphics is given on the following page.

Multiple Resource Graphics
Example

Uncheck the
New Box

Select an icon for the resource

Select the next
blank resource
graphic cell

This example shows a forklift with two different
orientations. You may define as many graphics as
needed for each resource.

Please note

When changing the graphic for a resource in
downtime logic, or in the case of dynamic
resources, node logic, the number after the word
GRAPHIC refers to the cell number in the
Resource Graphics window as shown above. For
example the statement GRAPHIC 2 would
change the forklift to the icon in cell number 2.
The default graphic is the graphic in cell number
1 if none is specified. See “Graphic” on page 492
for more information.

Multi-Unit Resources vs.
Multiple Single-Unit Resources

Multi-Unit Resources
When a resource is defined as having more than
one unit, each resource unit is given a numeric
suffix by which it is identified in the output
report. For example, a resource (Res1) which has
five units will display output statistics for
resources called Res1.1, Res1.2, Individual
units of a resource (e.g., GET Res1.1) cannot be
requested.

Suppose you define a resource, Technician,
which has ten units. You also have ten locations
and each resource unit can only interface with
one location. For example, Technician.5 can only
work at Loc5. Since “USE Technician.5” is
invalid, you would need to use multiple single-
unit resources instead (e.g., Technician1,
Technician2, Technician3).

Multi-unit resources are intended for use when
several resources are defined with the exact same
specifications and any resource can be used at a
number of locations. For example, a computer
can be operated by one of three technicians. If

138 Chapter 5:
Resources
you did not use multi-unit resources, you would
need to specify “USE Technician1 OR
Technician2 OR Technician3,” although this can
easily be abbreviated by using a macro to repre-
sent the resource expression. When you define
three units for a single resource, Res1, you can
simply state “USE Res1” and one resource unit
will be used based on its availability.

Multiple Single-Unit Resources
Multiple single-unit resources are useful when
resources have different specifications, follow
different path networks, or are used at specific
locations. If several resources have the same
specifications and travel the same path network
but can only do work or interface with specific
locations, they must be defined as multiple sin-
gle-unit resources. This is because a unit of a
multi-unit resource must be able to interface with
all locations where it is called to work.

Resource Downtimes
Resource downtimes refer to the times when a
resource is unavailable due to scheduled events
like breaks and shift changes, or unscheduled
events like illness and random failures. For
scheduled events, it is much easier and more
straightforward to define these downtimes using
the shift editor (see “Shifts & Breaks” on
page 168). Unscheduled downtimes, based on the
elapsed time of the simulation clock or resource
usage time, are defined in the Resources edit
table by clicking on the downtime heading but-
ton.

How to define resource down-
times:

1. Select Resources from the Build menu.

2. Select the resource for which the down-
time is to be defined.

3. Click the DTs... button from the Resources
edit table.

4. Select the downtime basis: Clock or
Usage.

5. Enter the required information in either the
Clock Downtime or Usage Downtime edit
table. Each of these tables is described in the
following pages.

Please note

Unlike location downtimes, multiple resource
downtimes occurring within the same time frame
are processed sequentially, not concurrently.
However, through the use of the DTDelay func-
tion, concurrent downtimes can be achieved for
resources.

Clock-Based Downtime
Clock-based downtimes for resources are speci-
fied through the Clock Downtimes edit table
shown below. The fields of this table are defined
as follows:

Frequency The time between downtimes. This
may be a constant time as shown above, a distri-
bution, or an expression.

First Time The time of the first downtime occur-
rence. Leave this field blank if the first occur-
rence is to be determined from the frequency
field.

 ProModel 139
User Guide
Priority The priority of the downtime (0-999).
The default priority is 99, which is the highest
non-preemptive priority.

Scheduled... Select YES if the downtime is to
be counted as a scheduled downtime. Select NO
if the downtime is to be counted as a non-sched-
uled downtime. (All scheduled downtimes are
deducted from the total hours scheduled in the
statistical calculations.)

List A list of the individual units of the resource
to be affected by the downtime. You may list
individual units of the resource, specify ALL, or
leave blank to affect all units.

•1,2 Units 1 and 2 only
•1-3,5 Units 1 through 3 and 5 only
•none You may use none to indicate that no

unit will adopt this downtime. This is use-
ful in creating a run-time interface. By
using a macro to represent the number of
units, the user may select none as an
option.

•Macro The name of a run-time interface
macro that allows the user to define the
units to be affected by the downtime.

Node This field applies only to dynamic
resources and defines the node to which the
resource will travel to go down. If no node is
entered, the resource stays at the current node.
The actual downtime will not begin until the
resource arrives at this node. Traveling to the
downtime node is counted statistically as time
traveling to park.

Logic... Specific logic to be performed when the
downtime begins, typically a WAIT statement.
Resources may be used to service resources that
are down if the servicing resource is static, or if
the servicing resource is dynamic and uses the
same network. (See the “Appendix A” on
page 587 for a list of statements valid in
Resource Downtime logic.)

Disable Select YES to disable a downtime
without removing it from the table.

Usage-Based Downtime
A usage-based downtime is a downtime based on
how long a resources has been used, such as how
often a forklift needs to be refueled. Usage-based
downtimes for resources are specified through
the Usage Downtimes edit table shown below.
Actual time in use includes any time that a
resource is moving with an entity or is being used
by an entity at a location. It also includes any
time a resource is being used in downtime logic
as a maintenance resource. The fields of this table
are defined as follows:

Frequency The time between downtimes,
based on the usage time of a resource. This may
be a time distribution as shown above, or an
expression.

First Time The time of the first downtime occur-
rence. Leave this field blank if the first occur-
rence is to be determined from the frequency
field.

Priority The priority of the downtime (0-999).
The default priority is 99, the highest non-pre-
emptive priority.

List A list of the individual units of the resource
to be affected by the downtime. You may list
individual units of the resource, specify ALL, or
leave blank to affect all units.

•1,2 Units 1 and 2 only
•1-3,5 Units 1 through 3 and 5 only
•none You may use none to indicate that no

unit will adopt this downtime. This is use-
ful in creating a run-time interface. By
using a macro to represent the number of

140 Chapter 5:
Resources
units, the user may select none as an
option.

•Macro The name of a run-time interface
macro that allows the user to define the
units to be affected by the downtime.

Node This field applies only to dynamic
resources and defines the node to which the
resource will travel to go down. If no node is
entered, the resource stays at the current node.
The actual downtime does not begin until the
resource arrives at this node. Traveling to the
downtime node is counted statistically as time
traveling to park.

Logic... Specific logic to be performed when the
downtime begins, typically a WAIT statement.
Resources may be used to service resources that
are down if the servicing resource is static, or if
the servicing resource is dynamic and uses the
same network. (For a list of statements valid in
Resource downtime logic, see the “Appendix A”
on page 587).

Disable Select YES to disable a downtime
without removing it from the table.

Please note

Usage-based downtimes do not accumulate. For
example, if a downtime is preempted by an entity
and another downtime is scheduled to occur
while processing the entity, only the first down-
time resumes after processing the entity. All oth-
ers are ignored.

Resource Priorities and Pre-
emption
Priorities for resource requests may be assigned
through a GET, JOINTLY GET, or USE state-
ment in operation logic, downtime logic, or move

logic (or the subroutines called from these log-
ics). Priorities for resource downtimes are
assigned in the Priority field of the Clock and
Usage downtime edit tables. The following
examples illustrate these points.

Process Table

Entity Location Operation (min)
EntA Loc1 Use Res 1,200 For N(3,.1)

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Loc2 First 1 MOVE FOR 5

When an entity using a resource is preempted by
either a downtime or another entity, any process-
ing time for the preempted entity due to a WAIT
or USE statement is interrupted until the pre-
empting entity or downtime releases the resource.
If an entity is using other resources in addition to
the one preempted, the other resources remain in
possession of the entity.

In the case of a resource downtime preempting
another resource downtime, any remaining time
delay, as well as any other downtime logic
remaining to be processed by the preempted
downtime, is immediately discontinued without
resuming and the preempting downtime takes
over.

Please note

Resource priorities and preemption notes:

1. If a resource is transporting an entity, it can-
not be preempted by another entity or by a down-
time until it drops off the current entity at the
destination location. Therefore, the resource will

 ProModel 141
User Guide
deliver the current entity and then immediately
come under control of the preempting entity or
downtime.

2. If a resource is moving but does not possess
an entity, the resource can be preempted by a
downtime or entity. The resource will stop at the
next node in the path network and travel to the
downtime node after which the resource will go
down.

Resource Shift Downtime Priori-
ties
In ProModel, you define the shift downtime pri-
orities in the Shift Assignments module. The pri-
ority for a resource to start a shift downtime and
the priority required for some other task to pre-
empt the downtime must be set in the Shift
Assignments module.

Although a resource may be in use during a shift
downtime, the scheduled hours in the statistics
will still reflect the hours scheduled to be on
shift. For example, a resource goes off shift after
eight hours. Due to an emergency, the resource is
called back two hours later to work on a machine
that has gone down. The statistics will still indi-
cate that the scheduled hours for the resource are
eight when the resource actually spent more than
eight hours in use, because the resource was
scheduled to work only eight hours. The
resource's total usage time, however, will still
indicate the additional time spent working on the
downed machine.

Resource Preemption Matrix
The following Preemption Matrix shows the pos-
sibilities of entities and downtimes preempting
each other in the use of a resource. “Current”
refers to the entity or downtime in possession of

the resource when the requesting entity or down-
time attempts to capture it. Downtimes below
refer to clock and usage-based downtimes only.

Priority values are divided into ten levels (0 to
99, 100 to 199,..., 900-999), with values beyond
99 used for preempting entities or downtimes of a
lower priority level.

To Preempt
The Current
Owner

To Preempt
The Current
Downtime

Requesting
Entity or
Another
Resource or
Location’s
Downtime

1 priority level
higher

2 priority levels
higher

Requesting
Downtime

1 priority level
higher

1 priority level
higher

•The upper-left quadrant shows that if an
entity tries to seize a resource currently
owned by another entity (or another
resource’s or a location’s downtime), the
entity must have a priority at least one
level higher than the current entity to pre-
empt the resource.

•The lower-left quadrant shows that a down-
time must have a priority at least one level
higher than the entity currently owning a
resource if the resource is to be preempted.

•The upper-right quadrant shows that an
entity must have a priority at least 2 levels
higher than the current downtime priority
to preempt a downed resource.

•The lower-right quadrant shows that a pre-
empting downtime must have a priority at
least one level higher than the current
downtime to preempt it.

The following graphics demonstrate basic pre-
emption concepts.

142 Chapter 5:
Resources
Preemptive DT vs DT

DT 1

Discontinue

DT 2

Total

T1 T2 T3 T4

DT 2 priority at least 1 level higher

Time

 T1 to T3

than DT 1 priority

Downtime:

Non-preemptive DT vs. DT

DT 1

Scheduled DT 2

Actual DT 2

Time
T1 T2 T3 T4

DT 2 priority NOT at least 1 level higher than
DT 1 priority

Non-preemptive DT vs. Entity

Entity

Scheduled DT

Actual

Time
T1 T2 T3 T4

DT 2 priority NOT at least 1 level
higher than entity 1 priority

Preemptive DT vs. Entity

Entity

DT Time

T1 T2 T4

DT priority at least 1 level higher than

T3

entity priority

 ProModel 143
User Guide
Preemptive Entity vs. Entity

Ent 1

Ent 2
Time

T1 T2 T4

Ent 2 priority at least 1 level higher

T3

than Ent 1 priority

Preemptive Entity vs. DT

DT

Entity
Time

T1 T2 T4

Entity priority at least 2 levels higher

T3

than DT priority

Resource Specifications Dialog
Box
The Specifications dialog box contains informa-
tion for defining the operating characteristics of

each resource in the system. Many of the items
pertain only to dynamic resources (i.e., resources
with path networks). If the resource is static (i.e.,
not assigned to a path network) many of the
options will be disabled. The Resource Specifica-
tions dialog box includes the following fields:

Path Network The name of the path network
along which the resource travels. This should be
“none” for a static resource.

Home If a path network has been assigned, this
is the name of the home node where the resource
is positioned at the beginning of the simulation.

Please note

To have resources start at other nodes in the net-
work, define a Park Search from the home node
which causes the resource unit or units to be
positioned at the nodes identified in the park
search.

Return Home If Idle If a path network has been
assigned, check this box to return the resource to
the home node when no other tasks are waiting to
be performed and no park searches are defined.

Off Shift If the resource is assigned to a path net-
work and shift, this is the node to which the
resource travels to go off shift.

144 Chapter 5:
Resources
Break If the resource is assigned to a path net-
work and shift, this is the node to which the
resource travels to go on break.

Resource Search When an entity that needs a
resource must select between several available
resource units, it follows this rule. This only
applies to multi-unit resources. The following
rules may be specified:

•Closest Resource
•Least Utilized Resource
•Longest Idle Resource

Please note

For a non-passing path network, only the Closest
Resource rule is allowed since the other rules
could cause the network to jam. Static resources
only allow Least Utilized and Longest Idle rules
since there is no traveling to be done.

Entity Search When two or more entities of
equal priority request a resource at the same time,
the resource follows this rule to choose the one to
service. The resource first checks for any entities
waiting at locations listed in a work search before
defaulting to this rule and, if an exclusive work
search has been defined, the default entity search
rule is not used. The following rules may be spec-
ified:

•Longest waiting entity (with highest prior-
ity)

•Closest entity (with highest priority)
•Entity with the minimum value of a speci-
fied attribute

•Entity with the maximum value of a spec-
ified attribute

Please note

Entities look for resources to move them after
they capture a location. If several entities are
waiting to be transported to one location by a
resource and you want the entity with the mini-
mum attribute value to arrive next at the location,
you must use the Locations edit table to define the
rule at the location for incoming entities as mini-
mum attribute value. The Closest entity rule
applies to dynamic resources only.

If the path network that the dynamic resource is
using is time-based, the closest entity is the entity
with the least number of nodes from the resource.
If the path network is defined by speed and dis-
tance, the closest entity is the entity the shortest
distance from the resource.

Motion If a path network has been assigned, the
motion fields define the speeds and times
required for basic resource movement and con-
tain the following information:

•Speed traveling empty/full*
•Acceleration rate*
•Deceleration rate*
•Pickup time
•Deposit time

Please note

Resource specification notes:

1. The units to the side of these fields change
automatically from feet to meters (and vice-
versa) depending on the default distance units
selected in the General Information dialog box.

2. Pickup and deposit times for resources are
included as transit time in the output statistics.

 ProModel 145
User Guide
Resource Search Routines
Search routines refer to the instructions a
dynamic resource will follow after being freed at
a path node where a search routine was defined.
Two types of search routines may be specified.

Work Search A list of locations where entities
may be waiting for the resource. Work searches
may be either exclusive or non-exclusive.

•Use exclusive work searches to limit the
locations a resource may search for work.
An exclusive work search will cause the
resource to search only the locations in the
list. If no work is found at any of the listed
locations, the resource will either park at a
node listed in its park search, go to its
home node, or simply become idle until
work is available at one of the locations in
the exclusive work search list.

•Use non-exclusive work searches to have a
resource check for work at certain loca-
tions first, and then move on to others. A
non-exclusive work search will cause the
resource to search the listed locations first
and then resort to the default search rule
listed in the Resource Search section of the
Specifications dialog box (e.g., oldest
waiting entity, closest waiting entity).

Park Search Park searches are typically used to
get a resource off a main path segment, or send
the resource to the next most likely place work
will become available. A park search is a list of
nodes to which a resource may be sent to park if
no work is waiting at either the work or default
search locations.

Please note

A lockup can occur in the model if you define a
park search at the home node and specify Return
Home If Idle in the Resource Specifications.

Work Search Edit Table
Work searches are defined for dynamic resources
through the Work Search edit table shown below.
If several resources share the same path network,
each resource must have its own work search
defined (i.e., resources cannot share work
searches).

The fields of the Work Search edit table are
defined as follows:

Node The node for which the work search is
defined.

Type Exclusive or non-exclusive work search.
See “Resource Search Routines” on page 145 for
an explanation of exclusive and non-exclusive
work searches.

Location List A list of locations to be searched
for waiting entities when the resource becomes
available.

In the edit table above, work searches have been
defined at each location where the forklift deliv-
ers entities. The purpose of the work search in
this example is to force the forklifts to give prior-
ity to entities waiting to be delivered to process-
ing locations before taking an entity to a non-

146 Chapter 5:
Resources
processing location. This helps to keep the pro-
cessing locations busy at all times.

Park Search Edit Table
Park searches are defined for dynamic resources
through the Park Search edit table shown next. If
several resources share the same path network,
each resource must have its own park search
defined (i.e., resources cannot share park
searches).

The fields of the Park Search edit table are
defined as follows:

Node The node for which the park search is
defined.

Parking Node List A list of nodes to which a
resource may be sent to park. The resource will
look for available capacity at the first node in the
list (Node capacity is defined in the Path Net-
works edit table in the Nodes window). If there is
no capacity at that node, the resource will look to
the second node in the list and so on until a node
with capacity is found. If no capacity is found at
any node in the list, the resource will remain
where it is until capacity becomes available at
one of the nodes in the list.

In the table above, a park search has been defined
for each of the internal path nodes where a fork-
lift might deliver an entity and then be in the way
if it has nothing else to do. Specifically, if a fork-
lift makes a delivery and then becomes available
at node N3, it will park at node N4. From node
N5 it will park at node N1, and from node N6 it
will park at node N7.

Node Logic Editor
The Node Logic edit table is used to define spe-
cial logic for a dynamic resource to perform upon
entering or exiting a node. Node logic may be
defined for any dynamic resource at any node.
Typical uses of node logic are:

•Changing a resource graphic using the
GRAPHIC statement

•Controlling traffic using WAIT UNTIL
statements

•Gathering special statistics on resource
movement

The fields of the Node Logic edit table are
defined as follows:

Node The entry or departure node where the
resource will process the logic.

Entry Logic Logic to be executed when a
resource enters the node.

Exit Logic Logic to be executed when a resource
leaves the node.

The table above was taken from the example con-
tained on the following pages.

 ProModel 147
User Guide
Node Logic Example

Suppose that for safety considerations we desire
to keep track of the number of times both forklifts
simultaneously enter a particular zone of the net-
work consisting of branches N2 to N3, N3 to N4,
and N3 to N5. (It is thought that this zone may be
particularly susceptible to accidents due to heavy
traffic.) We could accomplish this using node
logic at the entry and exit points of the zone.

The only way to enter or exit the zone is through
nodes N2 and N5. To track the number of fork-
lifts currently in the zone, we increment and dec-
rement a variable called Current. Each time a
forklift leaves node N2 or N5 en-route to node
N3 we increment variable Current. Each time a
forklift enters node N2 or N5 enroute from N3 we
decrement variable Current. Finally, each time
we increment the variable Current, we check to
see if Current > 1. If so, we increment a second
variable called Total to record an occurrence of
both forklifts in the zone at the same time.

The following windows show the entry and exit
logic for node N2, representing one entry to the

zone. The node logic for node N5 is identical to
that for node N2.

Please note

This example follows the rule that allows the
LAST() function to be used only in Node Entry
Logic, while the NEXT() function may be used
only in Node Exit Logic. (See “Resource-Specific
System Functions” on page 435).

Resource Points
For a static resource, resource points are the lay-
out coordinates of the resource graphics. For
dynamic resources, resource points are auxiliary
points where multiple resources may appear
graphically when in use or parked at a multi-
capacity node. When a resource arrives at a node,
it will appear on that node unless a resource point
is defined for that resource at that node. The
resource will appear on the resource point when it
arrives to park or perform a task at a particular
node. Resource points prevent resources from
appearing on top of each other. In the case of
dynamic resources, resource points are defined in
terms of an offset from the node to which they are
connected. Resource points are defined in terms
of an offset from the upper left corner of the lay-
out for static resources.

The following Resource Points edit table shows
that node N8 has two resource points attached to

148 Chapter 5:
Resources
it. The horizontal offset is 0 units for each point.
The vertical offset is 13 units both up and down
from the node position. (For resource points posi-
tive distances are up and to the right.)

Whenever a forklift arrives or parks at node N8,
it will automatically go to one of the two resource
points. This prevents the forklifts from graphi-
cally appearing on top of each other if they are
both at node N8 simultaneously.

How to add resource points to a
node:

1. Select Resources from the Build menu.

2. Click on the resource points heading but-
ton, Pts....

3. Click on the node for which a resource
point is to be added.

4. Click on the layout where the resource
point is to appear.

5. Repeat steps 3 and 4 for each resource
point to be added.

Please note

Resource points are automatically added to the
home node for each resource graphic placed on
the layout.

How to delete resource points:

1. Bring up the Resource Points edit table by
clicking on the Pts... heading button in the
Resources edit table.

2. Select the point to be deleted by highlight-
ing the edit table record or clicking on the
resource point in the layout. (If you click on
the point to select it, you must then reacti-
vate the Resource Points window by clicking
on the title bar of the table.)

3. Select Delete from the Edit menu.

How to move resource points:

1. Bring up the Resource Points edit table by
clicking on the Pts... heading button from the
Resources edit table.

2. Drag the resource point to a new location
with the mouse.

 ProModel 149
User Guide
Processing
Processing defines the routing of entities through
the system and the operations that take place at
each location they enter. Once entities have
entered the system, as defined in the Arrivals
table, processing specifies everything that hap-
pens to them until they exit the system.

Processing is defined in the Processing Editor,
which is accessed through the Build menu. This
section first describes how to create simple pro-
cesses, then explains each feature of the Process-
ing Editor.

How to create and edit process
routings:

• Select Processing from the Build menu.

or...

• Right click on the existing process routing
and select Edit.

Using the Processing Editor
This discussion covers the procedures used to
define operations and routings using the Process-
ing Editor. As with most other procedures in Pro-
Model, they may be performed graphically using
the mouse, or manually by typing the information
directly in the edit tables.

Before you begin to specify the processing logic,
define all locations and entities to be referenced
in the processing. This is done through the Loca-
tion and Entity Editors. If you reference a loca-
tion or an entity that has not yet been defined in a
location or entity field, you will be prompted to
add that location or entity to the respective loca-
tion or entity list. However, no graphic gets auto-
matically assigned to the location or entity.

The easiest way to define the processing logic is
to define the routing or flow sequence using the
tools in the Processing Tools window, which
appears in the lower left corner of the Processing
Editor. These tools have been designed to allow
you to easily and rapidly define the flow of enti-
ties through the system. It is also a good idea to
define the routing rule for each routing as it is
created. Once you have defined the from-to rela-
tionships between locations for each entity, fill in
the details of the operation and move logic for
each location. This is typically done by typing the
logic in the operation or move logic column man-
ually or by using the Logic Builder, documented
at the end of this section.

Defining processes graphically in ProModel
requires interaction with all four process editing
windows.

•Process Edit Table
•Routing Edit Table
•Tools Window
•Layout Window

150 Chapter 5:
Processing
Before discussing the procedures for using these
windows interactively, let us look briefly at a
process flowchart of a simple model.

Example Model
Two entity types, EntA and EntB, arrive at Loca-
tions 1A and 1B, respectively, according to some
specified arrival logic. After a short preparation
time, both entities are routed to Location 2 where
1 EntB is joined to 1 EntA. At this point the
resulting entity, EntC, is sent to Location 3 for
consolidation. Twelve EntC's are accumulated at
Location 3 and processed together for 3.0 min-
utes. Then they exit the system.

Process Flow Chart

EntA

EntB Exit

Arrival
Logic

Processing
Logic

EntA @ Loc1A
EntA

EntB @ Loc1B
EntB

1

1

EntA @ Loc2
1

EntC @ Loc3
1Join 1 Accum 12

3.0 minN(3.4,.2)

EntC

1.0 min

1.0 min

In the flowchart above, each block represents a
process record for an entity at a location. The
lower left portion of a block specifies the opera-
tion(s) performed on the entity at the location.
The lower right portion of the block represents
the number of entities output to the next location.

Defining Entity Processing

How to define entity processing
graphically:

1. Select an entity from the entity list in the
Tools window. The selected entity will appear

in the edit field at the top of the list—this entity
will come into the location, it is not the entity
that results from the process.

2. Select the desired editing mode: New Pro-
cess or Add Routing.

3. Click on the first location where the entity
will process. A rubber-banding routing line
appears. If you select Add Routing, the rub-
ber-banding routing arrow automatically
appears from the current location.

4. To choose a different entity as the output
entity, select the desired output entity in the
tools window.

5. Click the destination location.

Please note

In the example below, we first clicked on Loc1A
and then on Loc2. The records in the Process and
Routing edit tables were entered automatically.

6. Repeat this process until the flow of entities
has been completely defined except for exit-
ing the system.

 ProModel 151
User Guide
7. From the final processing location route an
entity to Exit by clicking on the “Route to Exit”
button in the Tools window.

8. Once all routings have been defined,
enter the processing logic in the operation
field of the Process edit table.

The figure above shows the completed routings
for the example model. Note that the operations
(for example, Join 1 EntB) have been entered
manually in the operation column. These opera-
tions could also have been entered by way of the
Logic Builder, documented at the end of this sec-
tion.

Processing Editor
The Processing Editor consists of four windows
that appear simultaneously, as shown in the fol-
lowing diagram. Although the windows are

shown in their default arrangement, you may
arrange them as desired.

Process Edit Table Appears in the upper left
corner of the workspace and defines the opera-
tions performed for all entities at all locations.

Routing Edit Table Appears in the upper right
corner of the workspace and controls the destina-
tion of entities that have finished at the location.

Tools Window Appears in the lower left corner
of the workspace and is used for graphically
defining operations and routings.

Layout Window Appears in the lower right cor-
ner of the workspace and shows each location
with all from-to routings.

Process Edit Table
The Process edit table is used to create operation
logic for each entity type at each location in the
system. Processes for entities at locations may be
in any order in the edit table, but for the sake of
organization you should group them by entity
type or location. The only time the order of pro-
cesses is significant is when the same entity is
routed multiple times through the same location,
in which case, later processes must appear some-

152 Chapter 5:
Processing
where after earlier processes. When searching for
the next process, ProModel always searches for-
ward in the process list first, and then starts from
the beginning of the list.

Heading
Buttons

Current Entity, Location, and Operation
are highlighted.

An explanation of each field of the Process edit
table is contained on the following pages.

Entity The entity type for which the process is
defined. If all entities at the same location
undergo the same operation or have the same
routing, the reserved word ALL may be entered
in this field. (See discussion on ALL later in this
section.) If an entity not previously defined is
entered in this field, ProModel will ask if it
should create the new entity type.

Click on the heading button to bring up the Enti-
ties selection box. If this is a preemption process
record, check the box (see “Preemption Process
Logic” on page 300) and double click on an
entity to automatically place it in the table. You

can also click on an entity name and select OK to
place it in the table.

The entity list box defaults to the current field
entity, the last entity selected, or the first entity
defined.

Location The location where the process
occurs.

Click on the heading button to bring up the Loca-
tions selection box from which you may choose a
location.

The location list box defaults to the current loca-
tion, the last location selected, or the first location
defined.

Specifying ALL in the Location field and omit-
ting any routing defines a process for an entity at
all locations previously specified as routing desti-

 ProModel 153
User Guide
nations for the entity. Because there is no routing,
after the entity finishes that process, ProModel
will search ahead in the Process edit table for a
process for the entity specific to the actual loca-
tion. The keyword ALL in the Location field is
particularly useful when entities route to different
locations having the same operations and then
route to a common destination. In most other
instances, it is recommended that a subroutine or
macro be used to define identical operations.

Operation Operation logic is optional, but typ-
ically contains at least a WAIT statement for the
amount of time the entity should spend at the
location. If the entity needs a resource to process
or to be combined in some way with other enti-
ties, that would be specified here as well. In fact,
anything that needs to happen to the entity at the
location should be specified here, except for any
information specified in the entity's routing.

Statements can be typed directly into the opera-
tion field, or inside a larger logic window after
double clicking in the field or clicking on the
Operation button. Alternatively, the Logic
Builder can help build logic and is accessed by
clicking the right mouse button inside the opera-
tion field or logic window. All of the statements,
functions, and distributions available in the oper-
ation field are discussed in detail, including
examples, in “Statements and Functions” on
page 439.

Each entity performs the operation steps defined
for it at a particular location, independent of other

operations performed on other entities at the
same location.

For more information see “Operation Logic” on
page 299.

Using the “ALL” Entity Type
The reserved word ALL may be entered as the
processing entity if all entity types at that location
have the same operation. ALL may also be used
in the output field of the routing if all entity types
at that location have the same routing. If a pro-
cess record for a location using ALL as the entity
follows several process records for the same loca-
tion using specific entity names, and each process
record has a defined routing, the ALL process is
interpreted to mean ALL of the rest of the enti-
ties. The following examples show how ALL
may be used in different situations.

1.All entities have a common operation
and a common routing.

To define a common operation and routing for all
entity types at a location, simply enter ALL for
both the process entity name and the output entity
name.

In the following example three entity types,
EntA, EntB, and EntC, are all sent to a packing
station for packaging. The packing time is .5 min-
utes and the entities move on to a shipping sta-

154 Chapter 5:
Processing
tion. Though this is a simple example, it shows
how one process and routing record is used for all
entity types. In contrast, the previous operations
at Loc1, Loc2, and Loc3 require separate process
and routing records for EntA, EntB, and EntC.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT N(5,.3)
EntB Loc2 WAIT U(3,.2)
EntC Loc3 WAIT T(3,5,9)
ALL Packaging WAIT .5

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Packaging FIRST 1 MOVE FOR 1
1 EntB Packaging FIRST 1 MOVE FOR 1
1 EntC Packaging FIRST 1 MOVE FOR 1
1 ALL Shipping FIRST 1 MOVE FOR 1

2.All entities have common operations
but individual routings.

To define common operations but individual
routings, use ALL as the process entity and
define the common process, but do not define any
routings. Then define individual processes for
each entity type at the common location, with a
blank operation field and the desired routing.

Process Table

Entity Location Operation (min)
ALL Packaging WAIT .5
EntA Packaging
EntB Packaging
EntC Packaging

Routing Table

 Blk Output Destination Rule Move Logic

1 EntA Ship1 FIRST 1 MOVE FOR 1
1 EntB Ship2 FIRST 1 MOVE FOR 1
1 EntC Ship3 FIRST 1 MOVE FOR 1

If only the destination is different, but move
times and output quantities are identical, an alter-
native method is to assign each entity an attribute
that corresponds to the destination's name-index
number and then route with the LOC() function
as shown in the following example.

Process Table

Entity Location Operation (min)
ALL Packaging WAIT .5

Routing Table

 Blk Output Destination Rule Move Logic
1 ALL Loc(Att1) FIRST 1 MOVE FOR 1

3.All entities have a common routing but
individual operations.

To define individual operations along with a
common routing for all entity types at a location,
define operations for each entity, but do not
define any routings. Then define a process record
for ALL at this location and define the common
routing for all entity types.

 ProModel 155
User Guide
Process Table

Entity Location Operation (min)
EntA Loc1 WAIT .4
EntB Loc1 WAIT .5
EntC Loc1 WAIT .6
ALL Loc1

Routing Table

 Blk Output Destination Rule Move Logic

1 ALL Packaging FIRST 1 MOVE FOR 1

Alternatively, you can assign an attribute to each
entity which represents the processing time or
some other entity-specific parameter. Then use
the attribute as the processing time, or call a sub-
routine and pass the attribute as a parameter for
entity-specific processing.

In the following example, the test time for each
entity type is different. This time is stored in an
attribute, Oper_Time. The attribute is then listed
on a line in the operation logic (with a WAIT
statement) to signify an operation time. Once the
test time for each entity is completed, the entities
are all routed to a packaging location.

Process Table

Entity Location Operation (min)
ALL Test WAIT Oper_Time

Routing Table

 Blk Output Destination Rule Move Logic
1 ALL Packaging FIRST 1 MOVE FOR 1

Routing Edit Table
The Routing edit table defines the outputs for
each process record defined in the Process edit
table. The Routing edit table is really just a sub-

table to the Process edit table (i.e., all routings
that appear in the routing edit table apply to the
currently highlighted process), though the two
tables appear side by side. Not all process
records need to have a corresponding routing. If
the routing is omitted, ProModel will search for-
ward in the Process edit table for another process
for that entity at that location. So an entity's com-
plete processing at a location could be broken
into several records. In that case, only the last
process would have a routing. If no routing is
defined for at least one of the process records for
a given entity and location, an error occurs.

Another situation that does not require routing is
when an entity changes its name at a location
after a RENAME AS or SPLIT AS statement.
Any time during processing logic that an entity
changes its name, ProModel searches forward in
the Processing edit table until it finds a process
for the new name at the same location. For exam-
ple, if the identity of an entity is changed through
a RENAME AS statement in the operation logic,
then no routing block will apply to the old entity.
Instead, the newly named entity will be routed by
the process for the new name. (See “Rename” on
page 541).

The fields of the Routing edit table are as fol-
lows:

Blk This field contains the block number for the
current routing block. A routing block consists of
one or more alternative routings from which one
is selected based on the block rule (e.g., a list of
routings where one is selected based on the most
available capacity). Since all of the routings
using the same rule are part of the same block,
only the first line of each routing block contains a

156 Chapter 5:
Processing
route block number. If no routing blocks have
been referenced explicitly in the operation logic
(for example “ROUTE n”), all routing blocks
will be executed in sequence upon completion of
the operation logic (See “Route” on page 552).
Multiple routing blocks are processed sequen-
tially with the next block being processed when
all of the entities in the previous block have
begun executing any move logic defined. To
change the routing block number or add a new
routing block, see the discussion on the Routing
Rule dialog box later in this section.

The following example shows a process record
with two separate routing blocks. Note that both
routings will execute upon completion of the
operation time because no ROUTE statement has
been specified. One EntB gets routed to Loc2 and
one EntC gets routed to Loc3.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT N(5,.3)

Routing Table

 Blk Output Destination Rule Move Logic
1
2

EntB
EntC

Loc2
Loc3

FIRST 1
FIRST 1

MOVE FOR 1
MOVE FOR 2

Output If a routing is defined, the name of the
entity resulting from the operation must be
entered here. This name may be the same as the
entity that entered, or it may be another name, or
even several names, each on a different line.

Using another name works much like a
RENAME-AS statement, except that the entity is
routed according to the routing block instead of
being processed further at the same location.
Using several names on different lines is similar
to having a SPLIT AS statement in conjunction
with a RENAME-AS statement. The difference is
that multiple routing blocks are processed

sequentially while split entities get processed
concurrently.

If the reserved word ALL was used as the incom-
ing entity type for this process, it may also be
entered here. Otherwise, every entity entering the
location will change to the specified output
entity. (See the discussion on using ALL in the
Entities section.)

The entity list box defaults to the current field
entity, the last entity selected, or the first entity
defined.

To better anticipate the entity entry likely to be
made, the entity highlighted in the list box
defaults first to the current field entity, then to the
last entity selected, and finally to the first entity
defined.

The example below shows how an incoming
entity, EntA, changes identity and becomes an
EntB upon exiting location Loc1. This is done by
simply specifying the new entity name as the out-
put entity.

 ProModel 157
User Guide
Process Table

Entity Location Operation (min)
EntA Loc1 WAIT T(2,5,8)

Routing Table

 Blk Output Destination Rule Move Logic
1 EntB Loc2 FIRST MOVE FOR 1

Destination This is the location to which enti-
ties are to move after the operation is complete.
Optionally, the destination may be followed by a
comma and a routing priority. If no priority is
specified, the default is zero.

The location name may be typed directly in the
field, or selected by either clicking in the field
and then on the heading button, or double click-
ing in the field. The resulting dialog box looks
like this:

Instead of entering a location name, you may use
the LOC() function which returns the location
name corresponding to the index designated by
an expression. For example, LOC(5) routes to the
fifth location defined or the fifth record in the
location edit table. You can also specify variable
destinations such as LOC(Att4). However, the
LOC() function may not be used in conjunction
with the BY TURN, UNTIL FULL, CON-

TINUE, and IF EMPTY routings. (See “Loc()”
on page 511 for more information.)

Rule This field defines the rule for selecting the
route destination. An output quantity may also be
specified as part of the rule. This quantity works
much like the SPLIT AS statement. (See the fol-
lowing discussion on the Routing Rule dialog
box.) To open the Routing Rule Dialog box, dou-
ble click in the field or click in the field and then
on the heading button.

Move Logic The Move Logic window allows
you to define the method of movement as well as
any other logic to be executed between the time
the next location is claimed for routing to the
time the entity arrives, but not yet enters, the next
location. To open the Move Logic window, dou-
ble click in the field or click the heading button.
This window allows you to manually edit the
logic or click on the Build button to use the Logic
Builder. It also provides other convenient buttons
for editing and printing the move logic. For sin-
gle move statements it is easiest to right click in
the move field to open the Logic Builder. If left
blank, it is assumed that no time, resources, or
path networks are needed to make the move. (See
“Routing Move Logic” on page 159.)

Routing Rule Dialog Box
The Routing Rule dialog box provides methods
for selecting an entity's destination after finishing
a process. The Rule heading button in the Rout-
ing edit table, brings up the Routing Rule dialog

158 Chapter 5:
Processing
box. The fields of this dialog box are defined in
the following example.

Start new block Check this box to signal the
beginning of a new routing block. Checking this
box will place a number in the Blk field for that
record.

New Entity Check Box In order to let you desig-
nate whether a routing block applies to the main
entity or if you wish to create a new entity, Pro-
Model includes a New Entity check box in the
routing rule dialog. By default, ProModel does
not check the first routing block for a process
record but does check subsequent blocks unless
they share the same input and output name. If you
check the New Entity box, an asterisk (*) appears
after the block number in the block column of the
routing table.

If you check the new entity box, the entity using
the routing block will begin routing with new
cost and time statistics. If the new entity box
remains unchecked, ProModel assumes the entity
routing from this block is a main entity (the par-
ent entity), carrying with it all cost and time sta-
tistics.

If the new entity field remains unchecked and
you enter a quantity field value greater than 1,
ProModel behaves just as it does with a SPLIT

AS statement, dividing the cost statistics between
the split members and resetting all time statistics
to zero.

Please note

A run-time error occurs if you fail to route one
(and only one) main entity for a process. If no
routing block executes for the main entity, a “No
routing defined for main entity” error occurs. If
more than one route block executes for the main
entity, a “Main entity already routed” error
occurs.

Quantity The number of entities resulting from
this routing block. The default is one. Several
entities of the same name can be created from a
single entity, much like a split AS statement, by
entering a number greater than one. Each of the
new entities then processes the routing block one
entity at a time. For example, suppose an entity
called mail_bag enters a location and is separated
into 30 individual pieces of mail, called Letters.
Enter 30 as the quantity and Letter as the output
entity, as in the example below. Only the first line
in a routing block can specify a quantity.

Process Table

Entity Location Operation (min)
mail_bag Loc1 WAIT T(2,5,8)

Routing Table

 Blk Output Destination Rule Move Logic
1 Letter Loc2 FIRST 10 MOVE FOR 1

Routing Rules Choose the rule for selecting the
next location. Only one rule may be chosen for
each routing line. Note that the last three routing
rules, alternate, backup and dependent, may not
be chosen as the start of a new routing block.

 ProModel 159
User Guide
Note also that no more than one of the other rules
can appear in a single block (e.g., you cannot mix
a First Available rule and a Most Available rule
in the same block).

For exact syntax and examples of each routing
rule, see “Routing Rules” on page 415.

Routing Move Logic
The Move Logic window allows you to define
the method of movement as well as any other
logic to be executed prior to or after the move
actually takes place.

Once the route condition or rule has been satis-
fied for allowing an entity to route to a particular
location, the move logic is immediately executed.
The entity does not actually leave the current
location until a move related statement (MOVE
FOR, MOVE ON, MOVE WITH) is executed or
the move logic is completed, whichever happens
first. This allows the entity to get one or more
resources, wait additional time, or wait until a
condition is satisfied before actually leaving the
location.

Any statements encountered in the move logic
after the move related statement are executed
after the move is complete but before the entity
actually enters the next location. This is often
useful for freeing multiple resources that may
have been used to transport the entity.

When defining exit logic, such as incrementing a
variable used to track the number of exits from a
location, it can generally go before the move
statement unless a MOVE WITH statement is
used and the entity must capture the resource
before making the move. In this situation, a GET
statement should be specified first to get the
resource. Then the exit logic may be specified
followed by the MOVE WITH statement.

Any delay occurring as a result of move logic is
reported as part of the entity’s move time. For

more information on “Routing Move Logic” on
page 159.

Processing Tools
The Tools window provides graphical aids that
may be used to define processing records and
routing records. It is also used to define the
graphical paths that entities follow when moving
without a path network between locations.

The Tools window, which appears along with the
other Processing windows, can define processing
in one of two modes, New Process or Add Rout-
ing. Each is explained next. Additionally, Find
Process Mode is available. To select a mode,
click on the desired button. Each of the modes is
described on the next page.

Editing Mode

Current Entity

Routing Options

In addition to option buttons (New Process, Add
Routing, or Find Process) for the process editing
mode, the Tools window contains a list of
defined entities as well as the reserved word ALL
to represent all entity types. The entity in Pro-
cessing Tools applies to either the process or

160 Chapter 5:
Processing
routing entity, depending on what is currently
being defined.

New Process Mode
New Process Mode is used to create a new pro-
cess record. A new process is automatically cre-
ated for the selected entity each time you click on
a location.

This mode should be used if you want to create a
process for a particular entity at a location. You
may even create multiple processes for the same
entity and location if you want to re-route an
entity through the same location more than once
for additional operations. Once a new process is
created, the mode automatically changes to Add
Routing mode to enable a routing to be defined
for the process.

How to define a new process
using the Tools window:

1. Depress the New Process button.

2. Select the entity for which a new process is
to be defined from the Tools window.

3. Click on the location where the entity will
be processed in the layout window. A new
process record is created in the edit table.
The mode is automatically switched to Add
Routing mode and a rubber banding line
appears that connects the mouse pointer to
the location.

4. If a different entity is to be output from the
process, select it from the Tools window.

5. Click on the destination location. A new
routing record appears in the edit table and
the mode switches back to New Process
mode.

How to delete a process or routing
record:

1. Click inside the desired record in the Pro-
cess or Routing edit table.

2. Select Delete from the Edit menu.

Editing a Routing Path

Once a routing path has been defined you may
edit the path (regardless of the current mode) by
clicking anywhere on the routing path. This
selects the path and allows you to change the
source or destination of the routing by dragging
the beginning or end of the path to a new loca-
tion. It also allows you to move any intermediate
joint in the path to change the shape. You may
also click on a path with the right mouse button to
create or delete a joint.

If a process is already defined and a location is
moved while in the Location module, the con-
necting leg of any routing lines will also move.

Add Routing Mode
Add Routing Mode is used to create multiple
routings for a single process record. Suppose an
entity, EntA, can travel to one of three locations
depending on which is available first. Selecting
the New Process mode and then defining the
entity process causes the entity to travel from one
location to another location. Selecting Add Rout-
ing mode afterwards allows you to define a dif-
ferent destination location within the same
routing block.

How to add additional routings to
an existing routing block:

1. Select the process record in the Process
edit table that needs an additional routing

 ProModel 161
User Guide
line (you may use the Find Process button to
locate the process record).

2. If you wish to insert the routing record
rather than simply append the record to the
current routing list, highlight the routing
record where the routing is to be inserted and
choose Insert from the Edit menu.

3. Select the Add Routing button from the
Tools window. A rubber-banding line is cre-
ated.

4. Select the entity in the Tools window to be
output in this routing.

5. Click on the desired destination location.
This creates a new routing record in the Rout-
ing edit table.

Please note

To cancel a routing once a rubber-banding line
appears, click on the New Process button or click
on the originating location.

How to route a current entity to
exit:

1. Click the Add Routing button.

2. From the Tools window, select the entity for
which you want to define a new process.

3. Click the Locations button in the process
record dialog and select the location from
which the entity will exit the system. ProModel
creates a new process record in the edit
table and displays a rubber-banding line
from the selected location.

4. Add joints as needed to define the exit
path.

5. Click the Route to Exit button in the tools
dialog.

Find Process Mode
To find a previously created process for an entity
type at a certain location, use Find Process mode.

How to find a process for an entity
at a location:

1. Click on the Find Process button.

2. Click on the desired entity type.

3. Click on the desired location. The first pro-
cess found for that entity type at the location
will be highlighted in the Edit window.

This option always searches forward in the pro-
cess list. By clearing the entity field in the tools
window, the next process for any entity at the
location selected is found. If multiple process
records exist for the same entity and location, the
edit table indexes forward to the next process
record each time you click on the location.

View Routing
The View Routing button in the Processing Tools
window causes the process record currently high-
lighted in the edit table to become centered on the
layout.

Snap Lines to Border
When you check this option, ProModel snaps the
routing lines to the location’s bounding area
rather than a specific position on the graphic.

162 Chapter 5:
Processing
Show Only Current Entity
When you highlight an entity in the list box,
checking this option will show only those rout-
ings associated with the entity.

 ProModel 163
User Guide
Arrivals
Any time new entities are introduced into the sys-
tem, it is called an arrival. An arrival record is
defined by specifying the following information:

•Number of new entities per arrival
•Frequency of the arrivals
•Location of the arrival
•Time of the first arrival
•Total occurrences of the arrival

Any quantity of any entity type can be defined as
an arrival for a location. The frequency of arriv-
als can be defined as either a distribution or as an
arrival pattern which cyclically repeats over time.

How to edit arrivals

• Select Arrivals from the Build menu.

Arrivals Editor
The Arrivals Editor consists of three windows
that appear on the screen together. The Arrivals

edit table contains the specifications of each
arrival to the system and appears across the top of
the screen. The Tools window contains tools for
defining arrivals graphically and appears at the
bottom left corner of the screen. The Layout win-
dow appears in the lower right corner of the
workspace.

Arrivals Edit Table
The Arrivals edit table lists all scheduled entity
arrivals to the system. The various fields are
explained next.

Entity The name of the arriving entity.

Location The name of the location where the
entity is to arrive.

Qty each... The number (1 to 999999) of enti-
ties to arrive at each arrival time interval. Any
valid expression may be entered here except for
attributes and non-general system functions. This
field is evaluated throughout the simulation run
and will change if the result of the expression
changes.

164 Chapter 5:
Arrivals
To fill a location to capacity at every arrival time,
use the keyword INFINITE, abbreviated INF.

If you have previously created an arrival cycle
and want to use it for this arrival, enter the name
of the arrival cycle followed optionally by a
quantity. You may also click on the Qty each...
heading button to select from the list of defined
cycles. See the section on Arrival Cycles for
more information about defining cycles.

First Time This option allows you to dynamically
vary the time of the first arrival to your model.
You may define scheduled arrivals to occur at
given intervals (e.g., appointments) or use an
arrival cycle to define random arrivals over a
period of time (this value is the start time for the
first cycle). ProModel evaluates this field only at
the beginning of the simulation.

Occurrences The number of times per simula-
tion run that ProModel will generate arrivals (1 -
999999). Entering the reserved word INFINITE
(abbreviated INF) will cause ProModel to send
the specified number of arrivals at every arrival
time without limit. This value may be any expres-
sion and is evaluated only at the beginning of the
simulation. If an arrival cycle is used, this is the
number of times to repeat the cycle.

Frequency The inter-arrival time or time
between arrivals. Any valid expression may be
entered here except for attributes and non-general
system functions. If an arrival cycle was entered
for the arrival quantity, this is the time between
the start of each cycle. This field is evaluated
throughout the simulation run and will change if
the result of the expression changes.

Logic This field defines any optional arrival
logic, consisting of one or more general state-
ments, to be executed by each entity upon its
arrival (e.g., assigning attribute values to entities
as they arrive). Double-click inside this field or
click the logic button at the top of the column to
define logic for an arrival.

Disable Set this field to YES or NO if you want
to temporarily disable this arrival without delet-
ing it. This is useful when debugging a model and
for verification purposes where you want to fol-
low a single entity through the system.

Arrivals edit table notes:

1. When several different entity types are sched-
uled to arrive at a location simultaneously, they
will arrive in the order they are listed in the
Arrivals table. To have them alternate their
arrivals, enter a 1 in the “Qty each” field and the
total entry quantity in the “Occurrences” field.

2. Arrivals defined through an external arrival
file will be appended to the arrival list. There-
fore, if an external arrival file is the only source
of arrivals, the Arrival edit table may be left
blank. See the section on External Files for more
information on arrival files.

3. If the capacity of the location is insufficient to
hold all the arriving entities, the excess entities
are destroyed. Therefore, the arrival location
should have a capacity at least equal to the “Qty
each” in the Arrivals edit table. If more entities
are scheduled into the system than are exiting,
the arrival location may not have enough capac-
ity to handle all the arrivals.

Defining Arrivals
Arrivals may be defined graphically by using the
tools in the Tools window, or by manually enter-
ing the arrival information directly in the Arrivals
edit table.

How to define arrivals graphically:

1. Select Arrivals from the Build menu.

 ProModel 165
User Guide
2. Select the desired entity from the Tools win-
dow.

3. Click in the layout window at the location
where the entity is to arrive. (You may need
to scroll through the layout to bring the
desired location into view.)

4. Enter the specifications for the arrival
record (e.g., arrival quantity and frequency).

How to define arrivals manually:

1. Select Arrivals from the Build menu.

2. Enter the Entity, Location, and Quantity
through either the keyboard or by clicking on
the respective heading buttons and choos-
ing the proper information.

3. Enter the First Time, Occurrences, and Fre-
quency using either the keyboard or the
statement builder (accessed by right clicking
inside the desired field).

4. Enter the time of the first arrival by clicking
on the First Time button. (See “Independent
Arrivals” on page 165 for more information on
the First Time dialog.)

5. Click on the Logic or Notes heading button
to enter desired logic or notes.

Independent Arrivals
An independent arrival is any arrival assigned to
occur at a specific time or at a fixed interval.
Independent arrivals include such things as
appointments, meeting times, or pickup and
delivery times. When defining independent arriv-
als, remember that simulation can model only
predefined appointment schedules. This means
that dynamically scheduled appointments (e.g.,
rescheduling return visits to fit into available
slots) must take place where you define the
appointment schedule.

When defining independent arrivals, you may:

•Define them by elapsed time, day and time,
or calendar date.

•Assign them to occur at fixed intervals (e.g.,
interviews scheduled every fifteen min-
utes).

Please note

When you define independent arrivals as inter-
vals, the next arrival time is independent of the
previous arrival. For example, applicants will
arrive for appointments based on the clock
time—not the time elapsed since the last arrival.

•Allow a positive or negative offset to adjust
the scheduled time of arrival (e.g., appli-
cants must arrive at least ten minutes prior
to their interviews).

•Define a distribution to allow variability
from the adjusted arrival time.

•Allow the possibility that an entity will not
arrive at all.

•Define specific appointment types for only
certain resources or resource types.

166 Chapter 5:
Arrivals
How to define independent arriv-
als:

1. Open the Arrivals module from the Build
menu.

2. Click on the Entity button and select the
entity type you want to schedule.

3. Click on the Location button and select
the location where you want the indepen-
dent arrival to appear.

4. Click on the Qty Each button and enter
the number of entities to arrive at the sched-
uled time. To model no shows, enter the
expression “Rand(1) + <probability of show-
ing>”. For example, if only 90% of applicants
show up for scheduled interviews, enter
“Rand(1) + .9”

5. Click on the First Time button to open the
dialog used to define the independent arrival
time for the entity. If you define a block of
identical appointments occurring at equal
intervals, this is the time of the first appoint-
ment in the block. (You may enter the arrival
time by elapsed time—since the start of the
simulation—by a weekday and time, or by
calendar date.)

Please note

The arrival time must match the time units
selected for the simulation run-length. If you
defined the elapsed time by calendar date, you
must also define the simulation length by calen-
dar date. To edit arrival times, select either day

and time or calendar date and click the Edit
Arrival Time button.

6. In the offset field, enter any offset you wish
to apply to the arrival time. This will direct
incoming appointments to arrive earlier (or
later) than scheduled. For example, if job
applicants are to arrive 10 minutes prior to the
time of their appointment, enter “-10”{

Appointment

Offset (-10)

Time

9:50 AM 10:00 AM

Arrival
Time

7. In the variation and offset fields of the First
time dialog, enter any optional distribution to
define the variation from the adjusted arrival
time. Generally, to prevent the arrival from
being unrealistically late, you should use a
doubly-bound distribution (i.e., uniform, nor-
mal, triangular, or beta). The triangular and

 ProModel 167
User Guide
beta distributions provide the most realistic
variation.

Variation

Appointment
Time

Arrival
Time

9:50 AM 10:00 AM

8. In the Occurrences field of the arrivals edit
table, enter the number of times to repeat
this appointment definition. (Enter 1 if it will
occur only once.)

9. If the number of occurrences you entered
is greater than zero, enter a time interval in
the frequency field. ProModel assumes this
interval to be fixed for each occurrence (if
you enter an expression, ProModel evaluates
it only once and applies it to each occur-
rence). The distribution defined in the First
Arrival dialog applies it to each occurrence.

10. In the Logic field of the arrivals edit table,
enter any attribute assignments you will use to
determine the processing of the entity. This
might include the resource or appointment
type (e.g., interview) and it will be helpful if
you define these attributes beforehand.

Arrival Logic
Arrival Logic allows you to perform certain logic
as an entity enters the system and is used prima-
rily for assigning initial entity attribute values.
Suppose you process three different types of sam-
ples at an inspection station and each sample
takes either 8, 10, or 12 minutes to test. Fifty per-
cent of the samples take 8 minutes to test, 35%
take 10 minutes, and 15% take 12 minutes.

The samples have different processing times
depending on the test performed. To differentiate
between the different types of samples, we assign
an entity attribute called Sample_Type to the
samples. We define a discrete, non-cumulative
user distribution called Test1 with the following
information:

The arrivals logic for the entity called Test1 is as
follows:

168 Chapter 5:
Shifts & Breaks
Shifts & Breaks
Weekly shifts and breaks for locations and
resources are defined using the Shift editor and
may start and end at any minute of the day. Shifts
and breaks are defined by selecting blocks on a
grid divided into days and hours. Once a weekly
shift and break schedule have been defined, it
may be saved in a shift file with an SFT exten-
sion.

How to define a shift:

1. Select Shifts from the Build menu.

2. Select Define from the submenu.

Shift Editor
The Shift editor window consists of a menu bar,
Shift and Break mode buttons, time control but-
tons, and a grid representing one week of time.

The remainder of this section describes the Shift
Editor menus and the following procedures:

•Drawing a Block of Time for a Shift or
Break

•Selecting a Block
•Resizing a Block
•Editing the Begin or End Time
•Deleting a Block
•Duplicating a Specific Day’s Shift
•Customizing Shift and Break Colors

Shift Editor Menus

The menus used in the Shift editor are accessible
from the menu bar at the top of the editor and
include the following:

File For opening and saving shift files.

Edit For deleting unwanted shift and break
blocks. You may also delete or duplicate a spe-
cific day of the shift. If you delete a shift, the shift
as well as the breaks in the shift are deleted.

Options For customizing the colors represent-
ing shifts and breaks.

 ProModel 169
User Guide
Drawing a Shift or Break Block
When drawing a shift or break block, you must
be sure to follow these rules:

•Shift blocks may not overlap other shift
blocks.

•Break blocks may only be drawn on top of
shift blocks.

•Break blocks may not overlap or be adjacent
to other break blocks.

How to draw a block:

1. Click on the Shift or Break button to desig-
nate the type of block.

2. Click and begin dragging the mouse from
the day and time on the grid the block should
begin.

3. Release the mouse button at the time the
block should end.

If you want to define a block more precisely than
the grid allows, see Editing the Begin or End
Time below.

Please note

If the block you draw is invalid, it will not appear
on the time grid.

Selecting a Block
To edit an existing block, you must first select it.

How to select an existing block:

• Click on the block. (A border appears to
show that the block has been selected.)

How to deselect a block:

• Click on the selected block or click on the
white area of the window.

Resizing a Block

How to resize a block:

1. Select the block.

2. Dragging the border of the block until the
block is the desired size.

3. Release the mouse button.

Editing the Begin or End Time
Time blocks for a shift may be created in one
minute intervals. It is difficult to graphically
define a shift this precise, so there is the option to
edit the begin or end time of a shift numerically.

How to edit a block's begin or end
time:

1. Select the block.

2. Adjust the begin or end time accordingly
using the buttons at the bottom of the screen.

3. Click on the Update button.

170 Chapter 5:
Shifts & Breaks
Deleting a Block
There are three ways to delete a block. Use the
one easiest for you.

How to delete a block:

• Select a block and choose the Delete
option from the Edit menu.

or...

• Select a block and press the Delete key on
the keyboard.

or...

• Select a block and size it down until the
highlight box is gone.

Duplicating a Specific Day Shift
In many instances, the shift schedule for a spe-
cific day of the week is identical to shift sched-
ules for other days of the week. Rather than
creating the same shift block for several days of
the week, it is possible to duplicate one day's shift
block to another day of the week.

How to duplicate a shift block
from one day to another day:

1. Select any shift or break segment for the
day you wish to duplicate.

2. Select Duplicate from the Edit menu. The
day of the week you have selected to dupli-
cate is displayed in the Edit menu of the shift
editor. For example, if you selected the shift

block for Tuesday, the editor will display
“Duplicate Tuesday” in the Edit Menu.

3. In the shift schedule, click the mouse on
the day you wish to copy the shift block to.

Customizing Shift and Break
Colors
The colors that represent shifts and breaks can be
customized.

How to change the color for shifts
or breaks:

1. Choose Colors under the Options menu.
The colors dialog box will appear.

2. Click on the Shift or Break button.

3. Click on the desired color.

4. Click OK.

 ProModel 171
User Guide
Shift Assignments
The Shift Assignment module allows you to
model everyday, real-life situations involving
scheduling and availability issues, and you can
easily define logic to control the way your model
handles these problems.

If you have an employee that works a split shift,
assign two shifts to the resource with the corre-
sponding start times. If you have a processing
location that can only be used during specifically
scheduled hours, set up a separate shift for that
location.

You may have an office or some other operation
just starting up, and you need to run a specific
shift for the first week and another for two more
weeks before going to your full capacity shift
schedule. Simply set up three shifts and assign
them all to the office in one step, indicating the
appropriate start times for each.

If you want to establish a controlled location
gateway: Among fulfilling other duties, your
employee needs to begin doing something (pro-
cessing a certain entity at a certain location) at a
certain time, so you set up a queue location, a
gate location (with a capacity of one), and a pro-
cessing location. Assign a shift to the gate loca-
tion so it will come on line at the designated time.
Now the gate location begins taking the entities
from the queue location and moving them to the
processing location, where the employee will be
requested at the appropriate priority level.

There are many ways to use shift assignments
and shift logic to solve any number of problems
in creating a valid model. This chapter explores
the features and functionality of the Shift Assign-
ments module, including statements and func-
tions for shift and break logic.

Assigning Shifts
ProModel allows you to can select multiple loca-
tions and resources and assign them to a shift in
one record. Plus, you can:

•assign a location or resource to multiple shift
files with a start time for each shift,

•define off-shift and break priorities, and
•create off-shift and break logic.

The Shift Assignments module allows you to
schedule the availability of resources and loca-
tions based on shifts and work breaks defined in
the shift editor. When a location or resource goes
off shift or on break, it is off-line or off-duty and
is reported in the output statistics as non-sched-
uled time rather than downtime.

The off-shift and break logic are optional and
allow you to control more precisely when a
resource or location may go off shift, on break,
and how long before it becomes available again.

When you select Shifts from the Build menu, two
options are displayed: Define and Assign. You
must define a shift before you can assign a
resource or location to it.

172 Chapter 5:
Shifts & Breaks
How to assign locations and
resources to shifts:

1. Select Shifts from the Build menu, then
click on Assign. ProModel displays the Shift
Assignments edit window shown below.

2. Select Locations - Click on the Locations
button to display the Select Locations dialog
(shown below). Click on a location and use
the buttons to select or remove it from the
Shift Locations list. Double clicking on a loca-
tion also selects or removes it. Click OK when
finished.

3. Select Resources - Click on the Resources
button to display the Select Resources dialog
(shown next). Click on a resource and use the
buttons to select or remove it from the Shift
Resources list. Double-clicking on a resource

also selects or removes it. Click OK when fin-
ished.

4. Units Enter the specific units of the
selected resource to be assigned to the shift.
You may assign one, several, or all units of a
resource to a shift. You can also use a macro
to specify the units. If left blank, ProModel
assigns the default of All units to the shift.

1,3 Units 1 and 3 only

1-3,5 Units 1 through 3 and 5 only

All All units of the resource

None You may use none to indicate that no
unit will adopt this shift. This is useful in
creating a run-time interface. By using a
macro to represent the number of units, the
user may select none as an option.

Macro The name of a run-time interface
macro that allows the user to define the units
to be affected by the shift.

5. Select Shift Files - Click the Shift Files button
to display the Select Shift Files dialog (shown
next). Click on the Add button to display the

 ProModel 173
User Guide
File Open dialog and select the shift files you
want to use in the model.

6. Define Start Times - Enter the start time for
each of the selected shift files. The value will
be interpreted according to the time units
specified in the General Information dialog
unless a unit label is entered after the value
(e.g., 10 hr). You can also use a macro to
specify the start times. If the Start time is left
blank, the shift will begin at the start of the
simulation. All shifts specified apply to the
locations and resources selected for these
shifts in the Shift Assignment record.

During the simulation, the shift with the earliest
start time remains in effect for the locations
and resources listed until the next start time
encountered activates a new shift.

7. Define Priorities - Click on the Priorities but-
ton. The Priorities button allows you to enter
the priorities for going off line due to a break
or end-of-shift as well as the priorities of the
off-line state in the event that some other
activity attempts to bring a particular

resource or location back on line. You can
also use macros to specify priorities.

These priorities follow standard ProModel prior-
ity level and preemption rules. (See “Locations”
on page 96, “Entities” on page 118, and
“Resources” on page 132).

Priority for Ending Shift This is the priority for
regularly ending the shift. An entity or downtime
must have a higher priority level to prevent this
location or resource from going off shift at the
preset time.

Off Shift Priority This is the priority for the loca-
tion or resource to stay off shift. In other words,
an entity or downtime must have a higher priority
level to bring this location or resource back on
line before the preset time.

Priority for Starting Break This is the priority
for going on break. An entity or downtime must
have a higher priority level to prevent this loca-
tion or resource from going on break at the preset
time.

Break Priority This is the priority for staying on
break during the break period. In other words, an
entity or downtime must have a higher priority
level to bring this location or resource back on
line before the end of the preset break.

174 Chapter 5:
Shifts & Breaks
Shift & Break Logic
Shift and break logic are optional and are defined
in four distinct logic windows, each executed in a
specific sequence throughout the simulation run.
You can define logic to control how resources
and locations go off line and what happens once
they are off-line.

To define shift or break logic, click on the Logic
button to display a submenu of four events asso-
ciated with shifts for which logic may be defined.
Selecting an event from the submenu displays a
standard logic window. You can enter separate
logic for each of these four events to be executed
when the event occurs. See the following discus-
sion, Sequence of Events.

You may want to use the Logic Builder to help
you enter the logic. Just click on the Build button
in the logic window.

Pre-Off Shift or Pre-Break Logic Executed
whenever the location or resource is scheduled to
go off shift or on break. This occurs before the
location or resource is checked for availability, so
it is executed regardless of availability. This logic
may be used to check certain conditions before
actually taking the resource or location off line.
The logic is executed for each resource and loca-
tion listed as members for this shift assignment
record. This allows some members to be taken
off line while others may be forced to wait. (Pre-
off shift and pre-break logic may be referred to in
this manual as pre-logic when speaking of either
one.)

Off Shift & Break Logic Executed at the instant
the location or resource actually goes off line.

How to determine the sequence
of events

1. When a location or resource is scheduled
to go off line due to a break or the end of a
shift, the pre-logic for that particular location
or resource is executed.

2. After executing the pre-logic, which may
contain conditional (WAIT UNTIL) or time
(WAIT) delays, the location or resource is
taken off line, assuming it is either available or
the priority is high enough for preemption.

3. At the instant the location or resource is
taken off line, the Off-Shift or Break logic is
executed.

4. After executing this logic, the location or
resource waits until the time defined in the
shift file expires before going back on line.

Please note

If the off-shift and break nodes are not specified
in the Resource Specs dialog, the resource will
stay at the current node. If no resources or loca-
tions are assigned to a shift, the shift is ignored.

Functions and Statements
ProModel uses several functions and statements
specifically for shift and break logic: SKIP, PRI-
ORITY, DTLEFT(), FORLOCATION(), and
FORRESOURCE(). Following is a brief descrip-
tion of each. For more details, see “Statements
and Functions” on page 439.

SKIP If used in pre-logic, it causes the off-shift
or break time (including any off-shift or break
logic) to be skipped so a location or resource
never goes off line. If used in the off-shift or
break logic, it causes the off-line time defined in

 ProModel 175
User Guide
the shift editor to be skipped. This allows you to
specify a WAIT statement for the off-line time
and SKIP the off-line time defined in the shift
editor.

PRIORITY This statement provides an alternative
way to specify off-shift or break priorities. It also
allows the priority to be changed after some time
being off-shift or on break. If the priority is
changed to a value lower than the current value,
the system will check to see if any preemption
may occur at that time. This statement is not
allowed in off-shift or break pre-start logic.

DTLEFT() This function returns the remaining
off-shift time based on when the location or
resource is scheduled to go back on shift as
defined in the shift file. It may be used in off-shift
and break logic to adjust the actual time the loca-
tion or resource is off-line.

FORLOCATION() This function returns TRUE if
the member for which the shift or break logic
being executed is a location. This may be fol-
lowed by a test using the LOCATION() function
to determine the precise location.

FORRESOURCE() This function returns TRUE if
the member for which the shift or break logic
being executed is a resource. The RESOURCE()
function may then be used to determine the pre-
cise resource if multiple resources are listed as
members.

RESOURCE() This returns the name-index num-
ber of the resource currently processing the off-
shift or break logic.

To illustrate how FORLOCATION() and FOR-
RESOURCE() might be used, consider the fol-
lowing example: Suppose you have locations and
resources as members in a shift file assignment
and you want to wait until variable Applications
is equal to zero before allowing a particular
resource called Loan_Officer to go off shift. You
would enter the following pre-off shift logic:

Pre-off shift logic

IF FORRESOURCE() THEN

BEGIN

IF RESOURCE() = Loan_Officer THEN

BEGIN

WAIT UNTIL Applications = 0

END

END

In addition to these functions, DTDELAY() may
also be called at the beginning of the off-shift or
break logic to determine how much time has
elapsed between the time the shift downtime was
scheduled to start and when it actually started.
The length of the shift downtime defined in the
shift file would be the sum of DTDELAY() and
DTLEFT().

Preemptions to Off-Shift or Break
Logic
If off-shift or break logic is defined using WAIT
or USE statements and happens to get preempted,
the logic will resume one statement after the
WAIT or USE statement where it was preempted.

Shift Downtime Principles

Locations Shift Downtime
Principles
It is important to understand that when a location
or resource goes off shift, it is essentially down.
We call this type of downtime a shift downtime
and it is treated slightly differently from other
downtimes. Breaks, which are also part of the
shift schedule, are treated exactly like clock-
based downtimes. These downtimes are dis-

176 Chapter 5:
Shifts & Breaks
cussed in “Locations” on page 96 and
“Resources” on page 132.

Shift Downtimes for Locations

All location shift downtimes have a default prior-
ity of 99, the highest non-preemptive priority
possible. This means that when a location is
scheduled to go off-shift, this downtime will take
priority over all other entities with a priority less
than 99 waiting for the location. If the location is
currently in use, shift downtimes allow the cur-
rent entity to complete its process at the location.
After the entity is finished, the shift downtime
proceeds as if it started at its scheduled time. This
means that the location becomes available at the
start of the next shift regardless of when it actu-
ally went off shift. This procedure is demon-
strated in the following example.

Example 1 (a)

Entity

Shift DT

Actual DT Time

T1 T2 T3 T4

Although the downtime is scheduled to last from
time T2 to T4, the actual downtime does not
begin until time T3. This is what happens for
both locations and resources currently busy when
the shift downtime is scheduled to occur.

To preempt a location in which an entity is cur-
rently processing, set the priority for going off
shift to a number one level higher than the
entity’s priority.

Example 1 (b)

Entity Entity

Shift DT

Actual DT

T1 T2 T3 T4 T5

Time

Please note

Since the entity was preempted, the remaining
time for the entity to be processed at the location
was completed after the location shift downtime
was completed.

Preempting Off-Shift Locations

An off-shift location may be preempted back into
service by an entity. Following the preemption,
the shift downtime will resume for any remaining
time before the start of the next shift. The follow-
ing example demonstrates this principle.

Example 2

In this example an entity with priority of 200 or
greater preempts an off-shift location. The loca-
tion becomes available to process the entity.

 ProModel 177
User Guide
Once processing is complete, the location returns
to its off-shift status.

Shift DT

Time

Entity

T1 T2 T3 T4

In order for an entity to preempt any location
downtime (shift or otherwise), it must have a pri-
ority level that is at least 2 levels higher than the
downtime's priority. In this example the location
shift downtime has a priority level of 99 so the
entity must have a priority level of 200 or greater
to preempt the shift.

Overlapping Downtimes

If a preemptive clock downtime occurs during a
shift downtime, the downtimes simply overlap.

Example 3

This example shows the effect of a preemptive
downtime occurring for a location already off-
shift due to a shift downtime. Because location
downtimes always overlap, the effect is as if the
preemptive downtime never occurred. The loca-

tion remains off-shift for the total duration of the
shift downtime.

Shift DT

DT

Time

T1 T2 T3 T4

The example above could represent the situation
where a recurring downtime, such as a lunch or
dinner break, has been defined for a single loca-
tion that is scheduled to be available for a two-
shift period. It would be simpler to specify a sin-
gle downtime for lunch and dinner that occurs
once every 8 hours continuously than to define
separate downtimes for lunch and dinner. In this
case the preempting downtime would represent a
meal break occurring while the location was off-
shift.

Resource Downtime Principles

Shift Downtimes for Resources

Resource shift downtimes work exactly like loca-
tion shift downtimes with the exception that if the
off-shift downtime is preempted by some other
downtime, the original off-shift downtime never
resumes. The following examples show how a
resource that is off shift is affected by a preemp-
tive request by another entity (example 1) and by
downtime preemption (example 2).

Example 1

Suppose a resource, repairman, is off-shift. An
important machine goes down unexpectedly.
Because this machine is a bottleneck in the opera-

178 Chapter 5:
Shifts & Breaks
tion, it is vital to repair the machine as quickly as
possible. The repairman is called in and takes 30
minutes to fix the machine. The logic for the
downtime to call him back is “USE Repairman,
600 FOR 30 min.” This will preempt the shift
downtime and use the repairman to repair the
machine even though the repairman is off-shift.
Once the repairman has repaired the machine, he
returns to his shift downtime until he is scheduled
to go back on shift. The repairman's shift down-
time will end at the originally scheduled time
regardless of the fact it was preempted by a repair
activity.

Shift DT

Task

T1 T2 T3 T4

Time

Discontinued

Although the shift downtime is scheduled to last
from time T1 to T4, the actual downtime lasts
from T1 to T2 and then from T3 to T4.

Example 2

This example shows the effect of a preemptive
downtime occurring for a resource already off-
shift due to a shift downtime. Since resource
downtimes are not overlapping, as in the case of
location downtimes, the shift downtime in
progress is discontinued and the preemptive
downtime takes control of the resource because it
has a priority greater than or equal to five-hun-
dred (remember that a downtime priority needs to
be only one level higher than another downtime
priority to preempt it). The effect in this example
is that the total downtime is actually shorter than

it would have been had the original shift down-
time been completed.

Shift

DT

Time

T1 T2 T3 T4

Discontinued

Although in practice, situations like the example
above are unlikely to occur, it is important to
understand that the above condition is possible.
Typically, preemptive downtimes are due only to
some type of location or resource failure, in
which case, the downtime occurrence would be
based on usage and not clock time. If a preemp-
tive downtime is based on usage, the situation in
the example above could not occur because the
location or resource would not be in use, and
would not accumulate usage time.

 ProModel 179
User Guide
General Information
The General Information dialog box allows you
to specify basic information about a model, such
as its name, default time units, default distance
units, and graphic library. You also may specify
the model's initialization and termination logic.
Finally, a notes window is available for specify-
ing particulars of a model, such as the modeler's
name, the revision date, modeling assumptions or
anything else about it.

How to open the General Informa-
tion dialog box:

• Choose General Information from the Build
menu.

General Information Dialog
Box

The fields of the General Information dialog box
are as follows:

Title An optional, brief description of the model.
Information will be displayed in the caption bar
and included in the model and results files.

Time Units The unit for any time value in the
model that does not have an explicitly specified
time unit. The smallest unit of time available in
ProModel is .00001 second and the largest is 1
day.

Distance Units The units in feet or meters for all
distances specified in the model. There is no
practical limit on the size of the model.

Model Notes... Brings up a notes window for
specifying general notes about the model. Notes
are optional and are for user reference only. An
alternative way to display notes is using a DIS-
PLAY statement (see “Display” on page 467) in
the initialization logic.

Graphic Library File Opens a dialog box for
selecting the graphic library file to use with the
open model. Graphics library files have the
extension GLB and are further explained later in
this section.

Initialization Logic Opens the Initialization
Logic window for specifying initialization logic.

180 Chapter 5:
General Information
An asterisk (*) next to the name of the button
means that some initialization logic has been
defined for the model. (See “Initialization Logic”
on page 180.)

Termination Logic Opens the Termination
Logic window for specifying termination logic.
An asterisk (*) next to the name of the button
means that some termination logic has been
defined for the model. (See “Termination Logic”
on page 180.)

Initialization Logic
Initialization logic allows you to initialize arrays,
variables, and other elements at the beginning of
a simulation run as shown below:

Other common uses of initialization logic
include:

•Reading external files
•Displaying messages
•Prompting for values
•Resetting general read/write files
•Activating independent subroutines that pro-

cess logic based on a timer. (See “Subrou-
tines” on page 246; also see “Activate” on
page 441).

For a discussion of each of the buttons in the Ini-
tialization Logic window, see “Editing Logic
Windows” on page 78.

Termination Logic
Termination logic allows you to summarize data
or write special statistics to an output file at the
end of a simulation run as shown below:

Other common uses of termination logic include:

•Displaying messages
•Resetting read/write files

See the following page for a discussion on the
placement of initialization and termination logic
within the sequence of run-time events.

Please note

Although Initialization and Termination logic
cannot be tested with the Compile option in the
Edit menu, as with Processing or Arrival logic,
the logic can be tested by clicking on the compile
button in the logic window. ProModel checks all
logic automatically upon selecting OK and, if an
error in the logic is found, an error message
describing the problem will appear.

Execution Time of Initialization
and Termination Logic
It is important to understand exactly when initial-
ization and termination logic is executed. When

 ProModel 181
User Guide
you select Run from the Simulation menu the fol-
lowing things occur in the order listed:

1. Variables are initialized to the values speci-
fied in the Variables Editor.

2. Macros with a run-time interface are set to
their user-specified value.

3. The model is loaded into the simulation
module. As the model is loaded, any numeric
expressions used to define such things as
location capacities or number of resource
units are evaluated and assigned a numeric
value.

4. Initialization logic is performed.
5. Simulation begins. Initial arrivals and down-

times are scheduled and simulation pro-
cesses begin.

6. Simulation ends.
7. Termination logic is performed.
8. Statistics are compiled.

Logic elements that figure into a model's struc-
ture are evaluated only when the model is loaded
into the simulation module. Those logic elements
are:

•Simulation warm-up hours
•Simulation run hours
•Node capacity
•Length of path segments
•Resource units
•Location capacity
•Time and quantity cycle tables
•Queue length
•Conveyor length
•Conveyor speed

For a complete list of when each field is evalu-
ated, see the “Appendix A” on page 587.

Any variables used in an expression that change
any of these logic elements should be initialized
in the Variables Editor or run-time interface and
not in the initialization logic. The model structure
cannot change after the model has been loaded

into the simulation module. Thus, any variable
figuring into a location's capacity and initialized
in the initialization logic will be initialized too
late to affect the location's capacity.

Variables which do not figure into a location's
capacity may be initialized in the Initialization
Logic without any problem. A variable initialized
in the initialization logic could be used as the
“First Time” for an arrival or downtime occur-
rence. This is true because arrivals and downtime
occurrences are simulation events, and all initial-
ization logic occurs before the first simulation
event.

Graphic Library File
ProModel allows you to create and store as many
graphics libraries as desired. However, only one
graphic library may be used for each model. To
copy a graphic from one graphic library to
another model's graphic library, see “Copying a
Graphic from One Library to Another” on
page 316.

How to select the desired graph-
ics library:

1. Select Graphic Library File from the Gen-
eral Information dialog box.

2. Enter the name of the desired graphics
library.

182 Chapter 5:
General Information
3. Select OK.

Please note

Only files with the extension GLB may be used as
graphics libraries. For more information on cre-
ating, merging and saving graphics libraries, see
“Graphic Editor” on page 312.

 ProModel 183
User Guide
Cost
With ProModel’s costing capability, you can
make decisions about your system on a cost
basis. Costing dialogs allow you to monitor costs
associated with Locations, Entities, and
Resources during a model run and the General
Statistics Report includes Costing statistics, auto-
matically generated at the start of the simulation.

How to use cost

• Choose Cost from the Build menu. The
Cost Dialog appears.

Cost Dialog Box
Use the Cost Dialog box to define costs for Loca-
tions, Entities, and Resources. Fields in the Cost
Dialog box vary between Object Types and Pro-
Model evaluates expressions in these fields only
during translation at run time. The General Statis-
tics Report includes statistical information auto-

matically generated during run time about cost
for locations, entities, and resources.

Object Type Use this pull-down menu to define
costing for the components of the selected object
type. Object types include locations, resources,
and entities as shown in the following example.
All defined model components of the selected
type appear in the box below the object type field
and ProModel allows you to assign costs to any
of these components.

Locations

Operation Rate This field specifies the cost per
unit of time to process entities at the selected
location. Cost accrues only while an entity exe-
cutes a WAIT or USE statement in operation
logic. ProModel accepts expressions in this field
and evaluates them at translation.

184 Chapter 5:
Cost
Per With this pull-down menu, you can set the
time units for the Operation Rate. Time units may
be in seconds, minutes, hours, or days as shown
here.

Resources

Regular Rate This field specifies the cost per
unit of time for a resource used in the model. You
can use expressions in this field (evaluated at
translation) to set the rate or change it using Set-
Rate. For more information on the SetRate opera-
tion statement, see “SetRate” on page 556.

Per This pull-down menu allows you to set the
time units for the Regular Rate. Times may be in
seconds, minutes, hours, or days as shown here.

Cost Per Use This field allows you to define the
actual dollar cost accrued each time you use the
resource (i.e., the minimum usage cost). The cost
per use updates when you obtain the resource and
ProModel accepts expressions in this field (eval-
uated at translation).

Please note

Since ProModel counts a preemption as a use, if
you preempt a resource from an entity, the usage

cost applies to the resource only when it returns
to the entity.

 Entities

Initial Cost This field allows you to define the
initial entity cost for an entity which enters the
system through a scheduled arrival, a CREATE
statement, or an ORDER statement. ProModel
accepts expressions in this field and evaluates
them at translation.

Please note

When you implicitly create new entities through a
ROUTE statement, ProModel does not add an
initial cost to the entity. To add an initial cost,
use the INCENTCOST statement. See “IncEnt-
Cost” on page 499 for more information.

Building a Model with Costing
When you build a model using the costing fea-
ture, you must first define the locations,
resources, and entities used in the model. Once
you define these model components, you may
assign costing information to them through the
Cost option in the Build menu. To collect costing
information about your model, uncheck the dis-
able costing box from the simulation options dia-
log of the simulation menu. By default, ProModel

 ProModel 185
User Guide
disables costing and sets all defaults to zero. See
“Enable or Disable Costing” on page 187.

Please note

The following scenarios assume you defined costs
for all model components.

Preemption/Downtime
•If you preempt an entity’s resource, an addi-

tional cost per use will apply once you re-
acquire the resource. While waiting for the
resource to return, the entity does not
record operation or resource costs.

•If an entity preempts another entity, the pre-
empted entity continues to record opera-
tion time during the entire preemption
period. While the preempting and pre-
empted entities are simultaneously at a
location, the location records the cost for

both entities. If the preempting entity
obtains a resource, the preempted entity
will not record the resource costs during
the preemption period.

•If an entity is at a location when a preemp-
tive downtime occurs, the entity records
the downtime as part of its operational
costs. This applies to all types of location
downtimes, including shifts. The location
records the cost of the preempted entity
while it remains at the location.

•If an entity’s resource has a downtime which
requires the use of another resource, the
entity will not record the second
resource’s cost. However, the location will
record the extra resource’s cost.

Join/Load
•Joined entities add their costs to their base

entities, but not their time statistics.
•Loaded entities do not add their costs or time

statistics to their base entities.
•When an UNLOAD occurs, ProModel

divides all costs accrued by a loaded entity
among the unloaded entities. ProModel
adds all other entity statistics calculated
during the loaded period to each of the
unloaded entities.

•Entities leaving the system loaded onto other
entities do NOT report their individual
costs, but do report all other statistics. To
get the cost of each entity, you must
unload the entities before they exit.

Combine/Group
•Combined entities add their costs to the

resultant entity, but not their time statis-
tics. The resultant entity begins with fresh
time statistics.

•Grouped entities do not add their costs or
statistics to the group shell (a temporary

186 Chapter 5:
Cost
entity representing grouped entities that
starts with cost and time statistics of zero).

•When an UNGROUP occurs, ProModel
divides all costs accrued by a grouped
entity among the ungrouped entities. Pro-
Model copies all other entity statistics cal-
culated during the grouped period to each
of the ungrouped entities.

•Entities leaving the system grouped with
other entities do NOT report their individ-
ual costs, but do report all other statistics.
To get the cost of each entity, you must
ungroup the entities before they exit.

Special Cost Handling
•As soon as you acquire a resource, it begins

to accrue cost.
•Unless obtained in the move logic, Pro-

Model charges the “Cost per use” for a
resource to the location that obtained it.
Resources obtained in the move logic do
not charge a “per use” cost to any location.

•ProModel does not charge any resource time
used during move logic to any location.

•ProModel adds initial entity costs defined in
the cost module only as entity costs, not
location costs.

•If a location uses a resource during a down-
time, the location accrues that resource’s
cost.

•The USE statement counts as operation and
resource cost.

•When you CREATE a new entity, it begins
with new time statistics and an initial cost.

•If you RENAME an entity, previous time
statistics and costs continue with the
entity.

•The SPLIT AS statement divides the cost of
the original entity between all entities.
Each new entity begins with new time sta-
tistics.

Costing Output Statistics
ProModel collects costing statistics only if you
uncheck the Disable Cost Statistics option in the
Simulation Options menu (see “Enable or Dis-
able Costing” on page 187). Included in the Gen-
eral Statistics Report, ProModel calculates
costing statistics.

Locations
•Operational Cost = (Active Operation Time

* Rate) + (Any IncLocCost)
•% Operational Cost refers to the location’s

percentage of the sum of all operation
costs

•Resource Cost = (Utilization * Rate) +
(Times Used * Cost per use)

Please note

For Resource Cost, Utilization and Times Used
refer to the utilization of a resource while at a
location. This applies only to resource use
through operation logic.

•% Resource Cost refers to the location’s per-
centage of the sum of all resource costs

•Total Cost = (Operation Cost + Resource
Cost)

•% Total Cost refers to location’s percentage
of the sum of all location costs

Resources
•NonUse Cost = (1-% Utilization) * Sched-

uled Time * Rate
•% NonUse Cost refers to the resource’s per-

centage of the sum of all nonuse costs
•Usage Cost = (% Utilization * Scheduled

Time * Rate) + (Times Used * Cost per
use)

 ProModel 187
User Guide
•% Usage Cost refers to the resource’s per-
centage of the sum of all resource usage
costs

•Total Cost = Usage Cost + NonUse Cost
•% Total Cost refers to the resource’s per-

centage of the sum of all resource costs

Entities
• Explicit Exits The number of entities that

have explicitly exited. Whenever an entity
exits the system, it is an explicit exit
except in the following cases:
- When an entity JOINS or COMBINES

with another entity, it implicitly exits the
system, and is reported as an exit in the
Entity Acitvity report. However, for
costing purposes, the entity did not
explicitly exit, but its costing informa-
tion was added to the entity it was
JOINED or COMBINED with.

- When an entity LOADS or GROUPS
with another entity, and the entire
LOADED or GROUPED entity exits the
system, the original entity implicitly
exits the system, and is reported as an
exit in the Entity Acitvity report. How-
ever, for costing purposes, the original
entity did not explicitly exit, but its cost-
ing information was added to the entire
load or group.

• Total Cost Dollars Total Cost = cumula-
tive entity cost, or the sum of costs
incurred on all locations the entity passed
through + the sum of all costs incurred by
use of resource + initial cost + any IncEnt-
Cost

• % Total Cost % Total Cost refers to the
entity’s percentage of sum of all entity
costs

In the above calculations, the rate defined (per
day, hour, minute, and second) converts to the

default time units specified in the General Infor-
mation dialog.

In the above calculations, the rate defined (per
day, hour, minute, and second) converts to the
default time units specified in the General Infor-
mation dialog.

Please note

ProModel does not allow you to generate a Cost-
ing Graph. However, if you set a variable equal
to GetCost (e.g., Var1=GetCost), you can gener-
ate a time series graph to track changing entity
costs. See “GetCost()” on page 488 for more
information.

Enable or Disable Costing
To enable the costing feature, be sure that the
Disable Cost option in the Simulation Options
dialog is not checked.

188 Chapter 5:
Tanks
Tanks
Tanks are simply locations to which ProModel
associates a level instead of an entity routing. (As
a result, the units and rules fields do not apply to
tanks.) Using tanks, you can model the continu-
ous flow of liquids and other substances into and
out of tanks or similar vessels. Also, when com-
bined with discrete-event simulation, ProModel’s
continuous modeling capability makes it possible
to model the exchange between continuous mate-
rial and discrete entities (e.g., when you place liq-
uid into a container). Other uses include
modeling high-rate, discrete part manufacturing
systems.

The Tank Submodel
In order to function properly, all tank models
should include the tank submodel (TANK-
SUB.MOD). The tank submodel contains impor-
tant subroutines and data elements (arrays and
macros) used to simplify tank modeling. Each of
these subroutines and data elements has a
“Tank_” prefix to help identify it and to prevent
any accidental name duplication.

 Please note

All user-defined model elements should begin
with something other than “Tank_”.

How to define a tank

1. Select the gauge/tank symbol from the
Location Graphics window.

2. Click on the layout window where you wish
to place the tank and select Create Tank
Location from the menu that appears. Pro-
Model places the tank on the layout.

Please note

When you create the first tank in your model,
ProModel will display a dialog that allows you to
automatically import various subroutines,
arrays, macros, and library graphics specific to
tanks. If you do not wish to include these new
items, you may cancel the action.

3. Enter a capacity (1 to 999999) for the tank
in the location capacity field.

4. Define and reference any necessary tank
control subroutines.

How to edit a tank or a gauge

1. Double click on the tank or gauge (or right
click and select Edit Graphic).

2. From the dialog that appears, make the
appropriate changes.

3. Click OK.

 ProModel 189
User Guide
How to change between a tank
and a gauge

• Double click on the tank or gauge and
check or uncheck the tank option.

or...

• Right click on the tank or gauge and select
Change Tank to Gauge or Change Gauge to
Tank.

In addition to defining a tank graphic, you may
add labels and other figures to a tank. For exam-
ple, you can add a counter to digitally display the
fill level of the tank (ProModel rounds the value
displayed to the nearest integer). The following
are examples of how you can use tanks in Pro-
Model.

Basic Concepts
Since tanks do not process discrete entities, you
may not define routings to or from tanks. To con-
trol a tank level, ProModel provides predefined
subroutines that fill, empty, and transfer tank
contents. To monitor tank levels and initiate
flows, you must define control subroutines using

the Subroutine module. To call these subroutines
and operate them independently in the model, use
the ACTIVATE statement. For examples of how
to use these subroutines, see the discussion at the
end of this section. To model tanks effectively,
you must understand the following concepts.

Tank Levels
ProModel records tank levels in a pre-defined
array called Tank_Level where each element of
the array corresponds to each tank location in the
location list. For example, the level of TankA is
the value of Tank_Level [TankA]. If TankA were
the third location in the location list, you could
also reference the level of TankA with
Tank_Level[3]. For best results, you should con-
trol all tank levels using only the pre-defined tank
filling and emptying subroutines rather than
change the Tank_Level array values directly.
This will prevent overfilling or overdrawing and
will accurately gather statistics for each tank. For
example, calling Tank_Fill (TankA, 500, 30, 0)
automatically fills TankA to 500 units at a rate of
30 units per minute. The 0 signifies that the tank
will not accept excess material and, as a result, an
error message will occur if the tank reaches
capacity before the specified amount fills into the
tank.

190 Chapter 5:
Tanks
The Flow Time Step
To model continuous flow, ProModel uses a
Tank_TimeStep macro. This macro is the time
step used when filling/emptying tanks and is an
RTI (run-time interface) parameter. Initially, Pro-
Model sets this value to .2 minutes. If you wish to
use a different value for the time step, you may
change it temporarily (for a particular model)
through the Simulation/Parameters menu option,
or permanently by changing the macro itself. The
larger the time step, the longer the interval
between filling and emptying (which speeds up
the simulation). For example, suppose you set the
time step to .1 minutes. If a tank empties at a rate
of 60 gpm, the simulation would actually empty
the tank by a discrete amount of 6 gallons every
.1 minutes. When filling or emptying a tank, if
the remaining quantity doesn't require the full
time step, ProModel reduces the time step using a
linear interpolation.

Please note

The only adverse effect of using a large time step
is that any WAIT UNTIL statement or other test
based on the Tank_Level array may be off by as
much as the flow amount for the time step. For
example, if the time step is .5 minutes and the rate
of flow is 60 gpm, the level will change in 30 gal-
lon increments. This means that the tank will not
satisfy the statement “WAIT UNTIL
Tank_Level[TankA]>=31” until the level
reaches 60.

Rate of Flow
To use flow rates properly, you must define all
rates in terms of units (i.e., gallons, pounds) per
time unit defined in the General Information dia-
log. Whenever you call one of the empty, fill, or
transfer subroutines, you must specify the rate of

flow. The units of flow, however, may change
when you move material from one tank to
another (e.g., pounds of dry material may transfer
into a tank containing gallons of liquid).

To specify a variable rate of flow that changes
dynamically with each time step, pass a value of
0. This signals the subroutine to call the
Tank_Rate subroutine with each time step. To
return the desired rate value for each time step
when you use a variable rate, you must modify
the Tank_Rate subroutine appropriately.

Tank States
Like other model elements, tanks use states to
test and track statistics. ProModel automatically
sets these states when you use the predefined tank
subroutines to control the tank. The following are
defined states:

Tank_Idle The tank is empty and not in use. Set
automatically when a tank empties and at the end
of a Tank_DoPrep or Tank_GoDown subroutine.

Tank_Operation The tank is active (e.g., mix-
ing, reacting, heating). Set automatically when
the model calls the Tank_DoOperation subrou-
tine.

Tank_Setup The tank is cleaning or preparing
for future use. Set automatically whenever you
call the Tank_Prep subroutine.

Tank_Filling The tank is filling. Set automati-
cally whenever you fill the tank.

Tank_Emptying The tank is emptying. Set auto-
matically whenever you empty the tank.

Tank_Blocked The tank is full and ready to
transfer. Set automatically when the tank fills to
capacity.

Tank_Down The tank is down. Set automati-
cally whenever you call Tank_GoDown.

 ProModel 191
User Guide
Tank_ScheduledDown Similar to the
Tank_Down state, except statistics are not col-
lected.

While ProModel sets these states automatically,
you may change the state of the tank at any time
by calling the Tank_SetState subroutine. Pro-
Model records statistics for these states in the
output report under Locations. Since a tank may
fill and empty simultaneously, the output report
combines Tank_Filling with Tank_Emptying and
reports it all as waiting time.

Over Filling/Emptying Tanks
When using the predefined subroutines to fill,
empty, or transfer from one tank to another, you
may accidentally attempt to over fill or over
empty a tank. To prevent these situations, you
have the option to terminate the fill/empty sub-
routine or suspend further filling/emptying until
the tank reaches a resume level. If you terminate
the subroutine, ProModel temporarily stores the
un-filled or un-emptied quantity for immediate
access in the global variable, Tank_QtyLeft.

Tank Downtimes
For Tanks, you must define downtimes and shifts
in a special way. First, you may define only clock
downtimes for tanks. Second, when defining a
clock downtime for a tank, use the
Tank_GoDown subroutine (page 201) in the
Downtime Logic field instead of just a WAIT
statement. This sets the state of the tank to
Tank_Down and gathers the appropriate statis-
tics. Third, when defining a shift for a tank, you
should call the Tank_GoDownSched subroutine
in the off-shift logic using the DTLeft() function
as the time parameter. A SKIP statement should
follow this function as shown next.

SKIP example

Tank_GoDownSched (<TankID>, DTLeft())
SKIP

ProModel temporarily suspends tank flow while
a tank is down or off shift.

Tank Logic Builder
An expanded capability within ProModel, the
tank logic builder provides you with what you
need to model complex tank and fluid system
operations. The logic builder contains all avail-
able tank subroutines and provides you with a
description of the components required to use
each subroutine.

192 Chapter 5:
Tanks
Please note

The subroutine logic is not accessible until you
define your first tank location—when you define
the tank location, ProModel loads the tank sub-
model.

How to access the Logic Builder:

• Click the right mouse button in the logic
window or expression edit field. Or click the
Build button on the logic window’s toolbar.

For more information about the Logic Builder,
see “Logic Builder” on page 293.

 ProModel 193
User Guide
Pre-defined Tank Subrou-
tines
Tank_Cap .. page 200

Tank_Dec... page 198

Tank_DoOperation page 201

Tank_DoPrep ... page 203

Tank_Empty ... page 194

Tank_FallTrigger page 200

Tank_Fill ... page 193

Tank_FreeCap....................................... page 200

Tank_GoDown....................................... page 201

Tank_GoDownSched............................ page 202

Tank_Inc .. page 198

Tank_Rate .. page 207

Tank_RiseTrigger page 199

Tank_SelectInput page 206

Tank_SelectOutput page 204

Tank_SetLevel page 197

Tank_SetState.. page 204

Tank_Transfer... page 195

Tank_TransferDownTo page 196

Tank_TransferUpTo page 195

Tank_UpdateStats page 206

Tank_Fill

Syntax samples

TANK_FILL (<Tank ID>, <Fill Quantity>, <Fill
Rate>, <Resume Level>)

TANK_FILL (HoldingTank, 2000, 75, 1500)

Description
Fills a tank using a specific quantity and rate. The
default tank state sets to Tank_Filling, then to
Tank_Blocked if the tank becomes full.

Use Tank_Fill when the source of the material is
not another tank, but an arriving entity or a
source that is not part of the model.

Components

<Tank ID>

The tank name or location index number.

<Fill Quantity>

The number of units (gallons, pounds) to fill into the
tank. To fill the tank to capacity, enter
Tank_Cap(<Tank ID>).

<Fill Rate>

The rate in units (gallons, pounds) per time unit
defined in the General Information dialog. To
instantly increase the level of a tank, use the Tank_Inc
subroutine. To initialize the level of a tank (e.g., at the
start of the simulation), use the Tank_SetLevel subrou-
tine. To use a dynamically calculated rate in the
Tank_Rate subroutine, enter 0.

<Resume level>

If the tank level reaches capacity before you add the
specified quantity, the tank must drop to the resume
level before it can continue filling. To terminate filling
if the tank reaches capacity, enter Tank_Stop as the
resume level. A value of 0 causes an error to occur if
the tank becomes full before reaching the fill quantity.

Example

194 Chapter 5:
Pre-defined Tank Subroutines
A tanker arrives and fills a storage tank by the
quantity stored in the tanker’s attribute,
Load_Qty. The rate of fill is 80 gpm and, if the
tank fills to capacity before the tanker dis-
charges the entire quantity, the level of the
storage tank must drop to 12,000 gallons
before it resumes filling. To represent this,
enter the following statement in the opera-
tion logic for the tanker at the unloading sta-
tion.

Tank_Fill(StorageTank, Load_Qty, 80, 12000)

See Also
“Filling from an Entity” on page 210 and “Initial-
izing and Replenishing Supply Tanks” on
page 210.

Tank_Empty

Syntax samples

TANK_EMPTY (<Tank ID>, <Empty Quantity>,
<Empty Rate>, <Resume Level>)

TANK_EMPTY (TankB, 2000, 40, 0)

Description
Empties a tank by a specified quantity and rate.
The state is set to Tank_Emptying, then to
Tank_Idle if the tank becomes empty.

Use Tank_Empty when the destination is not
another tank, but an arriving entity or a source
that is not part of the model.

Components

<Tank ID>

The tank name or location index number.

<Empty Quantity>

The number of units (gallons, pounds) to empty. To
empty a tank completely of its current contents, enter
Tank_Level [<Tank ID>].

<Empty Rate>

The rate in units (gallons, pounds) per time unit
defined in the General Information dialog. To instantly
decrease the level of a tank, use the Tank_Dec subrou-
tine. To specify a dynamically calculated rate using the
Tank_Rate subroutine, enter 0.

<Resume level>

If the tank level drops to 0 before you empty the speci-
fied quantity, the tank must rise to the resume level
before continuing to empty. To terminate emptying if
the level ever drops to 0, enter Tank_Stop. A value of 0
causes an error to occur if the tank becomes empty
before removing the specified quantity.

Example

When a chemical tank, ChemTank, is full
(state is Tank_Blocked), workers pump its con-
tents into a rail car at a rate of 60 gpm for
transportation to another facility. Since rail
cars are always available and the delivery
activity is not of interest, it is not necessary to
model the rail cars explicitly. Instead, activate
a subroutine in the initialization logic with the
following statement:

Tank_Loop //logic repeats continuously

{

WAIT UNTIL
Tank_State[ChemTank]=Tank_Blocked

Tank_Fill(ChemTank, Tank_Level[ChemTank],
60, 0)
}

 ProModel 195
User Guide
See Also
 “Emptying to an Entity” on page 211.

Tank_Transfer

Syntax samples

TANK_TRANSFER (<FROM Tank ID>, <TO Tank
ID>, <Transfer Quantity>, <FROM Rate>, <TO
Rate>, <Resume Level>)

TANK_TRANSFER (Tank1, Tank2, 2000, 100, 0,
0)

Description
Transfers a specified quantity from one tank to
another. ProModel sets the state of the FROM
tank to Tank_Emptying and the TO tank to
Tank_Filling. If the FROM tank becomes empty,
its state becomes Tank_Idle. If the TO tank
becomes full, its state becomes Tank_Blocked.
Otherwise, the states remain unchanged.

Use Tank_Transfer when you want to transfer a
specific quantity from one tank to another.

Components

<FROM Tank ID>

The name or location index number of the FROM tank.

<TO Tank ID>

The name or location index number of the TO tank.

<Transfer Quantity>

The number of units (gallons, pounds) to transfer. To
transfer the entire contents of a tank, enter Tank_Level
[<FROM Tank ID>].

<FROM Rate>

The rate in units (gallons, pounds) per time unit
defined out of the FROM tank. To use a dynamically
calculated rate in the Tank_Rate subroutine, enter 0.

<TO Rate>

The rate in units (gallons, pounds) per time unit
defined in the General Information dialog into the TO
tank. Use 0 if same as the FROM rate. (The TO rate is
automatically the same as the FROM rate if you add 0
as the FROM rate.)

<Resume level>

If the TO tank reaches capacity before the specified
quantity transfers, the TO tank must drop to the resume
level before continuing with the transfer. To terminate
transferring when the TO tank reaches capacity, enter
Tank_Stop. A value of 0 causes an error to occur if the
tank becomes empty before transferring the specified
quantity.

Example

When a mixing tank is ready to mix a new
batch of material, 10,000 gallons of water
must first transfer from a water supply tank at
a rate of 100 gpm. The following logic repre-
sents this action:

Tank_Transfer(WaterTank, MixingTank, 10000,
100, 0, 0)

See Also
“Tank Transfers” on page 212.

Tank_TransferUpTo

Syntax samples

TANK_TRANSFERUPTO (<FROM Tank ID>, <TO
Tank ID>, <TO Level >, <FROM Rate>, <TO
Rate>)

196 Chapter 5:
Pre-defined Tank Subroutines
TANK_TRANSFERUPTO (Tank1, Tank2, 8500, 75,
0)

Description
Similar to Tank_Transfer except that
Tank_TransferUpTo does NOT terminate a trans-
fer based on the transferred quantity, rather when
the TO tank level rises to a certain point. If the
tank empties before reaching the TO level, Pro-
Model suspends the transfer until capacity
becomes available.

Use Tank_TransferUpTo when you want to raise
the level of a tank to a certain value but are not
certain of the quantity needed to reach that level
(e.g., the tank is draining at the same time you are
trying to fill it).

Components

<FROM Tank ID>

The name or location index number of the FROM tank.

<TO Tank ID>

The name or location index number of the TO tank.

<TO Level>

Transfer until the TO tank reaches this level.

<FROM Rate>

The rate in units (gallons, pounds) per time unit
defined in the General Information dialog out of the
FROM tank. To use a dynamically calculated rate in
the Tank_Rate subroutine, enter 0.

<TO Rate>

The rate in units (gallons, pounds) per time unit
defined in the General Information dialog into the TO
tank. Use 0 if the TO rate is the same as the FROM
rate.

Example

An in-process tank supplies several down-
stream tanks and must maintain a maximum
level of 20,000 gallons. Whenever the in-pro-
cess tank drops below 5,000 gallons, a supply
tank refills the tank at a rate of 100 gpm. To
model this, define an activated subroutine for
the supply tank using the following logic:

Tank_Loop //logic repeats continuously

{

WAIT UNTIL Tank_Level[InProcessTank]<=5000

Tank_TransferUpTo(SupplyTank, InProc-
essTank, 20000, 100, 0)

}

Tank_TransferDownTo

Syntax samples

TANK_TRANSFERDOWNTO (<FROM Tank ID>,
<TO Tank ID>, <TO Level >, <FROM Rate>, <TO
Rate>)

TANK_TRANSFERDOWNTO (Tank1, Tank2, 1000,
80, 0)

Description
Similar to Tank_Transfer except that
Tank_TransferDownTo terminates the transfer
when the FROM tank level lowers to a desig-
nated level instead of lowering by a specific
quantity. If the TO tank becomes full, ProModel
suspends the transfer until capacity becomes
available.

Use Tank_TransferDownTo when you want to
lower the level of a tank to a specific value but

 ProModel 197
User Guide
you are not certain how much to empty in order
to drop to that level (e.g., the tank may fill at the
same time it empties).

Components

<FROM Tank ID>

The name or location index number of the FROM tank.

<TO Tank ID>

The name or location index number of the TO tank.

<TO Level>

Transfer until the FROM tank drops to this level.

<FROM Rate>

The rate in units (gallons, pounds) per time unit
defined in the General Information dialog out of the
FROM tank. To use a dynamically calculated rate in
the Tank_Rate subroutine, enter 0.

<TO Rate>

The rate in units (gallons, pounds) per time unit
defined in the General Information dialog into the TO
tank. Use 0 if the TO rate is the same as the FROM
rate.

Example

An in-process tank, TankA, supplies TankB at a
rate of 50 gpm. TankA must maintain a mini-
mum level of 200 gallons to insure against
pump cavitation. When TankA’s level drops
to 200 gallons, the tank stops pumping to
TankB until the level of TankA rises above 200
gallons. To model this scenario, enter the fol-
lowing logic in the subroutine controlling the
flow from TankA to TankB:

Tank_Loop //logic repeats continuously

{

WAIT UNTIL Tank_Level[TankA]>200

Tank_TransferDownTo(TankA, TankB, 200, 50,
0)

}

See Also
“Split Transfers” on page 214.

Tank_SetLevel

Syntax samples

TANK_SETLEVEL (<Tank ID>, <Quantity>)

TANK_SETLEVEL (TankA, 1500)

Description
Instantly sets the level of a tank to a specified
quantity. If the quantity is negative or larger than
the tank capacity, an error occurs. The tank state
sets to Tank_Blocked if you set the tank level to
the tank capacity and to Tank_Idle if you set the
tank level to 0. Otherwise, the state remains
unchanged.

Use Tank_SetLevel when you want to initialize a
tank to a specific level.

Components

<Tank ID>

The tank name or location index number.

<Quantity>

The level at which to set the tank (number of gallons,
pounds). To completely fill the tank, enter
Tank_Cap(<Tank Name>).

198 Chapter 5:
Pre-defined Tank Subroutines
Example

When you begin a simulation, you wish to set
the initial level of a supply tank, TankX, to
10,000 gallons. To model this, enter the follow-
ing statement in the initialization logic for the
model.

Tank_SetLevel(TankX, 10000)

See Also
“Initializing and Replenishing Supply Tanks” on
page 210.

Tank_Inc

Syntax samples

TANK_INC (<Tank ID>, <Quantity>)

TANK_INC (StorageTank, 5000)

Description
Instantly increases the level of a tank by a speci-
fied quantity. If the tank has insufficient capacity,
the level increases as capacity becomes available.
ProModel sets the tank state to Tank_Blocked if
the level increases to the tank capacity, otherwise
the state remains unchanged.

Use Tank_Inc to instantly add a specific quantity
to a tank.

Components

<Tank ID>

The tank name or location index number.

<Quantity>

The number of units by which to increment the con-
tents of the tank (gallons, pounds).

Example

Trucks deliver pellets to a holding bin twice a
day. When a truck arrives at the drop-off sta-
tion, it dumps the entire 5,000 lb load in only
2.5 minutes. To model this, define the follow-
ing operation logic for the truck at the drop-
off station:

WAIT 2.5 MIN

Tank_Inc(HoldingBin, 5000)

Tank_Dec

Syntax samples

TANK_DEC (<Tank ID>, <Quantity>)

TANK_DEC (SupplyTankB, 1000)

Description
Instantly decreases the level of a tank by a speci-
fied quantity. If the tank has insufficient quantity,
it empties as material becomes available. Pro-
Model sets the tank state to Tank_Idle if you
decrease the level to 0. Otherwise the state
remains unchanged.

Use Tank_Dec to instantly remove a specific
quantity from a tank.

Components

<Tank ID>

The tank name or location index number.

 ProModel 199
User Guide
<Quantity>

The number of units by which to decrement the con-
tents of the tank (gallons, pounds).

Example

A fill tank fills one 10-gallon container every 15
seconds. After filling, each container moves
to a location called FillStation. To model this
activity, define the following activated sub-
routine (this subroutine creates a filled con-
tainer every 15 seconds):

Tank_Loop //logic repeats continuously

{

WAIT 15 SEC

Tank_Dec(FillTank, 10)

ORDER 1 Container TO FillStation

}

See Also
“Emptying to an Entity” on page 211.

Tank_RiseTrigger

Syntax samples

TANK_RISETRIGGER (<Tank ID>, <Level>)

TANK_RISETRIGGER (TankA, 3000)

Description
Waits until tank contents rises to a specific level.
Use Tank_RiseTrigger to initiate some action
when a tank rises to a certain level.

Components

<Tank ID>

The tank name or location index number.

<Level>

When the tank level rises to this value, ProModel exe-
cutes any subsequent logic.

Example

A tanker waits at a dispatch station until the
level of a finished goods tank rises to 2,000
gallons. Once the tank level reaches this
point, a signal dispatches the tanker to the
finished goods tank for loading. Meanwhile,
the finished goods tank continues filling. To
model this situation, define the following pro-
cess logic for the tanker at the dispatch sta-
tion:

Tank_RiseTrigger (FGTank, 2000)

Please note

Using the Tank_RiseTrigger subroutine instead
of a WAIT UNTIL statement prevents the next
tanker from dispatching until the finished goods
tank falls back below 2,000 gallons.

See Also
“Defining Trigger Levels” on page 215.

200 Chapter 5:
Pre-defined Tank Subroutines
Tank_FallTrigger

Syntax sample

TANK_FALLTRIGGER (<Tank ID>, <Level>)

TANK_FALLTRIGGER (TankB, 500)

Description
Waits until tank contents falls to a specified level.

Use Tank_FallTrigger to initiate an action when a
tank level falls to a specific level.

Components

<Tank ID>

The tank name or location index number.

<Level>

When the tank level falls to this value, any subsequent
logic executes.

Example

When an in-process tank, TankX, falls to 1000
gallons, it triggers a mixing tank to begin pro-
ducing more product. To model this, define
the following activated subroutine to control
the mixing tank:

Tank_Loop //logic repeats continuously

{

Tank_FallTrigger(TankX, 1000)

[Insert logic to mix new batch here]

}

Please note

Using Tank_FallTrigger instead of a WAIT
UNTIL statement prevents the action from trig-
gering again until the level first rises above the
fall trigger level.

See Also
“Defining Trigger Levels” on page 215.

Tank_Cap

Syntax samples

TANK_CAP (<Tank ID>)

TANK_CAP (TankA)

Description
Returns the capacity defined for the specified
tank.

Use Tank_Cap when you need to know the
defined capacity for a tank.

Components

<Tank ID>

The tank name or location index number.

Tank_FreeCap

Syntax samples

TANK_FREECAP (<Tank ID>)

 ProModel 201
User Guide
TANK_FREECAP (TankA)

Description
Returns the available capacity of the specified
tank.

Use Tank_FreeCap when you need to know the
available capacity of a tank.

Components

<Tank ID>

The tank name or location index number.

Tank_DoOperation

Syntax samples

TANK_DOOPERATION (<Tank ID>, <Operation
time>)

TANK_DOOPERATION (TankA, 30)

Description
Sets the state of the tank to Tank_Operation and
waits for the specified operation time. ProModel
sets the state to Tank_Blocked after the opera-
tion.

Use Tank_DoOperation when some activity or
treatment time is necessary for the material in a
tank.

Components

<Tank ID>

The tank name or location index number.

<Operation time>

The duration (in time units defined in the General
Information dialog) of the operation.

Example

After technicians add all the necessary ingre-
dients to the mixing tank, the tank requires a
20 minute mixing time. To define this opera-
tion, enter the following statement in the sub-
routine for the mixing activity:

Tank_DoOperation(MixingTank, 20)

See Also
“Mixing and Reactor Tanks” on page 211.

Tank_GoDown

Syntax samples

TANK_GODOWN (<Tank ID>, <Down time>)

TANK_GODOWN (TankA, 5)

Description
Sets the state of the tank to Tank_Down, waits
for the specified downtime, then sets the state
back to the previous setting. If you defined a
downtime using the location downtime dialog,
call the Tank_GoDown subroutine in the down-
time logic rather than use a WAIT statement. If
the downtime is for cleaning, use the
Tank_DoPrep subroutine.

Use Tank_GoDown to shut down a tank due to
equipment failure (e.g., pump failure). If the
downtime occurs periodically, you can define a

202 Chapter 5:
Pre-defined Tank Subroutines
clock downtime in the downtime logic for the
tank location and use Tank_GoDown in place of
the WAIT statement.

Components

<Tank ID>

The tank name or location index number.

<Down time>

The duration (in time units defined in the General
Information dialog) of the downtime.

Example

A fill line from a dry supply bin plugs randomly
according to an exponential distribution with a
mean of 10 minutes. The time to unplug the line
is normally distributed with a mean of 5 minutes
and a standard deviation of 1 minute. To define
this behavior, define a clock downtime for the bin
to occur with a frequency of E(10) minutes. In the
logic defined for the downtime, enter the follow-
ing logic:

Tank_GoDownSched

Syntax samples

TANK_GODOWNSCHED (<Tank ID>, <Down
time>)

TANK_GODOWNSCHED (TankA, 5)

Description
Sets the state of the tank to
Tank_ScheduledDown, waits for the specified
scheduled downtime, then sets the tank state back
to its previous setting. If you defined a scheduled
downtime using the location downtime dialog,
call the Tank_GoDownSched subroutine in the
downtime logic rather than use a WAIT state-
ment. If the downtime is for cleaning and you
will return the tank status to idle, use the
Tank_DoPrep subroutine.

Use Tank_GoDownSched to shut down a tank for
a scheduled task or event (e.g., interim mainte-
nance or end of scheduled workday). Since the
tank uses a scheduled downtime, the time lapsed
during the event does not record as a downtime.

 ProModel 203
User Guide
Components

<Tank ID>

The tank name or location index number.

<Down time>

The duration (in time units defined in the General
Information dialog) of the scheduled downtime.

Example

Every 4 hours, a technician must check the fill line
from a dry supply bin. The time required to check
the line is normally distributed with a mean of 10
minutes and a standard deviation of 3 minutes.
To define this behavior, define a clock-based,
scheduled downtime for the bin to occur with a
frequency of 4 hours. In the logic defined for the
downtime, enter the following:

Tank_DoPrep

Syntax samples

TANK_DOPREP (<Tank ID>, <Prep time>)

TANK_DOPREP (TankA, 5)

Description
Sets the state of the tank to Tank_Setup, waits for
the specified time, then sets the state to
Tank_Idle. Use Tank_DoPrep for cleaning activi-
ties after you empty a tank.

Use Tank_DoPrep to take a tank off line for
cleaning or other preparation time.

Components

<Tank ID>

The tank name or location index number.

<Prep time>

The duration (in time units defined in the General
Information dialog) of preparation time.

Example

Workers clean a mixing tank for 30 minutes
after each batch produced. To model this,
enter the following logic in the mixing subrou-
tine defined for the mixing tank:

Tank_Loop //logic repeats continuously

{

[Enter mixing and transfer logic here]

Tank_DoPrep(MixingTank, 30)

}

See Also
“Mixing and Reactor Tanks” on page 211.

204 Chapter 5:
Pre-defined Tank Subroutines
Tank_SetState

Syntax samples

TANK_SETSTATE (<Tank ID>, <State>)

TANK_SETSTATE (TankA, Tank_Idle)

Description
Sets the state of the tank (e.g., Tank_State[<Tank
ID>]) to a new state and updates the statistics
since the last change of state.

Use Tank_SetState to explicitly change the state
of a tank. Use Tank_SetState only if the default
state changes do not adequately meet modeling
needs.

Components

<Tank ID>

The tank name or index number.

<State>

The new state for the tank. For a list of possible tank
states, see “Tank States” on page 190.

Tank_SelectOutput

Syntax samples

TANK_SELECTOUTPUT (<First Tank>, <Number
of Tanks>, <Selection Rule>, <Maximum
Level>, <Product Type>)

TANK_SELECTOUTPUT (TankA, 3, Tank_InOrder,
5000, 0)

Description
Selects an output tank from among several tanks
based on a selection rule and optional product
type. To use this function, list all tanks included
in the selection decision together in the Location
module.

Components

<First Tank>

The name or location index number of the starting tank
in the range.

<Number of Tanks>

The number of tanks in the selection range (limit 10).

<Selection Rule>

The rule for making the selection may be one of
the following:

Tank_InOrder (selects the first idle tank
encountered)

Tank_LongestIdle (selects the tank idle
the longest)

<Maximum Level>

The maximum level of the output tank before consider-
ing it for selection. Enter 0 if the output tank must be
empty or idle before being considered.

<Product Type>

An integer specifying the required value of the Product
array in order to select the tank. Enter 0 if the tank
selection requires no product type match. (This applies
only if the maximum level specified is greater than 0.)

Example

A supply tank feeds one of 3 output tanks
and always gives preference first to Tank1,
then to Tank2, and finally to Tank3 based on
availability. Furthermore, the supply tank can
select a tank only if its contents are less than

 ProModel 205
User Guide
8000 gallons. To model this selection, list
Tank1, Tank2, and Tank3 together (and in
order) in the location module. Then define
the following statement to select the tank
using a local variable, Selected_Tank:

INT Selected_Tank

.

.

.

SelectedTank=Tank_SelectOutput(Tank1, 3,
Tank_InOrder, 8000,0)

The diagram below shows the logic used to make
a tank selection:

Is
there a tank

with level > 0 but
less than Max level and

same product
type?

Is
there an idle

tank that satisfies
selection rule?

Is the specified Max

Is the specified Max
Wait for first tank to
become idle.

No

No No No

Yes

Yes Yes Yes

level > 0?

level > 0?

Match

type if required

Yes

No

Wait for first tank to
fall below the Max
level.

Return Tank ID

specified product

If you base a tank selection on product type, you
must be careful to assign an appropriate integer
value to the Product array element corresponding
to the tank location.

See Also
“Selecting from Multiple Input or Output Tanks”
on page 213.

206 Chapter 5:
Pre-defined Tank Subroutines
Tank_SelectInput

Syntax samples

TANK_SELECTINPUT (<First Tank>, <Number of
Tanks>, <Selection Rule>, <Minimum Level>,
<Product Type>)

TANK_SELECTINPUT (Tank1, 5, Tank_ByOrder,
1000, 0)

Description
Selects an input tank from among several tanks
based on a selection rule. To use this function,
you must list all tanks included in the selection
together in the Location module.

Components

<First Tank>

The name or location index number of the starting tank
in the range.

<Number of Tanks>

The number of tanks in the selection range (limit 10).

<Selection Rule>

The rule for making the selection may be one of the
following:

Tank_InOrder (selects the first blocked
tank encountered)

Tank_LongestBlocked (selects the tank
blocked the longest)

<Minimum Level>

The minimum level of the input tank before consider-
ing it for selection. If the tank must be full before con-
sidering it for an input source, enter 0.

<Product Type>

An integer specifying the required value for the Prod-
uct array in order to select the tank. Enter 0 if the tank
selection requires no product type match.

Example

A tanker arrives at a pick up station to load
from one of 5 tanks depending on which tank
has been full the longest. The tanker will fill
from a partial tank if the tank has any con-
tents at all (at least .1 gallons). To model the
tank selection, define the following operation
logic for Tanker at PickUpStation:

INT SelectedTank

Selected_Tank=Tank_SelectInput(Tank1, 5,
Tank_LongestBlocked, .1, 0)

See Also
“Selecting from Multiple Input or Output Tanks”
on page 213.

Tank_UpdateStats

Syntax samples

TANK_UPDATESTATS (<Tank ID>)

TANK_UPDATESTATS (TankA)

Description
ProModel calls this subroutine automatically
whenever you call any of the predefined subrou-
tines that affect the tank level. If you change the
value of the Tank_Level directly, call the
Tank_UpdateStats subroutine afterward. This
subroutine updates the current statistics on the
tank and sets the state to Tank_Filling (if filling),

 ProModel 207
User Guide
Tank_Emptying (if emptying), Tank_Blocked (if
full), or Tank_Idle (if empty).

You should not need to use this subroutine unless
you defined a customized Tank_Empty,
Tank_Fill, or Tank_Transfer subroutine.

Components

<Tank ID>

The tank name or location index number.

Tank_Rate

Syntax sample

TANK_RATE (<FROM tank ID>, <TO tank ID>)

TANK_RATE (TankA, TankB)

Description
ProModel calls this subroutine automatically if
you pass a 0 value as the From Rate when using
the Tank_Empty or Tank_Transfer subroutine.
To return the desired rate value, enter the neces-
sary logic in the subroutine—ProModel calls the
subroutine with each time step. A return value of
0 terminates the flow and returns the remaining
amount in the Tank_QtyLeft variable.

Components

<FROM Tank>

The name or location index number of the FROM tank
(this value should be 0 if there is no FROM tank).

<TO Tank>

The name or location index number of the TO tank
(this value should be 0 if there is no TO tank).

Example

TankA fills with 10,000 gallons at a rate of 60
gpm until it reaches a level of 9,700 gallons.
Then it fills at a rate of 30 gpm. To model this
change of rate, define the following logic in
the Tank_Rate subroutine:

IF Tank_ToID=TankA

THEN IF Tank_Level[TankA]<9700

THEN RETURN 60

ELSE RETURN 30

Now when you fill TankA, enter the following:

Tank_Fill(TankA, 10000, 0, 0)

The first 0 in the expression above causes the
logic defined in the Tank_Rate subroutine to
execute and determine the flow rate.

See Also
“Varying the Transfer Rate” on page 214.

Pre-defined Data Elements
The ProModel tank submodel provides the fol-
lowing data elements for modeling tanks. Unless
otherwise specified, all arrays are single-dimen-
sional and of type integer. Initially, these arrays
are 100 elements in size to allow for up to 100
locations. If you define more than 100 locations,
you will need to enlarge the array or place tanks
toward the beginning of the location list (within
the first 100 locations).

Tank_Level array Stores the level of each tank.
Since the values in this array directly control the

208 Chapter 5:
Pre-defined Tank Subroutines
tank gauge and tank statistics, the array MUST be
present in every tank model.

Tank_State array Tracks the state of the tank.

Tank_Product array An optional array used to
record or test the product currently at a tank.

Tank_Statistics array A two-dimensional array
of type real used to record tank level statistics
whenever the level changes. Generally, you will
never need to reference this array since values
automatically update when you use the pre-
defined Tank subroutines. All times are in time
units defined in the General Information dialog.
ProModel always gathers these statistics but
reports them only if you check Basic or Time
Series statistics for the tank location.

Column Description Reset After Warm-up

1 Last level NC

2 Last change time Current time in time
units defined in the
General Information
dialog

3 Cum time-weighted
level

0

4 Entries Value of column 1

5 Max contents Value of column 1

6 Last State Change Current time in time
units defined in the
General Information
dialog

7 Cum time Idle 0

8 Cum time Operation 0

9 Cum time Setup 0

10 Cum time Filling 0

11 Cum time Emptying 0

12 Cum time Blocked 0

13 Cum time Down 0

14 Current downtime
count

NC

As shown in the previous table, the statistics col-
lected in the Tank_Statistics array automatically
reset after any warm-up period. ProModel reports
output statistics under Location statistics and

Location States by Percentage. When reporting
Location statistics for tanks, note the following:

•Total Entries The number of units (e.g.,
gallons, pounds) to enter the tank.

•Avg Minutes Per Entry Left blank since
there is no individual entry for a tank.

Tank_Fills array An optional array used to track
the number of transfers to a tank. This is espe-
cially useful when you activate multiple
Tank_Fill or Tank_Transfer subroutines for a
tank and you wish to know when the fills are
complete. The user sets the value of Tank_Fills to
zero before activating the subroutines, then
defines a WAIT UNTIL statement after the
ACTIVATE statement. The Tank_Fills array
increments automatically when a Tank_Fill or a
Tank_Transfer subroutine executes. See “Mix-
ing and Reactor Tanks” on page 211 for addi-
tional information.

Statistics

Please note

TS = Tank_Statistics array
n = Location index number of tank

Calculating Location Statistics for
Tanks

Entries = TS [n, 4]

Avg. Time per Entry = (not applicable)

Avg. Contents = TS[n,3] / Scheduled Time

Max Contents = TS [n,5]

Current Contents = TS [n,1]

Utilization=100 x TS[n,3] / (Capacity x Sched-
uled Time)

 ProModel 209
User Guide
Calculating Location State Statis-
tics for Tanks

%Operation = 100 x TS[n, 8] / Scheduled Time

%Setup = 100 x TS[n, 9] / Scheduled Time

%Idle = 100 x TS[n, 7] / Scheduled Time

%Waiting = 100 - Sum of other percentages

%Blocked = 100 x TS[n, 12] / Scheduled Time

%Down = 100 x TS[n, 13] / Scheduled Time

To gather statistics on how much of a particular
product was processed, you may define variables
to record product processing during the simula-
tion.

Defining Tank Control Subrou-
tines
Unlike defining entity activity at a location
(defined in the Processing module), modeling
tank location activity requires the use of subrou-
tines. Many of these subroutines are user-defined
and called using the ACTIVATE statement.
Though you generally activate them from the ini-
tialization logic, you may also activate them from
another tank subroutine. Tank subroutines consist
of logic defined to control when, where, and how
much to empty, fill, or transfer from a tank.
Often, these subroutines require the use of WAIT
UNTIL statements to monitor conditions (e.g.,
the tank level or state) before making a transfer
and may include delays for mixing or cleaning.

At a minimum, you should define a separate con-
trol subroutine for any logic that executes inde-
pendently of any other logic. For example, if
TankA fills TankB at the same time TankB trans-
fers to some other tank, you should define two
separate subroutines since both sets of logic must

be capable of executing independently of each
other. On the other hand, if the logic associated
with two tanks is interdependent, only one con-
trol subroutine is necessary. For example, if
TankA fills TankB while TankB waits, then
TankB pumps out while tank A waits, you need
only a single control subroutine since you control
both tanks by a single logic sequence. If a single
tank feeds several other tanks independently, you
would need a separate subroutine to control each
output. In most cases, you will need at least one
control subroutine per tank and, in certain situa-
tions, you may wish to use a hierarchical control
system (i.e., a master or supervisory control sub-
routine) to activate subordinate subroutines.

Most tank control subroutines should be activated
subroutines. In contrast to called subroutines,
activated subroutines use the ACTIVATE state-
ment and cause the logic activating the subrou-
tine to continue independently of the activated
subroutine. This allows you to execute multiple
control subroutines concurrently. Multiple tanks
with identical control logic may share the same
control subroutine if you activate the subroutine
for each tank and pass the tank ID as a parameter.

One of the keys to modeling interactive tank
behavior is to effectively use WAIT UNTIL
statements. When you use WAIT UNTIL state-
ments based on the Tank_Level array, use them
sparingly since this array changes frequently and
may slow the simulation.

Examples of Tank Control Logic
The following examples show how to model dif-
ferent tank and flow situations. For full models
illustrating these situations, see the reference
model in the MODELS\REFS directory within
the ProModel directory.

210 Chapter 5:
Pre-defined Tank Subroutines
Filling from an Entity
A typical tank modeling situation is the arrival of
an entity (e.g., a tanker or other vehicle) to
deliver its contents to a tank. To model this situa-
tion, define an arrival or routing for the entity,
causing it to enter the location where it will make
its delivery. In the entity processing logic at the
delivery location, call the Tank_Fill subroutine.
By calling rather than activating the subroutine,
you will detain the delivering entity until
Tank_Fill executes. Note that the material does
NOT route from the delivery location to the tank.
Instead, the Tank_Fill subroutine simply fills the
tank with a specified quantity while the entity
waits. Unless the quantity is a constant amount, it
is usually a good idea to use an entity attribute to
store this quantity value. After filling the contents
into the tank, the entity is free to continue pro-
cessing.

To illustrate how an entity might transfer its con-
tents to a tank, suppose an entity, Tanker, arrives
at a location, Delivery, carrying a quantity of gal-
lons stored in an entity attribute called
Tanker_Qty. The tanker discharges its contents
into a tank, ReceivingTank, at a rate of 200 gal-
lons per minute. Once the ReceivingTank
becomes full, the level must drop to 1000 gallons
before filling resumes. Since the entity is tied up
while it discharges into the tank, use the follow-
ing statement in the processing logic for Tanker
at Delivery to define the logic used to fill the
tank:

Fill the tank

Tank_Fill (ReceivingTank, Tanker_Qty, 200,
1000)

The above statement causes each arriving tanker
to wait until the quantity stored in its Tanker_Qty

attribute adds to the ReceivingTank. Once the
tanker delivers this quantity, it is free to execute
the routing defined for it at the Delivery location.

Initializing and Replenishing
Supply Tanks
A supply tank is an originating tank that is a
source of raw material for one or more down-
stream tanks. Often, supply tanks contain ingredi-
ents that feed into a mixing tank or hold
chemicals that feed into a reactor. Typically, you
replenish a supply tank when it gets low and
make it available for use whenever it has an ade-
quate supply. If you always stock the supply tank
and it is always available for use, you do NOT
need to model it since it poses no constraint on
the process. You may set supply tanks to an ini-
tial level at the start of the simulation in the ini-
tialization logic, then use them as needed by a
mixing or other downstream tank. To initialize
the level in a supply tank, enter the following
statement in the initialization logic:

Initialize tank level

Tank_SetLevel (<supply tank>, <qty>)

If, for example, you wanted to begin the simula-
tion with the supply tank, WaterTank, filled with
800 gallons of water, you would enter:

Start with full tank

Tank_SetLevel (WaterTank, 800)

To gradually fill or refill a supply tank whenever
it drops below a trigger level, use the Tank_Fill
subroutine with a large fill quantity and an appro-

 ProModel 211
User Guide
priate resume level. For example, the following
statement will continue pumping up to 999999
units into TankA at a rate of 200 units per minute.
Whenever the tank becomes full, it must drop to
400 units before filling resumes.

Resume fill with trigger level

Tank_Fill (TankA, 999999, 200, 400)

Mixing and Reactor Tanks
Mixing and reactor tanks receive material usually
from one or more supply tanks. Once it receives
the material, the tank may require a mixing or
other reaction time. To illustrate, suppose we
have two tanks (Tank1 and Tank2) supplying
ingredients to a tank called MixingTank. First,
workers pump 2000 gallons of a liquid from
Tank1 at 50 gallons per minute followed by the
transfer of 300 pounds of dry mix from Tank2 at
20 pounds a minute (the dry mix adds .2 gallons
to the level of the MixingTank for every pound
transferred, equating to 4 gallons per minute).
The ingredients then mix for 15 minutes before
transferring to an idle storage tank. After trans-
ferring the mix, workers must clean the Mixing-
Tank for 50 minutes to prepare it for the next
mixing cycle.

The control logic for the mixing tank should be a
subroutine activated from the initialization logic
which continues to loop throughout the simula-
tion. The subroutine logic might appear as fol-
lows:

Mix and clean the tank

Tank_Loop //logic repeats continuously

BEGIN

Tank_Transfer (Tank1,MixingTank,2000, 50, 0, 0)

Tank_Transfer (Tank2,MixingTank, 300, 20, 4, 0)

Tank_DoOperation (MixingTank,15) //Mix time

Wait Until Tank_State [StorageTank]=
Tank_Idle /* Waits for storage tank availability
*/

Tank_Transfer (MixingTank, StorageTank,
Tank_Level[MixingTank],40, 0, 0)

Tank_Prep (MixingTank, 50) // Clean mixing
tank for 50 minutes.

END

If the ingredients feed into the mixing tank at the
same time rather than sequentially, activate the
Tank_Transfer subroutines for the mixing tank
and monitor the Tank_Fills array to know which
ingredients enter into the tank. For simultaneous
fills, replace the first two transfer statements fol-
lowing the BEGIN statement in the previous sub-
routine with the following logic:

Simultaneously mix, then clean
tank

Tank_Fills[MixingTank]=0

ACTIVATE Tank_Transfer(Tank1, MixingTank,
2000, 50, 0, 0)

ACTIVATE Tank_Transfer(Tank2, MixingTank,
300, 20, 4, 0)

WAIT UNTIL Tank_Fills[MixingTank]=2

...

Emptying to an Entity
Often, tanks deliver material to discrete entities
such as containers (or perhaps the material itself
converts to discrete entities through a solidifica-
tion or consolidation process). In either case, you

212 Chapter 5:
Pre-defined Tank Subroutines
can draw from the delivery tank using the
Tank_Empty subroutine if outflow is gradual and
defined by a flow rate, or the Tank_Dec subrou-
tine if the output occurs in discrete intervals
based on a bottling or packaging time.

To output material from a tank without modeling
the entity to which it outputs, call the
Tank_Empty or Tank_Dec subroutine. To trans-
fer material from a tank to entities arriving at a
filling station (remember, the filling station itself
is NOT a tank), route the entities to the filling sta-
tion using a SEND or other routing rule, then call
the Tank_Empty or Tank_Dec subroutine.

If using the Tank_Dec subroutine, the entity
should wait for the fill time before decreasing the
tank level since Tank_Dec happens instantly. For
example, if a bottling operation fills a 2 gallon
container every 6 seconds, define the following
processing logic for the container at the fill sta-
tion:

Wait to fill from tank, then con-
tinue

Wait 6 sec

Tank_Dec (Filler, 2)

If the delivery tank has insufficient contents to
decrease the level by the specified amount, the
processing will automatically pause until enough
material is available. Once the specified quantity
empties, the entity can continue processing. To
create an entity as the result of an emptying oper-
ation, define an activated subroutine that empties
the desired quantity, then execute an ORDER
statement. This will create a new entity at the fill-
ing station.

Tank Transfers

When transferring from one tank to another, you
must determine whether the source tank makes
the decision to transfer to the destination tank (a
push approach) or whether the destination tank
makes the decision to draw material from a
source tank (a pull approach). You should define
a control subroutine from the perspective of the
tank that makes the decision. If the model
requires no tank selection, specify a WAIT
UNTIL statement to wait until the FROM or TO
tank satisfies the condition required for transfer.
For example, if a source tank makes the decision
to transfer to a destination tank whenever the des-
tination tank becomes idle, enter the following
statement in the subroutine:

Transfer contents when idle

Wait Until Tank_State [<destination tank ID>] =
Tank_Idle

If the destination tank makes the decision to
transfer (a pull approach), you should base the
WAIT UNTIL statement on a required condition
for the source tank as follows:

 ProModel 213
User Guide
Transfer contents based on condi-
tion

Wait Until Tank_State [<source tank ID>] =
Tank_Blocked

Following the WAIT UNTIL statement, call the
Tank_Transfer, Tank_TransferUpTo, or
Tank_TransferDownTo subroutine to transfer
from the source tank to the destination tank.

To illustrate how to define a tank transfer using a
pull approach, suppose that TankB requires 1000
gallons from TankA whenever TankB becomes
empty. TankB will draw material from TankA
only when TankA has a minimum level of 1000
gallons. The subroutine to define this logic might
appear as follows:

Tank transfer in a pull system

Tank_Loop //logic repeats continuously

Begin

Wait Until Tank_Level[TankA] >= 1000 /*Wait
for TankA to reach 1000 gallons*/

Tank_Transfer (TankA, TankB, 1000, 200,0,0) /*
Transfer 1000 gal to TankB at 200 gpm*/

[Enter TankB processing and emptying logic
here]

End

Please note

To select from among multiple input or output
tanks, activate this subroutine in the initialization
logic.

Selecting from Multiple Input or
Output Tanks
To enable one or more tanks to select from sev-
eral input or output tanks, use the pre-defined
subroutine Tank_SelectInput or
Tank_SelectOutput (see subroutine descriptions).
ProModel bases tank selection on which tank is
ready to transfer or receive and that has the same
ProductType array value. You must list the tank
selections together in the Location module.

For example, if TankX selects from among three
input tanks (Tank1, Tank2, and Tank3) based on
which input tank has waited the longest to dis-
charge its contents, you would enter the follow-
ing logic in the control subroutine defined for
TankX:

Select from multiple tanks

Int SelectedTank

SelectedTank = Tank_SelectInput(TankX,
Tank1, 3,
Tank_LongestBlocked, 0)

The first statement defines a local variable,
SelectedTank, used to assign which tank you
select. The second statement calls the SelectInput
subroutine specifying that TankX is to select one
of three tanks beginning with Tank1.
Tank_LongestBlocked causes TankX to select
the tank blocked the longest (i.e., tank is full or
waiting). Entering 0 at the end prevents selecting
a full tank. If no tank is full, the statement does
not execute until one of the input tanks fills. With
a tank ID assigned to SelectedTank, you can call
a transfer subroutine to make the transfer.

214 Chapter 5:
Pre-defined Tank Subroutines
For output tanks, you would define similar logic
but include Tank_SelectOutput instead of
Tank_SelectInput.

Split Transfers
Sometimes it is necessary to use a tank or separa-
tor to split the flow to several output tanks. To
define the concurrent transfer of material from
one tank to multiple tanks, define an activated
subroutine for each transfer. Suppose, for exam-
ple, that when TankA fills it begins transferring
to TankB at a rate of 30 gpm and to TankC at a
rate of 40 gpm. To know when both transfers are
complete, define a global variable (e.g., Transfer-
Done) which increments at the end of each trans-
fer. Defining the following logic would initiate
this split transfer once TankA is full:

Initiate split transfer

ACTIVATE TransferToB () // initiates transfers
from A to B

ACTIVATE TransferToC () // initiates transfers
from A to C

WAIT UNTIL TransferDone = 2 // Wait until trans-
fers are complete

TransferDone = 0 // reset for next transfer

The subroutines TransferToB and TransferToC
would each execute a Tank_TransferDownTo
command followed by a statement incrementing
the value of TransferDone. For example, the
logic for TransferToB would be as follows:

Split transfers subroutines

TransferDownTo(TankA, TankB, 0, 30, 0)

INC TransferDone

Varying the Transfer Rate
The transfer or empty rate can change dynami-
cally during an empty, fill, or transfer. To vary
the rate of flow, pass 0 as the flow rate when call-
ing any of the transfer, fill, or empty subroutines.
This calls the Tank_Rate subroutine automati-
cally with each time step. You should modify the
Tank_Rate subroutine so that it returns the appro-
priate rate value.

Suppose, for example, that TankA transfers to
TankB at a rate that decreases from 150 gpm to
50 gpm when the level of TankB reaches 4000.
To achieve this, pass 0 as the From Rate when
you call the transfer subroutine, then enter the
following logic in the Tank_Rate subroutine:

Vary the transfer rate

IF (Tank_FromID = TankA) AND (Tank_ToID =
TankB)

THEN IF Tank_Level[TankB] >= 4000

THEN RETURN 50

ELSE RETURN 150

 ProModel 215
User Guide
Dynamically Suspending Flow
To momentarily interrupt flow into or out of a
tank, use the Tank_GoDown subroutine or set the
state of the tank to down (Tank_SetState =
Tank_Down). This typically happens if a pump
fails but may occur in other situations.

Dynamically Terminating a Flow
Normally, the flow into or out of a tank stops
once you reach the desired quantity or level.
However, in some situations you may wish to ter-
minate a transfer if some event or condition
occurs that you cannot predetermine (e.g., a deci-
sion to divert flow to a preferred outlet tank that
just became available). In this case, you can turn
off the flow into or out of a tank by specifying a
variable transfer rate instead of a fixed transfer
rate (see previous discussion, Varying the Trans-
fer Rate). A variable transfer uses the Tank_Rate
subroutine to determine the rate for each time
step—to terminate a transfer, return a rate value
of 0.

Defining Trigger Levels
A trigger level is a level to which material in a
tank either falls or rises and triggers some action.
To continuously monitor when a tank reaches a
trigger level, define and activate a trigger subrou-
tine in the initialization logic. The subroutine
should call Tank_RiseTrigger or
Tank_FallTrigger depending on whether the

associated action should execute when the tank
level rises or falls to a certain level.

To show how to define a trigger subroutine, sup-
pose that whenever TankA rises to 2000 gallons,
an entity called Truck travels to a location called
Pickup. The logic for this trigger subroutine
might look as follows:

Trigger subroutine

Tank_Loop //logic repeats continuously

Begin

Tank_RiseTrigger (TankA, 2000) /* waits for
TankA to rise to 2000 units*/

Order 1 Truck to Pickup // order a Truck to
Pickup

End

Once the tank reaches the trigger level, the
Tank_RiseTrigger subroutine prevents further
triggering until the level drops back below the
trigger level first.

When you use trigger subroutines, use them spar-
ingly because they are CPU intensive. Every time
the tank level changes, ProModel tests to see if
the tank reached the trigger level. Trigger subrou-
tines are often unnecessary because, unlike an

216 Chapter 5:
Pre-defined Tank Subroutines
actual tank where sensors report the tank level,
you directly control how much to pump into a
tank. For instance, an alternative way to model
the previous example without using a triggering
subroutine would be to call the
Tank_TransferToLevel subroutine to first fill the
tank to the 2000 unit level, order the Truck entity
and then transfer the rest.

Processing Multiple Products
Where you must track several different products
through one or more tanks, it may be useful to
define macros for naming each product type. For
example, setting ProductA equal to 1 and Pro-
ductB equal to 2 will improve the readability of
the model. To track which product a particular
tank is processing, ProModel uses a pre-defined
integer array called Tank_Product—the user is
responsible for maintaining the array values. If,
for example, ProductA begins pumping into
Tank1, enter the following after you assign an
integer value to ProductA in the Macros module
to distinguish it from other products:

Tracking products

Tank_Product [Tank1] = ProductA

Showing Pipes
To show pipes connecting the tanks, use paths or
background graphics. If you desire to show the
material in the pipe, use a long, skinny tank with
a capacity of 1 to represent the pipe. You can set
the level of this tank to 0 or 1 to show product
flow. For example, suppose we define a tank
location called Pipe used to represent the connec-
tion between Tank1 and Tank2. Whenever trans-
ferring from Tank1 to Tank2, you would enter
the following:

Define pipes

Tank_SetLevel (Pipe,1)

Tank_Transfer (Tank1, Tank2, ….)

Tank_SetLevel (Pipe, 0)

High-Rate Entity Processing
For systems that process entities at rates higher
than one hundred units per minute, using discrete
entities could make the simulation extremely
slow. For this reason, ProModel uses tanks. To
use a tank to model high-rate processing, think of
the tank as a buffer where the tank level repre-
sents the number of items in the buffer. For
example, suppose that bottles feed through a fill-
ing station at a rate of 110 per minute. The input
buffer, FillerInput, has a capacity of 1200 bottles
and the output buffer, FillerOutput, has a capacity
of 2000 bottles. If FillerOutput is full, processing
stops until the quantity in the output buffer drops
to 1500 bottles. An arriving container feeds quan-
tities of 200 bottles to the FillerInput location and
it takes 1 minute to unload the container. When
the filling station fills 50 bottles, workers put the
bottles into a box (represented by an entity) and
ship them. Since workers load the boxes as soon

 ProModel 217
User Guide
as the bottles complete the filling process, there is
no delay time involved.

The operation logic for the container at the arriv-
ing location would be as follows:

High-rate processing

WAIT 1 min

Tank_Inc (FillerInput, 200)

To model the processing of bottles from FillerIn-
put to FillerOutput, enter the following statement
in the model initialization logic.

High-rate processing

ACTIVATE Tank_Transfer(FillerInput, FillerOut-
put, 999999, 110, 0, 1500)

This statement causes the FillerInput tank to
transfer bottles to FillerOutput at a rate of 110 per
minute whenever there are bottles in FillerInput
and capacity available in FillerOutput. The
resume level is 1500. (Up to 999999 bottles will
transfer.)

To model the creation of a 50-bottle box each
time the filling station fills 50 bottles, define and
activate the following subroutine in the model
initialization logic:

Create new, combined unit

Tank Loop //causes logic to repeat continu-
ously

{

Tank_Dec(FillerOutput, 50)

Order 1 Box to Shipping

}

Please note

The Tank_Dec statement automatically removes
50 bottles from FillerOutput whenever there are
at least 50 bottles available.

Special Notes
•Since tank models do not stop automatically

when there are no more entities or sched-
uled arrivals, remember to define a run
length or a STOP statement.

•When you activate a subroutine, it doesn't
process until the current logic (the one
activating the subroutine) finishes or
becomes blocked. It you want the acti-
vated subroutine to process first, enter
“WAIT 0” after the ACTIVATE state-
ment.

•Do not define a local variable inside of a
Tank_Loop since the loop will create the
variable multiple times.

•Make sure all IF...THEN logic and WAIT
UNTIL statements based on the
Tank_Level array use the “>=” or “<=”
operator and not just an “=” operator.
(This is because flow occurs in increments
and you can’t check for an exact value.)

•Tanks are not legal in multi-unit locations or
in locations containing a conveyor or
queue.

218 Chapter 5:
Background Graphics
Background Graphics
Background graphics allow you to enhance a
model by adding a background to the animation.
A background could show a floor-plan of a fac-
tory or any item that is not part of a location,
entity, or resource. Backgrounds can be created
using the tools in the Background Graphics Edi-
tor or by importing an existing background from
another application, such as AutoCAD. Imported
graphics must have been saved in one of the fol-
lowing formats BMP, WMF, GIF, or PCX. The
Background Graphics Editor is accessed from the
Build menu as shown below.

There are two modes for editing in the Back-
ground Graphics Editor: Front of Grid and
Behind Grid. Generally, most graphics should be
laid out in front of the grid. Graphics placed
behind the grid should be reserved for large
objects such as walls or imported backgrounds.

How to create or edit background
graphics:

1. Select Background Graphics from the
Build menu.

2. Select Front of Grid or Behind Grid
depending on the mode desired.

Background Graphics Editor
Modes
ProModel gives you the option of placing the
background graphic in front of or behind the grid.
This is useful when you want to view the
imported background graphic, but you also want
to see the grid for drawing and sizing objects on
the imported background graphic.

Front of Grid Mode
Creating graphics in this mode places the back-
ground graphic in front of the grid as shown
below.

Behind Grid Mode
Creating graphics in this mode places the back-
ground graphic behind the grid as shown below.

 ProModel 219
User Guide
Background Graphics Editor
The Background Graphics Editor allows you to
place icons, text and other graphic shapes on the
layout behind locations and other system element
graphics. The arrangement of the two windows
and button bar is shown below.

•The Library Graphics window, containing
all the icons in the current graphic library,
is located at the top of the workspace.

•The Tools button bar, where you may select
a tool for creating and editing graphic
shapes, is located at the left of the work-
space.

•The Layout window, where all creating and
editing of graphic shapes is done, is

located in the lower right portion of the
workspace.

Library Graphics Window
The Library Graphics window contains the icons
of the current graphic library file, specified in the
General Information dialog. These icons may be
placed on the Layout in the same way as other
objects.

You may size the window as desired, or use the
scroll bar shown above to scroll through the
available icons.

Tools Button Bar
The Tools button bar contains the tools necessary
to create objects various shapes. It also contains

220 Chapter 5:
Background Graphics
tools for editing those objects including flip,
rotate, and cut.

Selector

Drawing Tools

Editing Tools

The Background Graphics Editor Tools button
bar is the nearly the same Tools button bar used
in the Graphic Editor. The only difference is that
the Background Graphics Editor Tools button bar
does not contain an entity spot or status light tool.
For more information on the Tools button bar,
see “Graphic Tools Button Bar” on page 323.

Edit Menu
Use the Edit menu for selecting and duplicating
the graphic objects in the current Background
Graphics mode. You may also use it to exchange
graphics with other applications. To use the Edit
menu functions, select the object you wish to edit
by clicking on it in the Layout window.

The first four functions apply to the currently
selected object. To select multiple objects, hold
the shift key while selecting an object. Alterna-
tively you can drag a rectangle encompassing the
objects you want selected. To deselect one of
several selected objects, click on the selected
object while holding the shift key.

Cut Removes the selected object(s) and makes a
temporary copy that may be pasted back into the
edit window later.

Copy Makes a temporary copy of the selected
object(s) for later pasting.

Paste Adds the most recently cut or copied
object(s) to the Layout window.

Delete Deletes the selected background graphic
from the Layout window.

Select All Selects all of the graphic objects in
the current mode.

Copy to Clipboard Copies all graphic objects
in the current mode to the clipboard as a bitmap
or windows metafile so they can be pasted into
another application such as a word processor.

Paste WMF Pastes a Windows metafile (WMF)
from the Windows clipboard into the Layout win-
dow. You must have previously copied a Win-
dows metafile to the Windows clipboard.

Paste BMP Pastes a bitmap file (BMP) from the
Windows clipboard into the Layout window. You

 ProModel 221
User Guide
must have previously copied a bitmap file to the
Windows clipboard.

Import Graphic Imports a WMF, BMP, PCX,
or GIF file into the Layout window.

Export Graphic Exports all graphic objects in
the current mode to a WMF or BMP file.

Importing a Graphic
Importing a background graphic can bring reality
into the model. For example, if a layout is created
in a graphic package, it may be desirable to
import the entire layout rather than create it in
ProModel. This is done by saving the file in a
graphic package, such as AutoCAD, as a WMF,
BMP, PCX, or GIF file and importing the graphic
into ProModel. This can save you an extensive
amount of time.

How to import a background
graphic into the layout:

1. In a graphics application, save the
graphic in one of the following formats, WMF,
BMP, PCX, or GIF.

2. Select Background Graphics from the
Build menu.

3. Select Front of Grid or Behind Grid.

4. Select Import Graphic from the Edit Menu.

5. Enter the name of the graphic you would
like to import.

6. Select OK to close the import graphic dia-
log box. The graphic will then appear in the
layout window. The upper left corner of the
imported graphic will align with the upper left
corner of the layout window.

How to move an imported back-
ground graphic:

• Place the cursor on the imported back-
ground graphic and drag it to the desired
location in the layout.

How to size an imported back-
ground graphic:

1. Place the cursor on one of the four corners
of the imported background graphic. The
cursor becomes a cross-hair at this point.

2. Drag the cursor to size the background
graphic as desired.

Please note

Once imported, the background graphic is not a
separate file from the model. It is included in the
model. Therefore, when moving or copying a
model file from one directory to another, it is not
necessary to move or copy the imported back-
ground graphic file as well. On the other hand, if
the external graphic file is changed, it must be re-
imported to update the model layout.

Exporting a Graphic

In some cases, it is desirable to export a graphic
created in ProModel for use in another applica-
tion. ProModel will export all objects in the cur-
rent mode (In Front of Grid and Behind Grid) as
one graphic to a WMF or BMP file.

222 Chapter 5:
Background Graphics
How to export a graphic:

1. Select Export Graphic from the Edit menu.

2. Enter a valid DOS name for the graphic in
the resulting dialog box, such as forklift.bmp.

3. Click the OK button in the Export Graphic
dialog box.

Graphics Menu
The Graphics Menu allows you to flip and rotate
the selected graphic object(s) in the layout win-
dow. It also allows you to specify whether you
want the graphic to be behind or in front of the
grid. Additionally, it allows you to group selected
graphic objects together into a single graphic.
Finally, it provides the option to define line
styles, fill patterns, line color, and fill color.

Flip Horizontal Horizontally flips the selected
object(s).

Flip Vertical Vertically flips the selected
object(s).

Rotate Rotates the selected object(s) 90 degrees
clockwise. This does not apply for non-true-type
fonts.

Behind Grid Moves the selected object in the
layout window behind the grid. Once this is done,
you must go to Behind Grid mode to edit the
graphic.

Front of Grid Moves the selected object in the
layout window in front of the grid. Once this is
done, you must go to Front of Grid mode to edit
the graphic.

Group Combines or groups several graphic
objects into a single graphic so they may be sized
and edited together.

Ungroup Ungroups several grouped graphic
objects so they may be edited individually.

Lock Locks a graphic in place so that it can’t be
moved. This is helpful for preventing accidental
moving of a graphic that you wish to leave sta-
tionary.

Unlock Unlocks a locked graphic, allowing it
to be moved on the layout.

Alignment When multiple objects are selected
on the layout, they can be aligned side to side, top
to top, etc.

Line Styles Allows the user to define the line
style including transparent, dashed, line thick-
ness, and optional arrowheads on either end of
the line. If any objects are selected, the line styles
of the selected objects are changed.

Fill Patterns Allows the user to define the fill
pattern for solid objects including slant, grid,
crosshatch, backward slant, horizontal, vertical,
transparent, solid, vertical gradient, and horizon-
tal gradient. If any objects are selected, the fill
patterns of the selected objects are changed.

Line Color Allows the user to define the line
color and create custom colors. If any objects are

 ProModel 223
User Guide
selected, the line color of the selected objects are
changed.

Fill Color Allows the user to define the fill color
and create custom colors for solid objects. If any
objects are selected, the fill color of the selected
objects are changed.

Please note

All functions in the Graphic menu of Background
Graphics are nearly the same functions described
in the Graphic Editor Graphic menu. Differences
are noted below for moving a graphic behind the
grid and in front of the grid. See “Graphic Edi-
tor” on page 312 for more information on the
functions above.

How to move a graphic behind
the grid:

1. Select the graphic on the layout using the
selector.

2. Select Behind Grid from the Graphics
menu.

How to move a graphic in front of
the grid:

1. Select the graphic on the layout using the
selector.

2. Select Front of Grid from the Graphics
menu.

224 Chapter 5:
Background Graphics

 ProModel 225
User Guide
Chapter 6: Building the
Model: Advanced Elements

Attributes
Attributes are place holders similar to variables,
but are attached to specific locations and entities
and usually contain information about that loca-
tion or entity. Attributes may contain integers or
real numbers. You may also assign model ele-
ment names (e.g., StationA) to an attribute, which
is stored as the element’s index number but may
be referenced by name. Attributes are defined
through the Build menu as shown below.

How to create and edit attributes:

1. Select Attributes from the Build Menu.

Attribute Types
Attributes are classified as follows:

Entity Attributes
Entity attributes are place holders assigned to an
entity and contain numerical information about
that entity. An entity attribute is identified by its
name and may be assigned a value or model ele-
ment name stored as a value. An entity attribute
may be examined and acted upon in any of the
following places:

•Arrival logic
•Operation logic
•Move logic which refers to the attribute of

the entity being routed
•Min or Max attribute rules for locations and

resources
•Routing quantity
•Routing destination priority
•Resource pick up and drop off times
•Entity speed
•Debug condition

226 Chapter 6:
Attributes
 Location Attributes
Location attributes are place holders assigned
directly to a location and contain numerical infor-
mation about that location. A location attribute is
identified by its name and may be assigned a
value or model element name stored as a value.
A location attribute may be examined and acted
on in any of the following places:

•Arrival logic
•Operation logic
•Move logic
•Min or Max attribute for selecting incoming

entities as a location rule
•Routing quantity
•Routing destination priority
•Resource pick up and drop off times
•Location down time logic
•Debug condition

Memory Allocation for
Attributes
Because locations always exist during a simula-
tion, location attributes always use memory.
However, attributes for entities are not created
until the first time any of the entity’s attributes
are examined or set. At that time, ProModel allo-
cates enough memory for all of the entity’s
attributes. When the entity exits the system or is
absorbed by another entity through a COMBINE
or JOIN statement, ProModel automatically frees
the memory allocated for its attributes.

Attributes vs. Local Variables
Attributes are primarily useful where the value of
the attribute is assigned in one logic section and
evaluated in another logic section or field, per-
haps at a different location. If, however, an
attribute is assigned a value and evaluated within
the same logic section (e.g., an operation logic), it

would be more appropriate to use a local vari-
able. Local variables act like temporary attributes
and are valid only within the logic in which they
are defined (see “Variables” on page 231).

Cloning Attributes
Whenever one entity initiates the creation of
other entities through a SPLIT AS, CREATE, or
ORDER statement, or as the result of specifying
multiple outputs in a routing, the attributes of the
original entity are automatically copied to each
newly created entity.

The following examples show two methods of
splitting an incoming batch of material, called
BatchA, into one Tote and six EntA’s. The first
method uses a CREATE statement in the opera-
tion logic to create the new entities, called EntA.
The original entity, BatchA, will have its name
changed to Tote in the routing table. In the sec-
ond example, both of the new entity types are
created in the routing table, so no CREATE state-
ment is needed in the operation logic. In both
cases, the attributes attached to the original
entity, BatchA, are duplicated in both Tote’s and
the EntA’s attributes.

 ProModel 227
User Guide
Process Logic

Routing Table

Attribute Edit Table
This edit table is used to define entity and loca-
tion attributes.

ID The name of the attribute.

Type The type of the attribute, real or integer.

Classification Entity attribute or location
attribute.

Notes A general notes field for describing the
attribute. Notes fields contain user comments
only and are never analyzed by ProModel. Click
on the Notes button or double click in the field to
open an edit window for entering detailed notes.

Example of Attributes in Logic
An appliance manufacturer’s model contains an
assembly location to join lids to pots. The pots
are either aluminum or steel and both types of
pots arrive at the same assembly location. If an
aluminum pot arrives at the assembly location, it
must be joined with an aluminum lid. The same
is true for a steel pot and lid. The entities,
steel_lids and alum_lids, are waiting at a queue to
be joined to the pots.

Obviously, one way to model the different pot
types is to use two different entity types. This
example shows how to achieve the same effect
using a single entity type (pot) with an attribute
designating whether it is steel or aluminum.

An attribute called “type,” defined in the attribute
edit table, allows the location to tell what type of
pot has arrived at the assembly location. We will
use a value of 1 to represent a steel pot and a
value of 2 to represent an aluminum pot. When a
steel pot enters the system, we assign a value of 1
to the attribute TYPE with the statement
TYPE=1. When an aluminum pot enters the sys-
tem, we set its type to 2.

228 Chapter 6:
Attributes
At the assembly location, we use the following
logic:

This logic checks the type of the pot and then
joins a lid according to that type.

Attributes and the JOIN State-
ment
In some cases, one entity joins to another entity
using the JOIN statement (see “Join” on page 504
for more information). If both entities possess
attributes before they join together, the resulting
joined entity will possess the attribute values of
the entity joined to it. In other words, the entity
with the JOIN routing rule is effectively
destroyed when it gets joined. Consider the fol-
lowing diagram in which EntA joins to EntB:

EntA

EntB EntB

Join

EntA is joined to EntB.

Loc2

The logic for the above diagram is as follows:

Process Table

Entity Location Operation (min)
EntA Loc1 Att1 = 1

WAIT 2 min
EntB Loc2 Att1 = 2

JOIN 1 EntA
EntB Loc3 ...

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Loc2 JOIN 1 MOVE FOR 1
1 EntB Loc3 FIRST 1 MOVE FOR 1
...

In the above example, EntB would have an
attribute value, Att1, equal to 2 after EntA joined
to EntB.

Attributes and the GROUP/
UNGROUP Statements
Suppose several entities, EntA, EntB, and EntC,
are grouped together and called Batch (see
“Group” on page 493 and “Ungroup” on
page 568). Each of the original entities have
attributes with values assigned to them before
they are grouped. The Batch is processed for 30
minutes, sent to Loc5 and then ungrouped into
the original entities.

The attribute values of the individual entities are
not transferred to the grouped entity, Batch. In
other words, Att1=0 for the entity, Batch. How-
ever, once the entities are ungrouped, they retain

 ProModel 229
User Guide
their original attribute values. The following dia-
gram graphically shows the concept of grouping.

EntA

Group

EntB

EntA

EntC

Batch

EntB

EntC

Three entities are grouped
together to form a batch

Ungroup

EntA

EntB

EntC

which is later ungrouped.

Loc4 Loc5

The logic for the diagram is as follows:

Process Table

Entity Location Operation (min)
EntA Loc1 Att1 = 1
EntB Loc2 Att1 = 2
EntC Loc3 Att1 = 3
ALL Loc4 GROUP 3 AS Batch
Batch Loc4 WAIT 30
Batch Loc5 UNGROUP
ALL Loc5 ...

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Loc4 FIRST 1 MOVE FOR 1
1 EntB Loc4 FIRST 1 MOVE FOR 1
1 EntC Loc4 FIRST 1 MOVE FOR 1

1 Batch Loc5 FIRST 1 MOVE FOR 5

...

Please note

You can assign an attribute value to a grouped
entity. However, once the entities are ungrouped,
they retain the attribute values they possessed
before they were grouped.

Attributes and the LOAD/
UNLOAD Statements
The LOAD statement loads a specified quantity
of entities to the current entity. The loaded enti-
ties retain their identity for future unloading
through an UNLOAD statement (see “Load” on
page 509 and “Unload” on page 571 for more
information). When the entities are loaded onto
the current entity, the resulting entity retains the
attribute value of the current entity.

For example, entities called Box are loaded onto
another entity, Pallet. The Boxes are assigned an
attribute value, Att1=1. Pallets are also assigned
an attribute value, Att1=2. Once the Boxes are
loaded onto the Pallet, the loaded pallet is
renamed Shipment. The Shipment then has an
attribute, Att1=2, because it inherits the attribute
value of the Pallet. However, we then assign an
attribute value to Shipment, Att1=3. After the
Boxes are unloaded from the Pallet, the Boxes
retain their original attribute value, Att1=1. Now
the Pallet has a different attribute value, Att1=3,
which was assigned to the renamed entity, Ship-
ment. Consider the following diagram and logic
in which two Boxes are loaded onto a Pallet and
renamed Shipment for the output entity:

Pallet

Load Unload

PalletLoc2 Loc4

Box Box

Shipment

Two Boxes are loaded onto a Pallet and renamed Shipment
in the Output. The Boxes are then unloaded from

the Shipment. Shipment is renamed Pallet in the Output.

Boxes

The logic for the diagram is as follows:

230 Chapter 6:
Attributes
Process Table

Entity Location Operation (min)
Box Loc1 Att1 = 1

WAIT 2 min
Box Loc2 Att1 = 2

LOAD 2
Shipment Loc3 Att1 = 3

WAIT 20
Shipment Loc4 UNLOAD 2
Box Loc4 WAIT 10

Routing Table

 Blk Output Destination Rule Move Logic
1 Box Loc2 LOAD 1 MOVE FOR 1
1 Ship-

ment
Loc3 FIRST 1 MOVE FOR 3

1 Ship-
ment

Loc4 FIRST 1 MOVE FOR .5

1 Pallet Loc5 FIRST 1 MOVE FOR 1
1 Box Loc5 FIRST 1 MOVE FOR 2

Attributes and the COMBINE
Statement
Consider the example where several entities are
combined permanently into a single entity, Box
(see “Combine” on page 459 for more informa-
tion). The combined entity, Box, assumes the
attribute values of the last entity that was com-
bined to the single entity. If three entities, EntA,
EntB, and EntC, are combined to form a single
entity called Box, and EntC was the last entity
that was combined, the Box will have the same
attribute values as EntC. Therefore, if EntC had
an attribute (Att1=5), then Att1=5 for the com-

bined entity, Box. The following diagram demon-
strates three entities combining into one entity.

EntA

EntB

EntC

Three entities are combined to
form a single entity called Box.

Box

Combine

Loc4

The logic for the diagram is as follows:

Process Table

Entity Location Operation (min)
EntA Loc1 Att1 = 1

WAIT 2 min
EntB Loc2 Att1 = 3

WAIT 3 min
EntC Loc3 Att1 = 5

WAIT 6
ALL Loc4 COMBINE 3
ALL Loc5 ...

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Loc4 FIRST 1 MOVE FOR 1
1 EntB Loc4 FIRST 1 MOVE FOR 3
1 EntC Loc4 FIRST 1 MOVE FOR .5
1 Box Loc5 FIRST 1 MOVE FOR 1
...

In the above example, EntC is the last entity to be
combined so the entity Box assumes the attribute
value of EntC, Att1=5.

 ProModel 231
User Guide
Variables
Variables are of two types: global and local. Glo-
bal variables are place holders defined by the user
to represent changing numeric values. Local vari-
ables are place holders which are available only
within the logic that declared them. Variables can
contain either Real numbers or Integers, includ-
ing element index values, and are typically used
for decision making or recording information. A
global variable can be referenced anywhere
numeric expressions are allowed in a model. If a
variable or attribute is needed only in a single
block of logic, it is easier to define a local vari-
able right inside the logic block. Global variables
are defined in the Variables Editor, accessed from
the Build menu. Local variables are defined with
the INT and REAL statements. (See “Local Vari-
ables” on page 233 for more information.)

How to access the variable edit
table:

1. Select Variables (global) from the Build
menu.

Variable Edit Table
This edit table is used to define Variables used
globally in the model. A description of each field
is given below.

Icon This field shows “Yes” if an icon for the
variable appears on the layout. A variable’s icon
looks like a counter and displays the variable’s
value.

ID The variable’s name.

Type The type of variable, real or integer.

Initial Value The initial value of the variable to
be assigned at the start of the simulation. By
default, initial values are 0, but can be changed in
the edit table to whatever value you want. Any
expression can be entered here (including previ-
ously defined variables) except attributes and
system functions.

Stats ProModel collects statistics for each vari-
able on three levels of detail, None, Basic, and
Time Series.

•None No statistics are collected for this
variable during simulation.

•Basic Collects basic statistics such as total
changes, average minutes per change, cur-
rent value, and average value.

•Time Series Collects all the basic statistics
plus the value history based on time or
observations. When you select Time
Series, ProModel collects either time-
weighted or observation-based statistics

232 Chapter 6:
Variables
for the variable depending upon the type
selected.

Variable Observation
Record Value Time in Hours

Observation 1
Observation 2
Observation 3
Observation 4

6
5
6
5

1
2
3
4

Total 22 10

Time-Weighted Collects information on the
percentage of time the variable was at a specific
value. As shown in the above table, the average
value of the variable is:

 (6 x 1) + (6 x 3) + (5 x 2) + (5 x 4) = 5.4
10

Observation-Based Collects information on
the number of times the variable changed to a
specific value. As shown in the above table, the
value of the variable is 6, then 5, then 6, then 5.
The average would simply be:

6 + 5 + 6 + 5 = 5.5
4

Notes A general notes field for describing the
variable. Click on the Notes button or double
click in the field to open an edit window for
entering detailed notes.

Please note

In order to create plots or histograms for a vari-
able, Time Series stats must be selected in the
variables edit table.

Variable Layout
An icon to show a variable’s value during a simu-
lation may be placed anywhere on the layout. The
window below shows the icons for the variables
Current and Total at the right side of the screen.
Each icon has been labeled with a background
graphic.

How to place an icon for a vari-
able on the layout:

1. Highlight the desired variable in the Vari-
able edit table.

2. Click on the layout where the icon is to
appear.

3. Size the icon by dragging an edge or cor-
ner of the sizing box.

 ProModel 233
User Guide
How to remove an icon for a vari-
able from the layout:

1. Double click on the icon.

2. Choose Delete from the resulting menu.
The icon is removed from the layout, but the
variable remains in the model.

Editing a Variable’s Icon
A variable’s icon can be customized as necessary
by simply double clicking on the icon and choos-
ing Edit. A dialog box appears as shown below
for specifying the characteristics of the variable
icon or counter.

How to edit a variable’s icon:

1. Double click on the icon.

2. Click on the Digit Color, Frame, or Font but-
tons to adjust the respective setting.

3. Click on OK.

4. All other variable icons that you create
from now on will retain these modifications.

Local Variables
Local variables function as though they were
temporary attributes defined in a specific logic
section which disappear when the logic section is
finished executing. Local variables are useful for
test variables in loops and storing locally used,
unique values for each entity at the current loca-
tion.

Local variables are used within a block of logic
(i.e., operation logic, subroutines) and are
declared with an INT or REAL statement. Local
variables are only available within the logic in
which they are declared and are not defined in the
Variables edit table. A new local variable is cre-
ated for each entity to encounter an INT or REAL
statement (See “Int” on page 502 and “Real” on
page 539). A local variable is specific to each
entity, in much the same way an attribute is spe-
cific to an entity, except that the local variable is
only available while the entity processes the logic
to declare the local variable. Local variables may
be passed to subroutines as parameters. Local
variables are available to macros.

Example
A plant manufactures valves of 10 different sizes,
such as 10'', 20'', All valves are inspected at a
common inspection station and then move to a
dock where they are loaded onto pallets. The pal-
lets are designed to hold only a certain size valve.
Therefore, a pallet designed to hold 10'' valves
can only hold 10'' valves, not 20'' valves.

Suppose a Pallet enters a multi-capacity location,
Dock. Each Pallet has a different entity attribute,
p_type, describing the type of valve it can hold.
Valves are loaded onto the Pallet. The 10” valves
must be loaded onto the pallet designed to hold
the 10” valves. Therefore, the attribute value of
the Valve, v_type, must match the attribute value
of the Pallet, p_type. We can use local variables

234 Chapter 6:
Variables
to accomplish this modeling task. The logic is as
follows where X is a local variable:

Process Table

Entity Location Operation (min)
Valve Inspect WAIT 5
Pallet Dock INT X

X = p_type
LOAD 10 IFF
X = v_type
WAIT 10

Routing Table

 Blk Output Destination Rule Move Logic
1 Valve Dock LOAD 1 MOVE FOR 2
1 Pallet Delivery FIRST 1 MOVE FOR 8

If we had not used local variables, we would need
to use the following operation logic for Pallet at
Dock:

As can be seen from the two examples of logic,
the first example is much easier and more straight
forward.

It is important to note that using “LOAD 10 IFF
p_type = v_type” in the operation logic would not
work for the intended purpose. Attributes refer-
enced in IFF conditions always refer to the entity
being loaded. Set the value of a local variable, X,
to the pallet attribute, p_type, so it can be refer-

enced in the LOAD statement. The pallet
attribute cannot be directly referenced in the
LOAD statement.

If Dock was a single capacity location, using a
global variable would work the same as using a
local variable. However, because Dock is a
multi-capacity location, it can load valves onto
multiple pallets at the same time. If a global vari-
able was used instead of a local variable, the glo-
bal variable would change each time a pallet
entered Dock. If there were two different types
of pallets at Dock, there would be only one type
of valve loaded on the pallet because the global
variable refers to both pallets.

Suppose, for example, a global variable, type,
signifies the pallet attribute, p_type. We assign
type=p_type at the beginning of the operation
logic for location Dock. The first pallet arrives
and type=3. Therefore, only valves with
v_type=3 are loaded onto the pallet. Another pal-
let enters Dock and type=5. Now only valves
with valve_type=5 are loaded onto both pallets.

Please note

Local variable notes:

1. You may not use the WAIT UNTIL statement
with local variables.

2. The local variable definition only needs to
appear somewhere in the logic before being ref-
erenced. The entity does not need to execute the
local variable definition statement (INT, REAL).

 ProModel 235
User Guide
Arrays
An array is a matrix of cells that contain real or
integer values. Each cell in an array works much
like a variable, and a reference to a cell in an
array can be used anywhere a variable can be
used. A one-dimensional array may be thought of
as a single column of values. A two-dimensional
array is like having multiple columns of values
(similar to a spreadsheet).

To reference a cell in a one-dimensional array,
give the name of the array and enclose the cell
number in brackets. For example, if a one-dimen-
sional array containing ten cells is named OpnAr-
ray, to reference the fifth cell you would use
OpnArray[5]. To reference a cell in a two-dimen-
sional array, simply use the name of the array
with the row and column number in brackets. For
example, the statement OpnArray[3,4] references
a cell on the third row in the fourth column.

Arrays with more than two dimensions are more
difficult to picture, but work exactly the same as
one and two dimensional arrays. For example, if
an array has a third dimension, you can reference
any cell simply by adding a comma before the
number of the desired cell in the third dimension.
For example, Tool[3,5,8]. Four and five-dimen-
sional arrays work the same way. The maximum
number of dimensions for an array is 20.

Array cell values are assigned in the exact same
way as you would assign a value to a variable.
For example, to assign the value 18 to the cell at
the fifth row and second column in an array
named Arr1 you would use the following state-
ment.

Assign array cell value

Arr1[5,2]=18

Arrays are defined in the Arrays editor accessed
through the Build menu.

How to use the arrays editor:

1. Select Arrays from the Build menu.

Example Arrays
The following examples show how elements are
referenced in a one-dimensional array with five
cells and in a two-dimensional array with fifteen
cells.

One-dimensional array

OpnArray[5]

Cell[1]

Cell[2]

Cell[3]

Cell[4]

Cell[5]

236 Chapter 6:
Arrays
Two-dimensional array

Tool[3,5]

Cell[1,1] Cell[1,2] Cell[1,3] Cell[1,4] Cell[1,5]

Cell[2,1] Cell[2,2] Cell[2,3] Cell[2,4] Cell[2,5]

Cell[3,1] Cell[3,2] Cell[3,3] Cell[3,4] Cell[3,5]

Arrays Edit Table
The Arrays edit table is used to define Arrays that
are used in the model. The fields of the Arrays
edit table are explained on the following page.

ID: The name of the array.

Dimensions: The size of each dimension of the
array in cells. For example, the dimensions of a
one-dimensional array of 100 cells is “100.”
Likewise, a two-dimensional array with 50 rows
and five columns would have dimensions of
“50,5.” The number of rows is first, followed by
a comma and then the number of columns. An
array cannot have more than 20 dimensions.

Type: The type (integer, real, string, or expres-
sion) for all cells in the array.

Import File: The name of the spreadsheet from
which you will populate the array. You may enter
either a fully qualified path to your .xls file or a
path relative to your .mod file. For example, if
your .xls file is in the same directory as your
.mod file, simply enter the name of the .xls file
into this field.

See “Import Data into Arrays” on page 237 for
more information on using the Import dialog.

Export File: The name of the spreadsheet to
which you will save the array data. You may
enter either a fully qualified path to your .xls file
or a path relative to your .mod file. For example,

if your .xls file is in the same directory as your
.mod file, simply enter the name of the .xls file
into this field.

See “Export Arrays to Spreadsheets” on page 239
for more information on using the Export dialog.

Disable: Use this option to have the import file,
export file, or both ignored during simulation
without deleting the name of the import or export
files from the Array record. Choose “None” to
use the specified import and export files.

Persist: When running multiple replications
you may choose to keep the values in the array
from one replication to the next or clear (reset)
the array values every replication.

For example, if you run a simulation for three
scenarios with an array that “Keeps” its values,
the data in the array at the end of the first replica-
tion will be kept and used as the second replica-
tion begins. If you are using an Import File, it will
be used to populate the array for the first replica-
tion, but ignored for subsequent replications
when “Keep” is selected for the array.

If you choose to “Clear” the array, no array infor-
mation will be kept from one replication to
another and the array will be reset with its initial
information at the beginning of each replication
(see the next heading “Initializing Arrays”). If
you are using an Import File, it will be used to
populate the array at the beginning of each repli-
cation when “Clear” is selected for the array.

Notes A general notes field for entering descrip-
tive information about the array. Click the head-
ing button or double click in this field to open a
larger window for entering notes.

The window pictured above shows how to define
the example arrays that appear on the previous
page.

 ProModel 237
User Guide
Initializing Arrays
By default, all cells in an array are initialized to
zero. Initializing cells to some other value should
be done in the initialization logic. A
WHILE...DO loop is useful for initializing array
cell values. The logic below fills a 3 x 5 array (3
rows and 5 columns) with values from an exter-
nal, general read file.

This example uses the variables Column and
Row (which may be defined as local variables)
along with two WHILE...DO loops to assign
every cell in the array Inventory_Array a value
from a general inventory file. The logic first sets
the value of the variable Column to one. It then
assigns all the cells in column one a value by
reading a value from the external file and incre-
menting the variable Row. When all the cells in
column one have a value, the logic increments to
the second column and does the inside loop
again. It repeats this loop until each cell in the
array has a value.

Please note

Assigning values to a cell in an array can be done
in any expression or logic field, such as initializa-
tion and operation logic. However, arrays cannot
be used in logic elements that determine a
model’s structure, such as location capacity. See
“Execution Time of Initialization and Termina-

tion Logic” on page 180 for a list of logic ele-
ments used to define model parameters.

Import Data into Arrays
When you import data, from either an external
Excel spreadsheet or SQL database, into an array,
ProModel loads the data from left to right, top to
bottom. Although there is no limit to the quantity
of values you may use, ProModel supports only
two-dimensional arrays.

Import from an Excel Spreadsheet

Import File The name of the spreadsheet you will
use. You may enter either a fully qualified path to
your .xls file or a path relative to your .mod file.
For example, if your .xls file is in the same direc-
tory as your .mod file, simply enter the name of
the .xls file into this field.

Sheet Name The name of the sheet from which
you will import the array data.

Please note

If your spreadsheet contains only a single data
set, ProModel will automatically load the data

238 Chapter 6:
Arrays
into the array—you do not have to define any cell
information unless you wish to limit the contents
of the array to a portion of the data set.

Array import requires Microsoft Excel 97 or
later.

Import Start Cell The first piece of data to place
into the array.

Import End Cell The last piece of data to place
into the array.

How to import Excel spreadsheet
data into array:

1. Select Arrays from the Build menu.

2. Select or create the array record (row) you
wish to import.

3. Click the Import File button on the Arrays
dialog.

4. In the File field, enter the name of the
spreadsheet you wish to use (you may also
browse to select a file).

5. In the Sheet Name field, enter the name of
the worksheet that contains the data you
wish to use.

6. Enter the Import Start Cell location. The
value in this cell will occupy the first position in
the array.

7. Enter the Import End Cell location. The
value in this cell will occupy the last position in
the array.

8. Click OK.

Import from a SQL Database

Connection String The connection string used
to connect to the SQL database including all nec-
essary security parameters.

Query or Stored Procedure Enter the SQL
query or the name of the stored procedure to be
executed during the model’s initialization logic to
populate the array.

How to import SQL database data
into array:

1. Select Arrays from the Build menu.

2. Select or create the array record (row) you
wish to import.

3. Click the Import File button on the Arrays
dialog.

 ProModel 239
User Guide
4. Click on the Database radio button.

5. In the Connection String field enter the
necessary string to connect to the desired
database.

6. In the Query or Stored Procedure field
enter the SQL query or stored Procedure
name that will be used to populate the array
during the initialization logic.

7. Click OK.

Export Arrays to Spreadsheets

The fields in the Export Arrays dialog have simi-
lar functionality as those for the Import Arrays
dialog.

If you export multiple times to the same spread-
sheet, ProModel will overwrite the spreadsheet
with new data. If you wish to prevent your data
from being overwritten, you can make a backup
of the spreadsheet between each running of the
simulation.

If you are running multiple scenarios and/or rep-
lications, see step 5 below for a description of
how the spreadsheet handles the multiple scenar-
ios/replications.

How to export array data:

1. Select Arrays from the Build menu.

2. Click the Export File button on the Arrays
dialog.

3. Enter the name of the spreadsheet file you
wish to use, or browse to select a file.

4. Click OK.

5. When the simulation is run, the array data
will be saved to the spreadsheet file. If you
ran multiple scenarios and/or replications,
data from each one will be saved to a sepa-
rate sheet in the spreadsheet file, as seen
below.

240 Chapter 6:
Arrays
Using Arrays
Using arrays can simplify a model. Suppose you
need to model an assembly line that attaches
components to a computer motherboard. Fur-
thermore, you want to track the usage of compo-
nent parts over time. Without an array, hundreds
of individual entities of various types would have
to represent hundreds of individual components.
Keeping track of all the components would be
very complex, not to mention all of the join oper-
ations and routings for performing the assembly.
Instead, various cells in a one-dimensional array
could track the number of each type of compo-
nent used during the simulation.

An array can do the job more efficiently. The ini-
tial inventory level for each component could be
stored in an external file and read into the cells of
the array at the start of the simulation. The first
cell might contain the inventory level of transis-
tors; the second could contain the inventory level
of capacitors and so on. When a motherboard
arrives at the location adding the components,
each cell’s value is decremented according to the
number of that type of component joined to the
motherboard. If each motherboard requires
twelve transistors and five capacitors, then every
time a motherboard arrives at the location, the
array’s first cell is reduced by twelve and the sec-
ond cell is reduced by five. Thus the model
becomes much less complex because it requires
fewer entities and less logic.

Notes on Arrays
1. If a warm-up time is specified, array values

are not reset.
2. Arrays can be nested. For example, if

Arr1[2,3] is equal to three, then the state-
ment Arr2[5,Arr1[2,3]] works exactly like
the statement Arr2[5,3].

3. You can examine the value of a cell in an
array during a simulation by choosing Infor-

mation and then Arrays. This information
can also be printed.

4. Arrays can be used with the WAIT UNTIL
statement.

5. Statistics are not generated for arrays. How-
ever, if you would like to see the final value
of an array’s cell, you can use the array
export feature to export to Excel, you can
place a PAUSE statement in the termination
logic and then view the array under the
Information menu, or you could print an
array’s values or write them to an external
file as part of the termination logic. If you
want more statistical information on a partic-
ular cell, assign the cell to a variable and
then choose basic or time-series statistics for
the variable.

 ProModel 241
User Guide
Macros
A macro is a place holder for an often used
expression, set of statements and functions, or
any text that might be used in an expression or
logic field. A macro can be typed once, and then
the macro’s name can be substituted for the text it
represents anywhere in the model and as many
times as necessary. Macros are defined in the
Macros Editor, accessed from the Build menu.

How to create and edit macros:

1. Select Macros from the Build Menu.

Macro Editor
The Macro edit table is used to assign recurring
text to a reference name.

ID A name to identify the macro.

Text Any text to be substituted where the macro
name is called. This text may be a complete
expression, an entire logic block, or even part of a
logic block.

Options Allows you to define the macro as a
run-time interface parameter or select a resource
group.

The example table above defines three macros.
The first macro is simply a numeric constant,
with fpm representing a conversion factor from
miles per hour to feet per minute. If a number is
used in multiple places in a model, then a macro
makes it possible to change that number through-
out the model simply by changing the macro
itself. The second macro, Operation_Time, calcu-
lates the various operation times at different loca-
tions depending on the attributes at the locations.
The last macro, Number_of_AGVs, is a run-time
interface variable used to define the number of
AGVs in the simulation model (see “Run-Time
Interface” on page 242).

A macro is different from a subroutine because a
macro cannot pass or return a value. However,
because it is simply a text replacement, a macro
can reference any expression valid in the expres-
sion or logic field that called the macro. For
instance, the string “the number of entries is”
might be a macro called mac1. This macro by
itself is not a valid expression. However, when
used with the DISPLAY statement in the opera-
tion logic (i.e., DISPLAY mac1), the compiler
will recognize the macro as a string.

A macro may be used in any expression field, but
may only contain a numeric expression (e.g.,
Entries (LOC1), U(5,1), Var1+Att2, etc.). In
addition, a macro used in an expression field may
not contain multiple lines of text. When used in a
logic field, the macro may include any logic ele-
ment valid in that logic field.

Suppose five different locations use the same
lines of code. Instead of entering the same logic

242 Chapter 6:
Macros
five times in five different fields, reference the
following macro by typing the macro ID, Mac1,
in the operation logic of the machine:

Every time the macro is referenced, the logic is
executed. Macros can also be nested within other
macros. This means that a macro can consist of
one or more other macros. Consider the follow-
ing Macro edit table:

The macro, Favorite_Quote references other
macros, such as Race and Finish. Note that some
of the other macros, such as For_Quality, are
only portions of a complete line of code.
Although the macro is valid, it will not compile
as a part of macro logic because the create state-
ment requires an expression and an entity name.
The line Favorite_Quote in a logic field would be
interpreted as the following line, Create 2 As
EntB Take 1 Res1.

Please note

Macro notes:

1. A macro may be used only when the elements
contained in the macro are appropriate to the
context from which it was called. This restriction
means that the macro in the previous example is
only valid in operation logic.

2. Because a macro simply substitutes some text
for its name, if a macro represents a statement
block, then it should contain a BEGIN at the
beginning of the block, and an END at the end of
the block. This technique is especially important
when using a macro immediately after a control
statement, such as IF...THEN or WHILE...DO.
For more information, see “Statement Blocks”
on page 436.

Run-Time Interface
Defining a run-time interface (RTI) for a macro
allows the user to easily change simulation/model
parameters before the simulation starts. It also
provides an experimental framework for defining
multiple scenarios to be run in a batch (see “Sce-
narios” on page 353). An RTI for a macro allows
a macro’s text to be changed by the user when-
ever a simulation run begins. Since macros are
allowed in any expression, this gives the user
flexibility to edit most model parameters every
time a simulation starts without having to directly
edit the model data.

The key difference between a macro with an RTI
and one without is that when a simulation begins,
a macro defined with an RTI provides a menu
that allows users to change only the macros you
want them to change. An RTI allows you to
request a variety of information to substitute for a
macro; from simple values (e.g., the initial value

 ProModel 243
User Guide
of a location’s capacity) to complex text (e.g., a
line of logic). You may create RTI parameters
using the dialog box below, accessed through the
macros dialog.

Parameter Name This text will identify the
parameter represented by this macro. It should
consist of text that clearly describes the parame-
ter to be changed, for example, Operation Time.
The macro name and the parameter name can be
different. This provides more flexibility and
allows you to view a more descriptive parameter
name when defining scenarios.

Prompt This text will appear if the user decides
to change the parameter. You should use it to fur-
ther specify the information to be entered, for
example, “Please enter the amount of time the
simulation should run.”

Unrestricted Text This option allows the user to
enter any text, such as the distribution U(8,2).
Note that any text that the user enters will be sub-
stituted for the macro name in the model. There-
fore, the text the user enters must be syntactically
correct and valid anywhere the macro name
appears.

Record Range Allows you to enable an arrival
or shift record from a range of records. This
allows you to test a variety of shift and arrival

combinations to find the combination that works
best with your model.

Numeric Range This specifies the lower and
upper limits for the parameter if the type is
numeric.

How to define an RTI for a macro:

1. Select Macros from the Build menu.

2. Type the macro name and click on the
Options button.

3. Choose Define from the RTI submenu.

4. Define the Parameter Name and enter the
prompt (optional).

5. Select the parameter type: Unrestricted
Text, Record Range, or Numeric Range.

6. If the parameter is numeric, enter the
lower value in the From box and the upper
value in the To box.

7. Click OK.

8. Enter the default text or numeric value in
the Macro Text field.

9. Use the macro ID in the model (e.g., in
operation or resource usage time).

Please note

When using a record range, be sure to group all
arrival and shift records. This will allow you to
select which series of records to include in the
macro. Note also that when you define an arrival
or shift RTI, ProModel adds “ARRIVAL_” or
“SHIFT_” to the name to help you identify the
macro more easily.

244 Chapter 6:
Macros
Run-Time Interface Example
Suppose you build a factory model and determine
the first lathe, Lathe_1, is a bottleneck. The
model results indicate the throughput is lower
than expected. You decide to perform several
what-if scenarios with the model by changing the
operation time of Lathe_1. Instead of changing
the operation time at Lathe_1 within the Process
edit table, it is easier to define a macro with an
RTI. This technique allows the model user to
easily see the effect of installing a faster lathe
without ever editing the model itself. The fol-
lowing example represents the dialog used to
define the RTI for the macro where the operation
time is a numeric value between 12 and 20:

After defining the RTI for the macro, substitute
the macro, Oper_Time, for the operation time in
the operation logic in the Process edit table for
Lathe_1 as shown below:

You are now able to change the operation time at
Lathe_1 using the Model Parameters option in
the Simulation menu. For more information on
changing model parameters and defining scenar-
ios, see “Model Parameters & Scenarios” on
page 352.

Please note

For more information concerning the differences
between macros and subroutines, see “Macros”
on page 241 and “Subroutines” on page 246.

Resource Grouping
Resource grouping allows you to define specific
groups of resources rather than define each unit
separately. For example, suppose you need a spe-
cific technician to perform an operation. If the
technician is not available, you may use either
another technician or one of two qualified opera-
tors to perform the operation. Rather than define
each qualified operator as a separate resource,
you may define a macro that includes them.

How to define a resource group

1. Select Macros from the more elements
section of Build menu.

2. Define a macro ID and enter a list of all
resources you wish to include as part of the
resource group.

Please note

When you create a list of resources, separate
each resource using AND or OR (e.g., Tech_1
AND Tech_2 OR Tech_3 AND Tech_4).

 ProModel 245
User Guide
3. Click on the Options button and select
Resource Group from the submenu.

 At the end of the simulation, ProModel creates a
statistical report containing information collected
for each resource included in the resource group,
as well as the entire group. This will allow you to
track individual, as well as group performance.
For information on statistics and how to graph the
results, see “Reports and Graphs” on page 373.

246 Chapter 6:
Subroutines
Subroutines
A subroutine is a user-defined command that can
be called to perform a block of logic and option-
ally return a value. Subroutines may have param-
eters (local variables) which act as variables local
to the subroutine and that take on the values of
arguments (i.e., numeric expressions) passed to
the subroutine.

ProModel handles subroutines in three ways.
First, a subroutine may be processed by the call-
ing logic as though the subroutine is part of the
calling logic. This way is the most commonly
used, and is done by simply referencing the sub-
routine by name in some logic or expression.
Second, a subroutine may be processed indepen-
dently of the calling logic so the calling logic
continues without waiting for the subroutine to
finish. This method requires an ACTIVATE
statement followed by the name of the subroutine
(see “Activate” on page 441), or you may use the
Interact Menu (see “Run-Time Interact Menu” on
page 368). Third, ProModel allows subroutines
written in an external programming language to
be called through the XSUB() function.

Subroutines are defined in the Subroutines Editor
which is accessed from the Build Menu.

How to create and edit subrou-
tines:

1. Select Subroutines from the Build menu.

Subroutine Editor
The Subroutines edit table consists of several
fields which identify the components of a subrou-
tine. Each of these fields is described below.

ID A name that identifies the subroutine.

Type The type of numeric value returned by the
subroutine can be Real, Integer, None, or Interac-
tive. Use Real and Integer if the subroutine
returns a number and None when no return value
is expected, as is often the case in initialization or

 ProModel 247
User Guide
termination logic. Subroutines of type Interactive
are identical to subroutines of type None, except
that interactive subroutines are also accessible for
activation by the user through the run-time menu.
Interactive subroutines are displayed in the Inter-
act menu during runtime. For more information
on Interactive subroutines, see the discussion
later in this section.

Parameters Arguments passed to the subrou-
tine get assigned to local variables called parame-
ters. Items passed to a subroutine as arguments
can have different names than the parameters that
receive them. Parameters can be real or integer.
The first parameter receives the first argument,
the second parameter receives the second argu-
ment, and so on.

Logic One or more statements to be executed
whenever the subroutine is called. Statements in
subroutines must be valid in the logic that calls
the subroutine. Subroutine logic may contain a
RETURN statement with a value to be returned
from the subroutine. (See “Return” on page 549
for the correct syntax and an example of this
statement.)

Please note

Subroutine editor notes:

1. If the subroutine is of type Integer and the
return value is a real number, the return value
will be truncated unless the ROUND() function is
used (e.g., RETURN ROUND(<numeric expres-
sion>)).

2. If you do not want a stand-alone subroutine
referenced in operation logic to be treated as an
implicit wait statement, define the subroutine as
type None.

3. When using the ACTIVATE statement to call a
subroutine, the calling logic continues without
waiting for the called subroutine to finish. There-

fore, independent subroutines can run in parallel
with the logic that called them.

4. Independent subroutines called with the ACTI-
VATE statement cannot contain entity-specific or
location-specific system functions.

Subroutine Format
A subroutine may be named any unique, valid
name. The general format for calling a subrou-
tine is as follows:

SubroutineName(arg1, arg2,....,argn)

Subroutine call

GetOpTime(3,7)

DoInitialization()

Please note

Subroutine format notes:

1. If no arguments are specified, open and closed
parentheses are still required.

2. Statements in subroutines must be valid in the
logic that called the subroutine. For example, if a
subroutine is called from the operation logic, the
subroutine may contain only those statements
valid in the operation logic. Subroutines called
from an ACTIVATE statement or from the Inter-
act Menu at run-time can have any general logic
statements, including WAIT.

3. A subroutine may be used in any logic field. In
addition, a subroutine may be used in any expres-
sion field, provided that the RETURN statement
is used to return a value to the expression field.

248 Chapter 6:
Subroutines
Expression fields include the Qty Each column of
the Arrivals edit table and the routing rule for
processing.

4. If a subroutine does not return an expression
with the RETURN statement, a value of zero will
be returned for subroutines of type Real and Inte-
ger. No value will be returned for a subroutine of
type None or Interactive.

Subroutine Example
Suppose that you build a Copy Center model and
it is necessary to define the processing time at the
operator assisted machines as a function of two
parameters: Order Quantity and Quality Level. In
addition, you would also like to write the pro-
cessing times at each copy machine to a file
called Report.Dat.

Because the operation logic is identical at both
machines, a subroutine may be used to execute
the group of statements required. Notice in the
Process Logic pictured next that Subroutine
OrderTime is called, and each order's Quantity,
Quality, and Ticket attributes are passed as argu-
ments. The third argument is simply a constant
value, 1 or 2, which represents the location from
which the subroutine was called (i.e., 1 if called
from OpAsist1 or 2 if called from OpAsist2). The
operation logic, which calls the subroutine, and

routing are shown below. The subroutine itself is
shown later in this section.

Subroutines Edit Table
The Subroutine edit table lists the name of the
subroutine, the return type, the parameters to be
passed to the subroutine, and the logic. Notice
that the subroutine ID corresponds to the subrou-
tine name called in the processing logic above
and that the subroutine has four parameters (P1,
P2, P3 and P4) corresponding to the four argu-
ments passed to the subroutine. Also note that
the subroutine is of type real since the return
value will be a real valued processing time.

Subroutine Parameters
The subroutine parameters, M (for mean) and SD
(for standard deviation), are defined by clicking
on the Parameters heading button. These values
are unique to each inspection location, and are

 ProModel 249
User Guide
passed to the subroutine as parameters of the nor-
mally distributed inspection time.

Subroutine Logic
The final step in defining the subroutine is to
specify the logic to be processed when the sub-
routine is called. In this example, the logic should
include a processing time, a procedure to write
the values of the attributes to a file, and a routing
decision based on the values of the two attributes.
The logic window is accessed by clicking on the
Logic heading button.

The first line of the logic calculates the order time
as a function of the Quantity and Quality
attributes passed as parameters. These parame-
ters are used as arguments in two user defined
functions, ProcTime() and QualFactor(). Func-
tion ProcTime() returns a time value based on the
number of copies in the order, while function
QualFactor() returns a scale factor depending

upon the quality level desired. Operation time is
determined by simply multiplying the process
time by the scale factor.

Once the order time has been determined, this
value is written to the file Report.Dat. Included
with the operation time is the job number and the
location at which the job was processed.

The last line of the logic returns the order time
value to the processing logic.

Interactive Subroutines
Interactive subroutines are subroutines activated
by the user anytime during run-time by choosing
the subroutine from the Interact menu. The name
appearing in the Interact menu is either the sub-
routine name or if a string is entered as a com-
ment statement at the beginning of the subroutine
logic, the string is used as the name (e.g., #
“Arrival Frequency”). Interactive subroutines
allow the user to interact with the simulation dur-
ing run-time. Subroutines are defined as type
Interactive in the Subroutine edit table. Normally,
subroutines are activated by entities. However,
interactive subroutines can be user-activated in
addition to being entity-activated. Interactive
subroutines can be used for:

•changing model parameters during a simula-
tion run

•changing routings
•calculating and reporting user-defined statis-

tics

Suppose you want to interactively change the
arrival frequency for a certain entity, customers,
during run time. Define a variable, Var1, and
assign it an initial value to be used for the initial
arrival frequency. Enter Var1 in the arrival fre-
quency field for the entity customers. Create a

250 Chapter 6:
Subroutines
subroutine of type Interactive and enter the fol-
lowing logic:

During run-time, you can then change the arrival
frequency for the customers by choosing the Cus-
tomer Arrivals from the Interact menu (see “Run-
Time Interact Menu” on page 368).

Please note

Interactive subroutines may also be called from
any logic or expression where no return value is
required. See “Statements and Functions” on
page 439 for more information.

External Subroutines
There may be some cases where you need to per-
form actions ProModel is not capable of doing.
You may need extended capabilities with more
sophisticated commands. ProModel allows you
to interface with external subroutines located in
thirty-two bit Windows DLL files you have cre-
ated. This feature could be useful for doing
sophisticated file I/O, performing statistical anal-
ysis, making your simulation interactive, or help-
ing with other simulation needs.

Because of the intricacies of the Windows devel-
opment environment, you must have a sound

knowledge of your external programming lan-
guage (C, C++, Pascal) to use external subrou-
tines. In addition, you must also have a good
Windows platform knowledge, specifically with
respect to creating DLLs in your language.
Because it is a 32-bit program, ProModel can
load and call only 32-bit DLLs, and requires that
you use a 32-bit Windows compiler.

For more information about this feature, you can
load, study and run XSUB.MOD in the reference
model directory (also see “Xsub()” on page 583).
This model uses XSUB.DLL, found in the MOD-
ELS directory. The source code and make files
for XSUB.DLL (XSUB.CPP, XSUB.MAK,
XSUB.IDE) are also included in the MODELS
directory. Some general explanation is contained
in the comments of this source code.

Due to the complexities of Windows program-
ming and the variety of uses for this advanced
feature, PROMODEL Corporation can only pro-
vide minimal support for this feature. Many ques-
tions regarding Windows programming and other
programming languages cannot be handled
through our customer support department. Please
consult your language programming manuals,
language customer service centers, Microsoft,
and other resources to resolve these types of
problems.

Subroutines vs. Macros
Although subroutines and macros work similarly,
they have subtle differences. Any logic may use
both macros and subroutines. The main differ-
ence is in the way they are used. Only subrou-
tines can be used when you need to pass
arguments, get a return value, or activate the
independent execution of logic. Only macros can
be used when defining run-time interface param-
eters.

 ProModel 251
User Guide
Macros may be used in any expression field, but
the macro may only contain an expression (i.e.,
Entries(LOC1), U(5,1)). When a macro is used in
a logic field, the macro may include any logic
element valid in that logic field.

Subroutines may also be used in an expression
field provided that the RETURN statement is
used to return a value to the expression field.
When a subroutine is used to represent one or
more logic statements, the subroutine may only
include statements valid for the particular con-
text.

252 Chapter 6:
Arrival Cycles
Arrival Cycles
An arrival cycle is a pattern of individual arrivals
which occurs over a certain time period. Some
examples of arrival cycles that exhibit a pattern
are the arrival of customers to a store and the
arrival of delivery trucks to a truck dock. At the
beginning of the day, arrivals may be sparse; but
as the day progresses, they build up to one or
more peak periods and then taper off. While the
total quantity that arrives during a given cycle
may vary, the pattern or distribution of arrivals
for each cycle is assumed to be the same.

Arrival Cycles are defined in the Arrival Cycles
edit table, accessed through the Build Menu.

How to edit arrival cycles:

1. Choose More Elements from the Build
Menu.

2. Choose Arrival Cycles.

Arrival Cycles Edit Table
Arrival cycles are defined by entering the proper
data into the Cycle edit table. The fields of the
Cycle edit table are explained below.

ID The cycle name.

Qty / % Select either Percent or Quantity as the
basis for the total number of arrivals per cycle
occurrence.

Cumulative... Select Yes to specify the % or
Qty values in a cumulative format. Select No to
specify these fields in a non-cumulative format.

Table... Click on this button (or double click in
this field) to open an edit table for specifying the
cycle parameters.

Arrival Cycles Example
Suppose we are modeling the operations of a
bank (or any service or manufacturing system)
and we need to specify a pattern for customer
arrivals. From past data, we know that customers
arrive throughout the day (9:00 AM to 5:00 PM)
according to the following approximate percent-
ages.

From Before Percent

9:00 AM 10:30 AM 0
10:30 AM 11:30 AM 10
11:30 AM 1:00 PM 25
1:00 PM 4:00 PM 55
4:00 PM 5:00 PM 70

Defining the Arrival Cycle
The arrival cycle will be named Bank_Arrivals in
the Arrival Cycles edit table. Because the data is

 ProModel 253
User Guide
expressed in terms of percentages, we select Per-
cent as the basis for the cycle. Also, the percent-
age values are not cumulative so we specify No
in the Cumulative field.

Next, we click on the Table heading button to
open another edit table for entering the cycle
data.

In this example, even though the percentages of
customers that have arrived are not cumulative,
the time is always cumulative. Therefore, the
table reads as follows: ten percent of the daily
customers arrive in the first 1.5 hours, fifteen per-
cent of the daily customers arrive between hour
1.5 and 2.5, and so on. The arrivals are randomly
distributed according to a Uniform distribution
during the time interval in which they arrive.

The arrival cycle is now defined and can be
assigned to an arrivals record in the Arrivals edit
table.

Assigning Arrivals to the Arrival
Cycle
After an arrival cycle has been defined, assign an
arrival record to the arrival cycle in the Arrivals
edit table for the arriving customers. The arrival

record for the bank example appears below. (See
“Arrivals” on page 163 for more information.)

The total number of customers per day is nor-
mally distributed with a mean of 1000 and a stan-
dard deviation of 35. The number of occurrences
of the cycle is 20, representing 20 working days
(1 month) of time. The frequency in this case
refers to the period of the cycle or the time
between the start of one cycle and the start of the
next cycle, which is every 24 hours. Make sure
the arrival frequency is defined with the same
time unit as the arrival cycle.

Without an arrival cycle, all the Customers for a
single day would arrive at the start of the simula-
tion. An arrival cycle will divide the quantity
specified in the Qty each... field into various
sized groups arriving throughout the day.

To assign the arrival cycle to the arrival record,
click on the Qty each... heading button to open a
dialog with the names of all defined cycles.

Click on the entry Bank_Arrivals and select OK.
The Qty each... field now includes the cycle.

254 Chapter 6:
Arrival Cycles
Cumulative Cycle Tables
In the previous example, percentages were
expressed non cumulatively. This same data
could have been expressed cumulatively as fol-
lows:

Before Percent

9:00 am 0
10:30 am 10
11:30 am 25
1:00 pm 55
4:00 pm 70
5:00 pm 100

The data is now expressed cumulatively and
could be entered in the cycle table as follows.

To specify cycles in cumulative form, simply
choose Yes in the Cumulative... field of the
Arrival Cycles edit table.

Please note

Time values remain cumulative regardless of the
form of the percentages.

Arrival Cycles by Quantity
The previous example was based on the assump-
tion that a certain percentage of arrivals came
within a specified time interval. An alternate
method of specifying an arrival cycle is to specify

the number of arrivals to arrive within each time
interval.

Example 1

Suppose that in the bank example we knew that
for each cycle period, the number of customers to
arrive during each time interval within the cycle
period is as follows:

From Before Number

9:00 AM 10:30 AM 100
10:30 AM 11:30 AM 150
11:30 AM 1:00 PM 300

1:00 PM 4:00 PM 150
4:00 PM 5:00 PM 300

With the data in this format, we specify the
Arrival cycle by choosing Qty in the “Qty/Per-
cent” field and complete the cycle table as fol-
lows:

This table could also be specified cumulatively
by choosing Yes in the Cumulative... field and
entering the quantity values in a cumulative for-
mat.

Please note

When specifying Arrival cycles by quantity, the
value entered in the “Quantity each” field of the
Arrivals edit table changes meaning. Instead of
the total arrivals per cycle, it represents a factor
by which all entries in the cycle table will be mul-
tiplied. This field may be any valid expression
which evaluates to a number. This allows the

 ProModel 255
User Guide
same arrival cycle to be entered for more than
one arrival record that has a different factor
applied to it. For example, you might want to
define a different factor to a customer arrival
pattern depending on the day of the week. In this
case, define an arrival record for each day with a
frequency of one week.

Example 2

Suppose we wish to see the effect on the Bank
example if the number of arrivals is increased by
50%. The relative quantities per time interval
remain the same but now 50% more customers
arrive each day. Using the data from the previous
example, we enter the same values in the Arrival
cycle quantity fields, but specify a value of 1.5 in
the quantity field of the Arrival edit table.

The result is an arrival schedule with the follow-
ing parameters.

From Before Quantity

9:00 AM 10:30 AM 150
10:30 AM 11:30 AM 225
11:30 AM 1:00 PM 450

1:00 PM 4:00 PM 225
4:00 PM 5:00 PM 450

256 Chapter 6:
Table Functions
Table Functions
Table functions provide an easy and convenient
way to retrieve a value based on an argument
(i.e., some other value) that is passed to the table.
Table functions specify a relationship between an
independent value and a dependent value. All
table functions are defined in the Table Functions
editor which is accessed from the Build menu.

How to access the function table
editor:

1. Select More Elements from the Build menu.

2. Select Table Functions.

Table Functions Editor
Table functions are defined by the user and return
a dependent (or look-up) value based on the inde-
pendent (or reference) value passed as the func-
tion argument. Independent values must be
entered in ascending order. If the independent
value passed to a table function falls between two
independent values, a dependent value for the
unspecified reference value is calculated by lin-

ear interpolation. The following two examples
show how to specify a linear function (where
only two reference values are needed to define
the entire function) and a nonlinear function
(where more than two reference values need to be
specified).

Example 1

The example below shows a relationship that
exists between the time required to process an
order and the number of entities in the order. As
the number of entities increases, the time
required to process the order also increases. The
relationship in this case is linear, meaning the
processing time is directly proportional to the
number of copies in the order. Because of the lin-
ear relationship, only the two endpoints need to
be entered in the function table. (The function
table for this example is given in the discussion
on the Table Function editor.)

Function: ProcTime()

Order size

Processing
time (min)

0 100 200 300

1

2

3

0

Example 2

In this example the relationship between the inde-
pendent value and the dependent value is nonlin-
ear and inversely proportional. In addition,
interpolation is required to determine the depen-
dent value if the independent value passed to the
function lies between the independent values

 ProModel 257
User Guide
given explicitly in the table function.

Function: QualFactor()

Processing
Time Factor

Quality Level

31 2 4 5

1.4

2.0

3.0

1.0
1.1

In the example above the dependent value repre-
sents a factor which is to be multiplied by the
processing time required to complete an order.
Each order is assigned a number, 1 through 5,
according to the level of quality desired. In this
case, a lower number represents higher quality.
(The function table for this example is listed in
the following explanation of the Function Table
Editor.)

Table Function Edit Table
The Function Table Editor is where all function
tables are created and edited. The fields of the
Function Table editor are defined below.

ID The name of the function table.

Table... Click on this heading button to open a
table for defining the independent and dependent
values of the function.

The tables for the two example functions are
given below.

The independent and dependent values allow any
general expression such as numbers, variables,
and math functions. The fields are evaluated only
at translation, and cannot vary during the simula-
tion.

When calling a user-defined table function, if the
independent value is out of range, then the table
function will return a zero for the dependent
value. Consider the following function table,
Operation_Time:

If the function were called with the command
“Operation_Time(5),” the independent value
passed to the table function Operation_Time
would be five. But five is beyond the limits of the
table, so the dependent value returned will be
zero. Likewise, if the independent value is 1, the
dependent value returned will be zero. However,
if 2.7 is entered as the independent value, Pro-

258 Chapter 6:
Table Functions
Model will interpolate and return a value between
30 and 50.

 ProModel 259
User Guide
User Defined Distributions
Occasionally, none of ProModel’s built-in distri-
butions can adequately represent a data set. In
these cases, the user may define a User Distribu-
tion to represent the data set. User Distributions
specify the parameters of user-defined (empiri-
cal), discrete, or continuous probability distribu-
tions.

How to create and edit user distri-
butions:

1. Choose More Elements from the Build
menu.

2. Choose User Distributions.

User Distribution Edit Table
A user-defined distribution is a table of empiri-
cally gathered data. User distributions may be
either continuous or discrete, and may be cumu-
lative or non-cumulative (more information con-
cerning these options is found later in this

section). The data is entered into the User Distri-
bution edit table. The User Distribution edit
table’s fields are described below.

ID The name of the distribution. When referenc-
ing distribution tables (in the operation logic, for
example) the open and closed parentheses after
the distribution name must be used, such as
Dist1(), OpTime().

Type... Discrete or Continuous depending on the
number of possible outcomes.

Cumulative... Yes or No depending on whether
the distribution is to be specified in cumulative or
non-cumulative format.

Table... Click on this button (or double click in
the field) to open an edit table for defining the
parameters of the distribution. Once a distribu-
tion has been defined, the field changes from
“Undefined” to “Defined.”

The combination of Discrete and Continuous dis-
tributions, along with the ability to express either
in cumulative or non-cumulative terms, creates
four possible formats for specifying distributions.
The remainder of this section gives examples and
procedures for specifying each of these distribu-
tion types.

Discrete Distributions
Discrete distributions are characterized by a finite
set of outcomes, together with the probability of
obtaining each outcome. In the following exam-
ple, there are three possible outcomes for the
group size: 30% of the time the group size will be

260 Chapter 6:
User Defined Distributions
10, 60% of the time the group size will be 20, and
10% of the time the group size will be 30.

Discrete Distribution

10 20 30

.50

1.00

Group size

P
r
o
b
a
b
i
l
i
t
y

.40

.30

.20

.10

.60

.70

.80

.90

0

One way to represent a discrete distribution is by
its probability mass function, listing the possible
outcomes together with the probability of observ-
ing each outcome. A probability mass function
for the example above could be expressed as fol-
lows (with G representing the group size).

G 10 20 30

P(G) .30 .60 .10

An alternate way to represent a distribution is
through a cumulative distribution function, list-
ing each possible outcome together with the
probability that the observed outcome will be less
than or equal to the specified outcome. A cumu-
lative distribution function for the example above
could be expressed as follows.

G 10 20 30

P(G) .30 .90 1.0

In the next example, the number of parts are
grouped into a batch according to a user distribu-
tion.

Process Table

Entity Location Operation (min)
EntA Loc1 GROUP Dist() AS Batch
Batch Loc1 WAIT 10 min

Routing Table

 Blk Output Destination Rule Move Logic

1 Batch Loc2 FIRST 1 MOVE FOR
5

ProModel provides the flexibility to specify dis-
crete distributions according to a probability
mass function or a cumulative distribution func-
tion. Select Yes or No in the Cumulative field of
the Distribution edit table and fill in the table
according to the probability mass function or the
cumulative distribution function. The following
tables show the discrete distribution example
defined in both formats.

Discrete (probability mass
function)

Discrete (cumulative distribution
function)

 ProModel 261
User Guide
Continuous Distributions
Continuous distributions are characterized by an
infinite number of possible outcomes, together
with the probability of observing a range of these
outcomes. In the following example, there are
an infinite number of possible operation times
between the values 2.0 minutes and 8.0 minutes.
Twenty percent of the time the operation will take
from 2.0 to 3.5 minutes, 40% of the time the
operation will take from 3.5 to 5.0 minutes, 30%
of the time the operation will take from 5.0 to 6.0
minutes, and 10% of the time the operation will
take from 6.0 minutes to 8.0 minutes.

Continuous Distribution

P
r
o
b
a
b
i
l
i
t
y

100
90
80
70
60
50
40
30
20
10

0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

c.d.f.

p.d.f.

Processing time (min)

As with a discrete distribution, a continuous dis-
tribution can be defined in two ways. A probabil-
ity density function lists each range of values
along with the probability that an observed value
will fall within that range. Each of the values
within the range has an equal chance of being
observed, hence the piece-wise linearity of the
c.d.f. within each range of values. A probability
density function for the example above is
expressed as follows.

P(0.0 <= X < 2.0) = 0.00
P(2.0 <= X < 3.5) = 0.20

P(3.5 <= X < 5.0) = 0.40
P(5.0 <= X < 6.0) = 0.30
P(6.0 <= X <= 8.0) = 0.10
P(8.0 < X) = 0.00

The following table represents the p.d.f. for this
example.

As with a discrete distribution, a cumulative dis-
tribution function for a continuous distribution
specifies the probability that an observed value
will be less than or equal to a specified value. A
c.d.f. for the example distribution is as follows
(where x represents the return value).

x 2.0 3.5 5.0 6.0 8.0

P(X <= x) 0 .20 .60 .90 1.0

The following table represents this c.d.f.

262 Chapter 6:
External Files
External Files
External files may be used during the simulation
to read data into the simulation or write data as
output from the simulation. Files can also be used
to specify such things as operation times, arrival
schedules, shift schedules, and external subrou-
tines. All external files used with a model must
be listed in the External Files Editor which is
accessed from the Build menu.

How to define external files:

1. Select More Elements from the Build menu.

2. Select External Files.

External Files Editor
The External Files Editor consists of an edit table
with fields specifying the external files to be used

during the simulation. Each of these fields is
defined below.

ID An alias to be used in the model for referenc-
ing the file. Note that this ID does not have to be
the same as the file name.

Type Click on this heading button to display the
following menu. The six file types are discussed
in the remainder of this section.

File Name... The actual file name, including the
path. Press the heading button or double click in
this field to browse for a specific file.

Prompt A prompt to be displayed at run time in
the event that the specified file cannot be opened.

Notes... A general notes field for entering
descriptive information about the file. Click the
heading button or double click in this field to
open a larger window for entering notes.

File Types
External files may be defined as one of several
types depending upon the purpose of the file.

General Read File
A General Read file contains numeric values read
into a model using a READ statement. Values
must be separated by a space, comma, or end of

 ProModel 263
User Guide
line. Any non-numeric data will be automatically
skipped when obtaining the next numeric value
(See “Read” on page 537 for correct syntax and
examples). For example, if you specify a normal
distribution such as N(5,1) in the General Read
file, ProModel will not return a numeric value
following the distribution. Instead, it will read in
the first value, 5, and the next value, 1.

A General Read file must be an ASCII file. Data
created in a spreadsheet must be saved as a text
file.

General Write File
A General Write file is used for writing text
strings and numeric values using the WRITE and
WRITELINE statements. Text strings are
enclosed in quotes when written to the file, with
commas automatically appended to strings. This
enables the files to be read into spreadsheet pro-
grams like Excel or Lotus 1-2-3 for custom view-
ing, editing, and graphing. Write files may also
be written to using the XWRITE statement which
gives the modeler full control over output and
formatting. (See “Write” on page 581, “Write-
Line” on page 582, and “Xwrite” on page 585 for
correct syntax and examples.)

If you write to an external file during multiple
replications or a single, independent run, the data
will be appended to the data from the previous
replication. However, if the RESET statement is
used, the data is overwritten for each replication.

Entity-Location File
An Entity-Location file (or expression file) is a
spreadsheet (.wk1 or .xls format only) file con-
taining numeric expressions listed by entity and
location name. Entity names should appear
across the top row, beginning in column 2, while
location names should be entered down the first
column, beginning on row 2. A numeric expres-
sion for each Entity-Location combination is

entered in the cell where the names intersect. An
example of a spreadsheet file is shown next.

To use the value stored in an Entity-Location file
as an operation time, call out the file identifier in
the operation logic as shown in the following
example. (In this example, “SvcTms” is the File
ID of the desired Entity-Location file.)

Please note

If the .wk1 or .xls file contains more than one
sheet of data, only the first sheet will be read in.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT SvcTms()

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1 MOVE FOR 5

By specifying SvcTms() with no arguments in the
parentheses, a value is returned from the Entity-
Location File “SvcTms” for the current entity at
the current location, i.e., EntA at Loc1. You may
also return the value stored in any other cell of an
Entity-Location file by explicitly specifying the
entity and location names in the parentheses, e.g.,
SvcTms(EntB, Loc1) or SvcTms(EntC, Loc2).

264 Chapter 6:
External Files
Arrivals File
An Arrivals file is a spreadsheet (.wk1 or .xls for-
mat only) file containing arrival information nor-
mally specified in the Arrival Editor. One or
more arrival files may be defined and referenced
in the External Files Editor. Arrival files are
automatically read in following the reading of the
Arrival Editor data. The column entries must be
as follows:

Column Data

A Entity name

B Location name

C Quantity per arrival

D Time of first arrival

E Number of arrivals

F Frequency of arrivals

G through... Attribute assignments

Columns A through F may have any heading
desired as long as the data is of the proper type.
If attributes are to be assigned, columns G and
higher should have headings that match the
names of the attributes being assigned. The fol-
lowing example illustrates these points.

Example

The values in the spreadsheet cells must be a
numeric expression as opposed to a formula
commonly used in spreadsheets. For exam-
ple, if cell E4 in the spreadsheet above was
actually a formula generating the value 100,
the value ProModel generates is zero. Pro-
Model only recognizes expressions for the

Qty, Time, Number, and Frequency columns
in a spreadsheet.

When defining an External Arrivals File, you do
not need to define arrivals in the Arrivals edit
table. If several entities are scheduled to
arrive at the same time, entities arrive in the
system according to the order in which they
appear in the arrival list. However, when
there is more than one occurrence for the
arrival record, the next entity will not arrive
until the frequency has elapsed. Meanwhile,
other entities listed below the record may be
allowed to arrive.

Please note

If the time of the first arrival is zero and there is
only one arrival of some quantity, you do not
need to complete additional cells. Likewise, if
there is only one arrival at a time other than zero,
you do not need to fill in additional cells after the
Time entry.

Please note

If the .wk1 or .xls file contains more than one
sheet of data, only the first sheet will be read in.

Shift File
A shift file record is automatically created in the
External Files Editor when you assign a shift to a
location or resource. If shifts have been assigned,
the name(s) of the shift file(s) will be automati-
cally created in the External Files Editor. If no
path is listed for the shift file, ProModel will
search in the default models directory.

 ProModel 265
User Guide
Please note

Creating a shift file record in the External Files
Editor should not be done. It is done automati-
cally through the shift assignment.

DLL File
A DLL file is needed when using external sub-
routines through the XSUB() function. See “Sub-
routines” on page 246 for more information.

Excel File
An Excel file is automatically created in the
External Files Editor when you assign a shift to
an array import file. If the external file has been
assigned, the name(s) of the Excel file(s) will be
automatically created in the External Files Editor.
If no path is listed for the Excel file, ProModel
will search in the default models directory.

Other External Files
In addition to allowing the user to define external
files, ProModel creates other external files. Pro-
Model automatically creates and/or opens files
depending on the specifications in the model.
Below is a description of the different files Pro-
Model creates (* indicates files that remain open
while the model is running):

Extension Type Description

CSV ASCII Export Data (comma
delimited)

MOD* Binary Model File

RDB Binary Output Database (basic
statistics)

RDT Binary Output Time Series data

RDW Binary Output Reports &
Graphs saved for a
model

SED* Binary Seed File used to store
seed values for each rep-
lication

SFT Binary Shift created when
defining a shift in the
shift editor

TRC* ASCII Trace File

GLB Binary Graphic Library Files

GBM Binary Graphic Bit Map file
created when loading a
model file.

Open Files
Depending on the model specifications, there
may be some occasions where several files need
to be open simultaneously to execute the model.
There is a feature which allows the user to access
up to 255 open files at any time. The [General]
section of the promod.ini file contains the fol-
lowing statement: OpenFiles=n where n is the
number of files between 20 and 255. The default
is 40. To change the number of available open
files, simply edit thepromod.ini file such that
OpenFiles equals the desired number and then
restart ProModel. There is also the option to close
files using the CLOSE statement (see “Close” on
page 458).

266 Chapter 6:
Streams
Streams
A stream is a sequence of independently cycling,
random numbers. Streams are used in conjunc-
tion with distributions. Up to 100 streams may be
used in a model. A stream generates random
numbers between 0 and 1, which in turn are used
to sample from selected distributions. By default,
all streams use seed value #1 and are not reset
between replications if multiple replications are
run. To assign a different starting seed value to a
stream or to cause the seed value to be reset to the
initial seed value between replications, use the
Streams Editor. The Streams Editor is accessed
from the Build menu as shown below.

How to access the streams editor:

1. Select More Elements from the Build menu.

2. Select Streams from the submenu.

Streams Edit Table
The Streams Editor consists of an edit table with
three fields. The fields of the Streams edit table
are explained below.

Stream # The stream number (1 to 100). This
number identifies each stream.

Seed # The seed value (1 to 100). Streams hav-
ing the same seed value generate the same
sequence of random numbers. For more informa-
tion on seed values, see “Using Random Number
Streams” on page 266.

Reset... Set this field to YES if you want the
stream to be reset to the initial seed value for each
model replication. Set this field to NO if you
want the stream to continue where it left off for
subsequent replications.

The Streams Editor pictured above shows five
defined streams. Each stream has a unique seed
value. Streams 1, 2 and 5 will be reset for each
replication, while streams 3 and 4 will continue
where they left off for subsequent replications.

Using Random Number
Streams
One of the most valuable characteristics of simu-
lation is the ability to replicate and isolate proba-
bilistic functions and activities within a system
for specific study. In the real world, events tend
to occur randomly, according to a certain statisti-
cal pattern or distribution. To help you model this
randomness, ProModel uses distributions.

 ProModel 267
User Guide
When you include a distribution (e.g., Normal,
Beta, and Gamma) in your model, ProModel uses
a random number generator to produce a set
sequence or stream of numbers between 0 and 1
(0 <= x < 1) to use in the distribution. Before it
can select any numbers, however, ProModel
requires an initial seed value to identify the point
in the stream at which to begin. Once you specify
a seed value, ProModel “shifts” the random num-
ber selection (in increments of 100,000 numbers)
by that number of positions and starts sampling
values. Since there is only one random number
stream, this will ensure that the selected values
do not overlap. ProModel includes 100 seed val-
ues, and each seed produces a unique set of ran-
dom numbers. If you do not specify an initial
seed value, ProModel will use the stream number
as the seed value (i.e., stream 3 uses seed 3).

Seed 1 Seed 2 Seed 3

}100,000 random numbers
Random Number Stream

When you use a specific seed value (e.g., 17),
ProModel produces a unique sequence of num-
bers to use each time you apply that seed value.
This allows you to maintain the consistency of
some model elements and permit other elements
to vary. (To do this, specify one random number
stream for the set of activities you wish to main-
tain constant, and another random number stream
for all other sets of activities.) In fact, because
each seed value produces the same sequence of
values every time, completely independent model
functions must use their own streams. For exam-
ple, Arrival distributions specified in the Arrival
Module should have a random number stream
used nowhere else in the model. This will prevent
activities that sample random stream values from
inadvertently altering the arrival pattern (i.e., the

activities will not affect the sample values gener-
ated from the arrival distribution).

Please note

The random number generator is a prime modu-
lus multiplicative linear congruential generator.
The C code implementation for most of the ran-
dom variates was written by Stephen Vincent and
based on the algorithms described by Law and
Kelton (see the “Bibliography” on page 606).

Stream Example
The following example shows one reason why
multiple streams are useful.

Two machines, Mach1 and Mach2, are to go
down approximately every 4 hours for servicing.
To model this, the frequency or time between
failures is defined by a normal distribution with a
mean value of 240 minutes and a standard devia-
tion of 15 minutes, N(240,15). (For more infor-
mation on distributions, see “User Defined
Distributions” on page 259). The machines will
go down for 10 minutes. Because no stream is
specified in the normal distribution, ProModel
uses stream number one to generate sample val-
ues for both machines. So if the next two num-
bers in stream number one result in sample values
of 218.37 and 264.69, Mach1 will receive 218.37
and Mach2 will receive 264.69. Therefore, the
two machines will go down at different times,
Mach1 after almost four hours and Mach2 after
somewhat more than four hours.

Suppose, however, that the resource to service
the machines must service them both at the same
time. The machines would have to go down at
the same time. Stream number one will not bring
them down at the same time because stream num-
ber one sends the machine’s distributions two dif-

268 Chapter 6:
Streams
ferent numbers. Using two streams (in the
example below numbered ten and eleven) with
the same initial seed will ensure that the
machines receive the same random number every
time. The two streams have the same starting
seed value so they will produce exactly the same
sequence of random numbers. The first number
of stream ten will be exactly the same as the first
number of stream eleven; the second numbers
will be the same; indeed, every number will be
the same.

The Streams window below shows streams ten
and eleven with the same seed values.

By assigning stream ten to Mach1 and eleven to
Mach2, both machines will go down at exactly
the same time.

This first clock downtime for each machine will
occur at the beginning of the simulation. After
that, the first downtime occurs at 218.37 minutes
for both machines. Defining different seed val-
ues for the streams would produce different
sequences and therefore different downtimes.
Using the same stream number for the clock
downtimes would also produce different values.
But two different streams with the same seed
value will bring both machines down at the same
times.

Note that if a third machine were to use one of the
streams, for example if Mach3 were to use stream
eleven, the two machines would no longer go
down together. Mach1 would use the first value
from stream ten; Mach2 would use the first value
from stream eleven; and Mach3 would use the
second value from stream eleven. The first time
Mach1 and Mach2 went down, they would go
down at the same time because the first number
in streams ten and eleven is the same. But there-
after they would not. The second time they
would go down at different times because Mach1
would receive the second value from stream ten,
Mach2 would receive the third value from stream
eleven, and Mach3 would receive the fourth
value from stream eleven.

Please note

Stream notes:

1. If a stream value is not specified for a distribu-
tion, the stream is assumed to be stream one.
Stream #1 does not automatically reset after each
replication.

2. The stream parameter is always the last
parameter specified in a distribution unless a
location parameter is also specified. See “Distri-
bution Functions” on page 437 for details.

 ProModel 269
User Guide
Material Handling Systems
The following section provides advanced tech-
niques to model Material Handling Systems.

Crane Systems
To implement cranes in ProModel, the Path Net-
work module allows three types of networks:
non-passing, passing, and cranes. From this mod-
ule, you can lay down and orient a crane enve-
lope, define the bridge separation distance, and
define the graphics for rails and bridges in the
bay. Additionally, the Resources module allows
you to define bridge and hoist speeds, and hoist
graphics for one or more cranes operating in the
same bay.

Creating Multi-Bridge Crane
Systems
Modeling multiple cranes operating in the same
bay has never been so easy!
User defined bridge separation distances, exten-
sions to regular dynamic resource usage state-
ments, and a set of new priority rules have been
introduced in order to let you manage conflicting
movements in the same envelope zone.
Crane Envelope The parallelogram-shaped
area represented by a crane type path network,
bounded by two rails and the lines connecting the
endpoints of those rails. The lines connecting the
endpoints of rails are effectively the two extreme
positions of the center-lines of any bridges oper-
ating within the envelope. ProModel uses the end
of one of the rails as the envelope origin to serve
as a reference point for all logical distance calcu-
lations within the envelope.
Bridge Separation The minimum distance
you want to maintain between center-lines of two
neighboring bridges. This distance is not related
to how close a bridge center-line can get to one of
the extreme endpoints of the envelope. Caution:

if bridge B tries to move to a node N that lies very
close to the left end of the envelope, and bridge A
is to the left of bridge B, a run-time error will
occur if the space remaining between node N and
bridge A is less than the bridge separation dis-
tance. To avoid such problems, define the crane
envelope wide enough to allow sufficient space
beyond any serviceable nodes.

Crane Priorities, Preemption &
Bridge Bump-Away
ProModel associates two types of priorities with
the operation of crane resources: (1) resource
request priority, and (2) crane move priority.
Resource Request Priorities Used to
resolve any conflicts that arise between multiple
tasks requesting the same resource at the same
time. This priority scale follows the rules that
regular dynamic resource priorities do (i.e., 10
levels of 100). Use this priority to preempt crane
resources from lower priority tasks to serve
higher priority tasks.
Crane Move Priorities Used for multiple
bridges operating in the same envelope, to decide
which crane bridge has priority over another
while moving. This priority scale is also in the
range [0...999], but does not have any preemption
levels. Any higher value has overriding priority
over a lower value. You can assign priorities to
crane resources temporarily, on a task-by-task
basis via extra parameters in the GET, JOINTLY
GET, USE, and MOVE WITH statements.
Therefore, you can only use priorities for cranes
that are either moving to respond to a resource
request or moving to deliver a part. Moving to
downtime, off-shift or break nodes has the
default (0) move priority. Moving to park has the
lowest move priority (the same as an idle crane).
You can further sub-divide crane move priorities
into three categories:

•Task Move Priority Assigned by the
modeler via parameters passed to resource

270 Chapter 6:
Material Handling Systems
usage statements (GET, MOVE WITH, etc.).
Used as the base move priority for travel to
pick up and travel to deposit.

•Claim Priority If crane A’s bridge is
headed towards its ultimate (task) destina-
tion, the claim priority is equal to the task
move priority of crane A. Otherwise (if crane
A’s bridge is moving under the influence of
crane B), claim priority is equal to the claim
priority of the claim inducer bridge (bridge
B).

•Effective Claim Priority Applies only
to envelopes with three or more cranes. If
multiple crane bridges are moving in the
same direction with overlapping claims, the
effective claim priority of any bridge in the
overlapping region is the maximum of all the
claim priorities of those bridges.

Crane Operations
The operation of cranes in ProModel has been
designed to closely resemble the real-life opera-
tion of cranes. Under most circumstances, you
need not be concerned with how ProModel han-
dles crane movements. The following operational
specifications are intended as a reference only
and are not essential in order to model cranes
using ProModel.

Crane Animation
During a simulation run, entities picked up by a
crane appear graphically on the entity spot for the
hoist. The hoist graphic appears above the entity
graphic and the bridge of the crane appears on top
of the entity and hoist graphics.

Crane Specifications
When you define cranes for your model, consider
the following:

•Crane Graphics In the Resources module,
the selected graphic represents the hoist. You
may define, edit, and size multiple graphics
for the same hoist the same way you create
multiple graphics for other resources.

•Units & Multiple Cranes Crane resources
limit you to one unit. When you define mul-
tiple cranes operating in the same envelope,
define them as separate resources—each
assigned to the same crane network.

•Downtimes In addition to the clock and
usage downtimes you may define for cranes,
you can assign cranes to shifts in the same
way you assign other resources. When a
crane goes down, it moves to the downtime
node specified in the DTs dialog. If you do
not associate a node with the crane down-
time, the crane goes down at its current posi-
tion.

•Specifications Cranes require separate val-
ues for bridge and hoist speed and accelera-
tion. You must enter Speed (Empty), Speed
(Full), and Accelerate and Decelerate values
for bridge movement along the rails and
hoist movement across the bridge. In each
field, the format is Bridge Value, Hoist
Value (e.g., if you enter “150, 20” in the
speed field, the bridge moves at 150 and the
hoist at 20 feet per minute). Although you
must enter speed values, acceleration and
deceleration values are optional (if you leave
them blank, ProModel assumes the crane to
have an infinite acceleration and deceleration
capability. (Hint: this provides better run-
time computational efficiency).

•Crane Searches Define Work and Park
searches in the same way you define
searches for other resources.

•Node Logic Define entry and exit logic for
cranes at nodes in the same way you define
node logic for other resources.

 ProModel 271
User Guide
Handling Zone Claims In Multi-
Crane Envelopes
If a crane is in one of the following states, it will
be referred to as “immovable at a node.” No other
crane will be able to push this crane away,
regardless of its priority.

•Picking up or depositing an entity.
•Being used at a location.
•Having a downtime, off-shift time, or break
time.

Extended Movement Zone The net zone
that it needs to traverse ± bridge separation dis-
tance (± depending on the direction that it will
go).
Before starting to move, any <crane A> attempts
to claim its extended movement zone (zone A)
for the entire movement duration.
ProModel can reject the claim attempt of crane A
for zone A for several reasons:

•If there are immovable cranes in zone A
•If there are any cranes in zone A with move
priorities greater than or equal to1 the move
priority of crane A, if they are going in the
opposite direction, or they are going in the
same direction with conflicting destina-
tions.2

Case Examples of Zone Claims
The following cases illustrate specific situations
with examples:

Case 1

BA B' A'

Bridge B starts moving first, from [B] to [B'] and
claims the zone [B'~B] in the ← direction. Bridge
A wants to move from [A] to [A'] in the opposite
direction. If the move priority of A is less than or
equal to the move priority of B, we let bridge A
start moving towards [B' - bridge separation]
only. If A has a higher move priority, B is
stopped immediately and sent back to [A' +
bridge separation]. In the latter case, A may
queue up behind B.

Case 2

BA B'A'

Bridge B starts moving first, from [B] to [B'],
then bridge A wants to move from [A] to [A'].
Bridge B claims zone [B~B'] in the → direction.
Since bridge A wants to move in the same direc-
tion and their destinations do not conflict (assum-
ing that B'-A' is greater than the bridge
separation), bridge A moves all the way. If B has
already cleared the zone [A~(A' + bridge separa-
tion)] by the time A wants to start moving, A
moves independently. Otherwise, A may queue
up behind B. (If the distance B'-A' is less than the
given bridge separation and the move priority of
A is greater than the move priority of B, bridge A

1. Special case treatment not “>=” but strictly “>” if all
of the following conditions hold: (1) if the bridge
that A is trying to oppose is stationary, (2) unless
crane A is trying to move just to park (if A has a task
or if it is trying to move out of the way of another
bridge), (3) if the one A is trying to push is idle or its
bridge was blocked before reaching its destination.

2. Destination Conflict Test: If sign (B' - A' -
sign(existing claim)*(bridge_separation)) = sign
(existing claim) then not conflicting.

272 Chapter 6:
Material Handling Systems
will push away bridge B, and crane B will not
respond to the request while passing over [B']).

Case 3

BA B' A'A''

Bridge B starts moving first, from [B] to [B'],
then bridge A wants to move from [A] to [A'].
Bridge B claims the zone [B~B'] in the → direc-
tion. Since bridge A wants to move in the same
direction and their destinations do conflict, prior-
ities will be considered. If the move priority of A
is not greater1 than the move priority of B, bridge
A starts moving towards [A'' = B' - bridge separa-
tion] only. Otherwise, A will push B away, and B
will not respond to the request while passing over
[B']. In both cases, A may queue up behind B.

Case 4

BA B'A' CC'

Bridge B starts moving first from [B] to [B'],
claiming zone [B~B'] in the → direction. Bridge
A wants to move from A to A' and starts moving
behind B. Bridge C wants to move in the opposite

direction with a higher move priority than both of
the other bridges. ProModel interrupts bridges A
and B and lays a new course for both bridge B
[B'' = C' - bridge separation] and bridge A [A'' =
B'' - bridge separation]. In this case, B may queue
up behind A, and C behind B.

Case 5

BA

B'
A'

C

C'
((

This is an extension of Case 4. Assume that the
move priorities for crane bridges A, B, and C are
3, 1, and 2 respectively. When bridge C tries to
claim zone [C'~C] in the ← direction, it faces an
“effective priority” of 3 and is unsuccessful in its
original claim, so it starts moving towards [B' +
bridge separation]. Bridge B goes outside the
effect of bridge A in the second part of its move-
ment, [(A' + bridge separation) ~ B'] at time t0.
However, bridge C does not override bridge B
and start moving towards [A' + 2 * bridge separa-
tion] until the first “reclaim trigger event2” after
time t0.
If ProModel rejects the original claim of crane A,
crane A claims the largest available portion of the
original zone, and implements the procedure
described below to move its bridge through the
subset zone. The crane waits until a “reclaim trig-
ger event” occurs, and then repeats the claim
attempt to let its bridge traverse the remaining

1. In this special case, bridge A’s claim priority com-
petes with the task move priority of bridge B. 2. Discussed later in this section.

 ProModel 273
User Guide
distance. The hoist, on the other hand, moves
directly to its relative destination on the bridge,
independent of the bridge zone claim results. In
case of bridge interruption, the hoist does not
stop moving. Therefore, for any particular crane
move, the combined trajectory of hoist and
bridge may change depending on zone availabil-
ity at the time of the claim.
If crane A accepts the claim attempt, all cranes
inside the claimed extended zone bump away at
the time of the claim. This claim also prevents
any other cranes with move priority less than or
equal to the move priority of A from entering the
claimed zone in conflicting directions.

Zone Claim Notes

Zone Claim Notes
1. A crane cannot do a pickup or deposit while

another crane pushes it away, even though
the request might be on its way.

2. When you interrupt a crane bridge and ask it
to make a new claim (or update its claim), its
speed is reset to zero and ProModel re-evalu-
ates its mobility characteristics. ProModel
recalculates the move time with these new
parameters. This rule also applies to bridges
that are moving when a bridge behind them
with a higher priority and a conflicting desti-
nation makes a new claim to go in the same
direction. See Case 3 (when priority of A is
greater than priority of B) for an example.

Treatment of Potential Queue-Up
Situations
For all bridge claims with the potential of having
two bridges queue up after one another (men-
tioned in the example cases above), the following
rule applies:
The acceleration rate (a), maximum speed (s) and
deceleration rate (d) of the following bridge (F)

are compared with the a, s, and d of the leading
bridge (L). If all of the following conditions are
true, bridge F moves independent of bridge L.

Conditions for No Queue-Up
1. aF <= aL The following bridge cannot accel-

erate faster than the leading bridge.
2. sF <= sL The following bridge’s maximum

speed cannot be greater than the leading
bridge.

3. dF >= dL The following bridge can deceler-
ate equally or faster than the leading bridge.

If any one of the above conditions fail, bridge F
moves at the same speed as bridge L, maintaining
the distance that existed between them at the time
F started moving.

Please note

Condition 3 usually creates a deviation from the
typical real life situation, but it is necessary to
avoid time consuming computations that can
adversely affect the run-time performance of
models with crane resources. To avoid unrealis-
tic queue-ups when modeling multiple bridges
with different mobility characteristics in the same
crane envelope, make either no bridge decelera-
tion entry (infinite deceleration), or use the same
overall average deceleration rate for all crane
bridges in that envelope.

274 Chapter 6:
Material Handling Systems
Bridge Motion after Queue-Up

Bridge
Separation

Qup
distance

distance
traveled
by bridges

time

A mimics B A goes with B’s
(former) average speed

B accel. B max. B decel.
A

B

If bridge A is queued up behind bridge B, bridge
A goes through up to two stages of movement.
The first stage occurs throughout the movement
of bridge B. Bridge A mimics bridge B’s motion,
maintaining its original distance from bridge B.
The second stage occurs after bridge B stops.
Bridge A continues traveling with the former
average speed of bridge B until it reaches its des-
tination.
If bridge B is moving to accomplish its own task
(as opposed to just moving out of A’s zone), then
bridge A might stop earlier, without going
through the second stage. In this case, the total
traveling time for bridge A is calculated as if
bridge A were traveling with bridge B’s average
speed.
When a bridge arrives at its destination, it trig-
gers a chain queue-up re-evaluation that pene-
trates the crane envelope in the opposite direction
that the stopped bridge was moving. This chain
re-evaluation handles cases in which there were
multiple bridges queued up behind the stopped
bridge.

Moving Idle Cranes can Respond to
Resource Requests
A crane can be idle and moving at the same time
(moving to park or being pushed away by

another). Independent of its current position and
movement direction, the crane still has the capa-
bility to respond to resource requests coming
from anywhere in the envelope. If allocated to a
task with high enough travel-to-pickup move pri-
ority, the crane may reverse direction or termi-
nate its move early, bumping other crane bridges
on its way.
Whenever a crane bridge changes its claim, it
checks to see if there are any bridges behind it
that are going in the same direction with overlap-
ping claims. If there are any, the newly claiming
crane triggers a chain queue-up re-evaluation
towards the following cranes. The following
example demonstrates this case.

BA B'A'

B''2 B''1

At time t0, crane A is called for a task and starts
moving to [A'] with move priority mpA, pushing
idle bridge B to [B' = A' + bridge separation]. At
time t1 (bridge A and B are still moving), a
request for crane B comes from [B" (1 or 2)] with
move priority mpB. Bridge B is allocated to the
task immediately since it is available at the time.
If the new destination of bridge B is [B"1], the
new claim of bridge B does not conflict with the
existing claim of bridge A, so the move priorities
are not significant. ProModel re-evaluates all
motion values for crane B (acceleration, deceler-
ation, empty and full speeds for both the hoist
and the bridge) and crane B starts moving to its
new destination. If the bridge motion expressions
for crane B have changed their values between t0
and t1, the queue-up status between bridges B
and A (and any others behind A) may change, so

 ProModel 275
User Guide
ProModel performs a chain queue-up re-evalua-
tion.
If the new destination of bridge B is [B"2], the
new claim of bridge B conflicts with the existing
claim of bridge A, so ProModel considers the
move priorities:

•If mpB <= mpA, then B does not have
enough priority to stop A before A gets to its
destination. Bridge B will have to go on
moving until [B'] and wait until it can claim
the region [B"2 ~ B'] in the → direction.

•If mpB > mpA, then B does have overriding
priority over A. Bridge B stops bridge A at
[B"2 - bridge separation], starting a chain
move termination which tells bridge A to
stop any other followers with the appropriate
bridge separation distances between each. In
this case, bridge A (and other possible fol-
lowers) will have to wait until the next
reclaim trigger event to attempt reaching
their original destinations.

Reclaim Trigger Events
Unsuccessful claims of all crane bridges in an
envelope are re-attempted when a reclaim trigger
event occurs in that envelope. The following
events are considered to be triggers for claim re-
evaluations in the related envelope:

•The duration of a USE <crane> statement
expires.

•You free a crane using the FREE statement.
•A crane completes a deposit (unless you
specify the KEEP option).

•A crane completes a pickup and the crane is
about to start moving to deliver.

•A crane downtime ends.
•You preempt a crane resource.
•A bridge arrives at its task destination
(before elapsing pickup/deposit time).

•There are no moving task bridges left (for
envelopes with 3 or more cranes only).

In the first six cases, a crane changes state from
“immovable” to a finite move priority. The sev-
enth case may change the “effective move priori-
ties” of other cranes. ProModel requires the
eighth case for envelopes with three or more
bridges with overlapping operation zones: It
ensures that two or more unsatisfied, opposing
claims with the same move priority will resolve
their conflict based on earlier task assignment
time instead of locking up the crane system.
Hence, all of the above cases create a potential to
realize previously unsuccessful claims.
The reclaim trigger events for each envelope
echo in the trace together with the triggering rea-
son for model debugging purposes. The results of
reclaim attempts for each crane resource and its
effects on other crane resources in the same enve-
lope are also displayed.

Other Crane Operation Rules
1. If an entity currently possesses a crane, all

move logic for the entity must use a MOVE
WITH statement (until you free the crane)—
the entity cannot move without the crane.

2. Although an entity cannot possess more than
one crane at a time, the entity may possess a
crane and a resource of another type.

3. If a crane is in one of the following states,
another crane cannot push it away.

a) Picking up or depositing an entity.
b) Being used at a location.
c) Experiencing a downtime, off-shift

time, or break time.
4. The hoist moves to its relative destination on

the bridge independent of the bridge zone
claim attempt outcomes. The hoist does not
stop for bridge interruption so, for any par-
ticular crane move, the combined trajectory
of hoist and bridge may change depending
on zone availability at the time of the claim.

5. When a crane pushes away an idle crane, the
idle crane comes under the control of the

276 Chapter 6:
Material Handling Systems
work and park search lists defined for the
node closest to its bridge.

Crane Operations Notes
ProModel allows definition of resource points for
crane resources on envelope nodes to achieve the
three dimensional look for “lowering the hoist”
upon arriving at a node. Since cranes can only
have one unit, only the first resource point for
any crane at any node is meaningful. Also, Pro-
Model only uses the resource points if the crane
resource arrives at the node to perform a task. In
other words, the hoist does not lower if the crane
arrives at a node to park or just ends up there after
a bump.
In general, once ProModel makes a match
between a resource request and a resource of the
requested type, the resource is allocated for that
job and the simulation engine does not go on
looking for other matches that can actually reach
to the requester sooner. Since cranes blocking
other crane resources is a common phenomenon
in multi-bridge envelopes, extra care should be
used while designing the active operation zones
and resource request logic in such models.

Nodes, Work, and Park Searches
ProModel “registers” all cranes to their home
nodes at the beginning of a simulation run. When
a crane starts to move, ProModel erases registra-
tion, and re-establishes it when the crane stops,
according to the following rules:
1. Cranes assigned to a task (pick up, drop off,

down) remain unregistered throughout inter-
mediate stops and register to the task desti-
nation node upon arrival.

2. Idle cranes that are bumped away, or cranes
that were unsuccessful in claiming the entire
bridge region to go parking register them-
selves to the node closest to their bridge
when they stop. If there are multiple nodes
closest to the bridge, ties are broken by the

minimum distance to the hoist and then the
order of appearance in the nodes edit table.
If the hoist is still moving at the time the
bridge stops, the registry procedure executes
by considering the destination of the hoist.

Please note

Only users can instruct cranes to park on nodes.
However, as a result of bump-aways, a crane can
end up standing still at positions that do not nec-
essarily correspond to nodes. In any case, Pro-
Model registers an idle stationary crane to a
node and places it under the control of work and
park searches of that node.

Cranes follow the same rules as regular dynamic
resources while searching for assignments
(returning to preempted jobs, exclusive & non-
exclusive work searches, requests coming from
nodes not included in the work search, etc.).
There are some additional steps to handle interac-
tions with other cranes operating in the same
envelope. Upon completion of its task, a crane
goes through these extra steps:
1. Lets other cranes in the same envelope re-

attempt their claims, possibly generating an
induced claim on its bridge.

2. Even though other cranes might bump away
its bridge, the crane executes the work search
defined for it at its current node. (If requests
are waiting at different locations of the same
work search record, ProModel takes the
resource request priorities into consider-
ation.)

3. If it was not allocated to a task or bumped
away, the crane executes the park search
defined for it at its current node, or attempts
going home if return home is checked.

 ProModel 277
User Guide
Please note

A crane bridge moving to park cannot bump
other idle bridges out of its way. In such a case,
the bridge goes as far as it can towards its desti-
nation and registers itself to the closest node
upon stopping (using the rules discussed above).

Crane Resource Statistics
The statistics reported for cranes are very similar
to regular dynamic resource statistics. The fol-
lowing definitions highlight the differences in the
interpretations.
In Use Includes the following states:

•Stationary use at a location via GET,
JOINTLY GET, and USE statements.

•Gross move time while delivering — actu-
ally carrying an entity from one location to
another.

•Pickup and deposit times before and after the
move to deliver.

Travel To Use Is the gross move time to start
being used — traveling to respond to a request
for either stationary use or use to pickup and
deliver an entity to another location.
Gross Move Time May include the follow-
ing times:

•Moving towards the actual destination.
•Possibly moving away from the destination,
when bumped away by a higher priority
bridge in the same envelope.

•Stationary blockage times during which the
bridge is waiting for a higher move priority
bridge in the same envelope to lower its
move priority.

Blocked Time Tally blocked time by sub-
tracting the internally computed, hypothetical net
traveling time from the actual incurred gross
move time. ProModel defines the net time as the

time a crane would have taken to get to its desti-
nation if it were the only bridge in its envelope.

Please note

The first component of gross travel time (moving
towards the actual destination) may be greater
than the net travel time, since it may include
going back towards the destination after another
crane bumps it away. It may also involve devia-
tions from the bridge’s original motion values
when queued-up behind slower bridges.

Special Case—Blocked Time
Accrual for Moving to Park
Remember that an idle crane registers itself to the
closest node whenever its bridge stops. If the
hoist is still moving, ProModel uses the destina-
tion of the hoist to break any ties between nodes
that are equidistant to the bridge position.
In case of an unsuccessful claim attempt to move
to park, the crane bridge needs to stop before
reaching the instructed park node, and ProModel
ignores the hoist travel for statistics purposes.
The “travel to park” statistic terminates at the
time the bridge stops, not when bridge or hoist
stop time reaches its maximum value. In this
case, the net moving time to park computes as the
bridge move time from current position to the
endpoint of the claim, using original bridge
motion values for the crane resource. Blocked
time can accrue if this bridge queues up after a
slower bridge that is already moving (remember
that a crane moving to park cannot bump another
crane).

Conveyors
A conveyor is any moving track, belt, chain, or
roller which transports parts from one location to

278 Chapter 6:
Material Handling Systems
another. This section will help you better under-
stand conveyors and how to model them using
ProModel.
ProModel determines the capacity of a conveyor
by its speed and load spacing rather than a stated
capacity. Specifically, capacity is a function of
the minimum allowable interload spacing on a
conveyor (which is the length of a queue position
in the case of accumulation conveyors) and its
length. It may be desirable, however, to impose a
limit to the number of loads permitted on the con-
veyor at any one time.
Conveyors usually do not pick up and drop off
loads as in the case of lift trucks, AGVS, and
cranes. You must place loads onto and remove
them from conveyors.
Depending on the nature of the conveyor and its
operation, modeling a conveyor can be straight-
forward or complex. For single conveyor sec-
tions, modeling is very simple. Conveyor
networks, on the other hand, give rise to several
complexities (recirculating, merging, etc.) that
become more difficult to model.

Conveyor Simulation Benefits
Simulating your conveyor system will help you
address design and operational issues, answering
the following questions:

•What is the minimum conveyor speed that
still meets rate requirements?

•What is the load rate capacity of the con-
veyor?

•What is the load delivery time for different
activity levels?

•How much queuing do accumulation con-
veyors need?

•How many carriers do trolley or power-and-
free conveyors need?

•What is the optimum number of pallets to
maximize productivity in a recirculating
environment?

Conveyor Types
You may represent conveyors as one continuous
span of randomly spaced parts (e.g., belt con-
veyor) or as intermittent spaces or carriers
located at fixed intervals (i.e., trolley conveyor).

Accumulating & Non-Accumulating
In addition to continuous or intermittent convey-
ors, some conveyors permit loads to accumulate
or queue if conditions impede forward motion
progress. ProModel refers to these conveyors as
accumulating conveyors. Other conveyors pro-
vide no queuing and halt all activity if forward
progress of the leading part or load stops. Pro-
Model refers to these types of conveyors as non-
accumulating conveyors.
The following figure illustrates how entities can
continue to accumulate after the leading load
stops on an accumulating conveyor. How a non-
accumulating conveyor can accept one additional
entity if the leading entity stops, however it is
unable to advance any further since the entire
conveyor stopped.

The different combination of continuous or inter-
mittent conveyors and transport or accumulation
conveyors result in the following four different
kinds of conveyors that ProModel is capable of
modeling.

 ProModel 279
User Guide
Type Example

Continuous, Non-
Accumulating

Belt, chain

Intermittent, Non-
Accumulating

Tray, trolley

Continuous,
Accumulating

Roller

Intermittent,
Accumulating

Power-and-free,
towline

For best results, you should model carriers or part
holding devices on intermittent, accumulating
conveyors as though the devices were entities
waiting for you to load and unload other entities
to and from them (see "Load" is ProModel User
Guide) as you move parts. An alternative but
similar method is to use a JOIN statement and
then specify two routings when you want the part
removed (see Example E in "Modeling Conveyor
Systems" in the next section). Yet another way of
modeling parts with carriers on a conveyor, is to
simply set a part attribute equal to a particular
value if the part is on a carrier. If the part is not on
a carrier, assign a different value to the same
attribute. Operations may occur at either the
beginning or end of a conveyor as shown here.

Single Section Conveyors
Conveyors used for simple queuing or buffering
often consist of a single stretch or section of con-
veyor. Loads enter at one end and exit at the other
end. Load spacing is generally random. These
types of conveyors are generally quite easy to
model. The modeler merely defines the length
and speed and states whether the conveyor is an
accumulating or non-accumulating conveyor.

Conveyor Networks
A conveyor network consists of two or more sec-
tions that are connected together to enable part
merging, diverting, and recirculating. In such
instances, a conveyor may have one or more
entry points and one or more exit points. Further-
more, part entry and exit may not always happen
at the beginning or end of the conveyor. In Pro-
Model, loads or entities must always enter at the
beginning and exit at the end of conveyor net-
works. To model merging or branching in the
middle of the conveyor, break the conveyor into
smaller sections.

Modeling Conveyor Systems
A conveyor system is a combination of one or
more types of conveyors which interact to move
parts. Such a system may include branching,
merging, and looping. The process of dividing
conveyors into logical sections is fairly straight-
forward if you understand what constitutes a con-
veyor section.
For modeling purposes, a conveyor section is
defined as any independently driven segment of
conveyor of the same type. Conveyor turns are
irrelevant as long as the conveyor remains
unchanged and both are actuated or stopped
together.
In ProModel, an accumulating conveyor section
must end at the point where parts are permitted to

280 Chapter 6:
Material Handling Systems
accumulate or back up. This generally occurs at
a transfer point or process location.

Modeling Conveyors
While not essential, it is visually more effective
to draw conveyors to scale on the layout. You
should also size entities traveling on a conveyor
to scale when you create them. Setting the length
of a conveyor different from the scale length or
conveying entities that have a length or width that
is not to scale will result in the appearance of load
overlapping or excessive load spacing. The
underlying logic and simulation is still valid,
regardless of whether the graphics are to scale.
Loads may appear to jump when transferring
from the end of one conveyor to another con-
veyor. This is a result of ProModel not allowing
a load to transfer onto a conveyor until there is
room for the load. Including a transfer time in
the Move Logic column of the Routing edit table
can result in smooth movement between con-
veyor sections. Defining a variable called
Transfer_Time and using that variable rather than
entering the actual time allows for experimenta-
tion with various conveyor speeds with minimal
modeling changes.
Clock precision is also important. Note that
movement of one foot at 40 feet per minute will
take .025 minutes. If clock precision is set at .1
minutes, truncation will result in zero time. Make
sure you check your model for the correct clock
precision. For most conveyors, a clock precision
of .001 is adequate. ProModel may require
greater precision for high-speed conveyors where
speeds are greater than 200 fpm.
Modeling conveyors in ProModel is quite easy.
Select the conveyor icon in the Locations Graph-
ics window and place the beginning and ending
points of the conveyor using the mouse. Clicking
the right mouse button will end the conveyor.
Left-click to add or delete a joint and allow the
conveyor to bend.

Some users prefer to display the grid and select
the Snap to Grid option in the View menu. Others
will leave Snap to Grid off. You may find that the
precise positioning of a conveyor is easier when
you turn Snap to Grid off and set the Zoom suffi-
ciently high. When you need to change the type
of conveyor to accumulating, double-click on the
conveyor icon in the layout, select the Conveyor
Options button, and select Accumulating from
the Conveyor Options dialog.
The following six examples show various ways
of modeling conveyors:
Example A Routes one or more parts from
one or more non-conveyor locations to any con-
veyor location.

E l A
Example B Routes one or more parts from
any conveyor location to one or more non-con-
veyor locations.

Example C Routes single parts from any con-
veyor location to one or more other conveyor
locations.

 ProModel 281
User Guide
Example D Joins one or more parts from one
or more non-conveyor locations to another trans-
porting entity (e.g., a pallet or carrier) at any con-
veyor location.

Example E Accumulates multiple parts com-
ing from one or more non-conveyor locations
onto a conveyor location.

Example F Splits parts at a conveyor location
sending one or more parts to a non-conveyor
location and a single part (e.g., a pallet or carrier)
onto the conveyor.

Automated Guided Vehicle
Systems
An automated guided vehicle system (AGVS) is
a path network along which computer-controlled,
driverless vehicles transport loads. One of the
modeling requirements of AGVS is to accurately
describe the method for controlling traffic. You
can usually accomplish this in one of two ways:

•Zone blocking
•On-board vehicle sensing

Zone Blocking The most common method of
traffic control, it involves placing control points
along the guide path. Each point usually allows
only one vehicle to access it any one time, thus
blocking any other vehicle from entering any seg-
ment of the path connected to that point. Once the
vehicle leaves a control point to travel to the next
point on the path, any vehicle waiting for access
to the freed control point can resume travel.
On-Board Vehicle Sensing Works by hav-
ing a sensor on-board the vehicle that detects the
presence of a vehicle ahead of it and stops until it
detects that the vehicle ahead of it has moved.

Modeling AGVS
Modeling an AGVS is very similar to modeling
an industrial vehicle, such as a lift truck, (which it
is in a sense) except you control the operation
more and there exists less freedom of movement.
Paths are generally unidirectional and do not
allow vehicle passing.
One of the challenges in modeling an AGVS is
finding the shortest routes between any two stops
in a system. ProModel provides built-in capabil-
ity to automatically determine the shortest routes
between points in a complex network.

282 Chapter 6:
Material Handling Systems
AGVS Simulation Benefits
Simulating your AGV system will help you
address design and operational issues, answering
the following questions:

•What is the best path layout to minimize
travel time?

•Where are the potential bottleneck areas?
•How many vehicles do you need to meet
activity requirements?

•What are the best scheduled maintenance/
recharging strategies?

•Which task assignment rules maximize vehi-
cle utilization?

•What is the best idle vehicle deployment to
minimize response time?

•Is there any possibility of deadlocks?
•Is there any possibility of collisions?

Manual Material Handling Sys-
tems
Manual material handling systems (MMHS) are
probably the most common systems for handling,
moving, storing, retrieving, and managing mate-
rials. ProModel easily allows you to model man-
ual labor. With shifts, breaks, and downtimes
(illness, training, etc.), model people as
resources.
Whether carrying parts from one station to
another or stocking shelves in a grocery store,
people can be modeled as resources to do just
about anything in ProModel. Such resources are
dynamic and move along assigned path networks.
Since people can think, you can model them very
much like automated guided vehicles with on-
board vehicle sensing.

MMHS Simulation Benefits
Simulating your manual labor material handling
system will help you address design and opera-
tional issues, answering the following questions:

•What is the best path layout to minimize
travel time?

•Where are the potential bottleneck areas?
•How many people do you need to meet
activity requirements?

•What are the best shift and break schedule
strategies?

•Which task assignment rules maximize utili-
zation?

•What is the best idle person deployment that
minimizes response time?

Industrial Vehicles
Industrial vehicles include all push or powered
carts and vehicles that generally have free move-
ment. Utilize powered vehicles such as lift trucks
for medium distance movement of batched parts
in a container or pallet. For short moves, use
manual or semi-powered carts. Single load trans-
porters are capable of moving only one load at a
time from one location to another. Such devices
are fairly straightforward to model because they
involve only a single resource and a single desti-
nation for each move.
Multiple load transporters, on the other hand, can
move more than one load at a time from one or
more sources to one or more destinations. Defin-
ing capacity and operation for multiple load
transporters can be extremely difficult since there
may be special rules defining when to retrieve
additional loads and when to deliver the loads
already on board.

Modeling Industrial Vehicles
Modeling an industrial vehicle involves modeling
a resource that moves along a path network.
Paths are typically open aisles in which bi-direc-
tional movement is possible and passing is per-
mitted. You may also need to define deployment
strategies (work searches, idle vehicle parking,
etc.).

 ProModel 283
User Guide
Since people generally operate industrial vehi-
cles, they take breaks and may be available only
during certain shifts. So in addition to modeling
the vehicle, you may need to model an operator
that takes breaks and works on shifts or you may
just want to assign shifts and breaks to the vehicle
resource itself, in effect, modeling the vehicle
and the operator as one resource.

Industrial Vehicle Simulation
Benefits
Simulating your industrial vehicles will help you
address design and operational issues, answering
the following questions:

•What is the required number of vehicles to
handle the required activity?

•What is the best deployment of vehicles to
maximize utilization?

•What is the best deployment of vehicles to
minimize response time?

Automated Storage/Retrieval
Systems
An automated storage/retrieval system (AS/RS)
is “a combination of equipment and controls
which handles, stores, and retrieves materials
with precision, accuracy, and speed under a
defined degree of automation” (The Material
Handling Institute 1977). The goal of an AS/RS
is to provide random, high density storage with
quick load access, all under computer control.

Modeling AS/RSs
At a simple level, an AS/RS move time may be
modeled by taking a time from a probability dis-
tribution that approximates the time to store or
retrieve a load. More precise modeling incorpo-
rates the actual crane (horizontal) and lift (verti-
cal) speeds. Each movement usually has a
different speed and distance to travel which

means that movement along one axis is complete
before movement along the other axis begins.
From a modeling standpoint, it is usually only
necessary to calculate and model the longest
move time.

In modeling AS/RS, the storage capacity is usu-
ally not a consideration and the actual inventory
of the system is not modeled. It would require
lots of overhead to model the complete inventory
in a rack with 60,000 pallet locations. Since it is
primarily only the activity that is of interest in the
simulation, actual inventory is ignored. In fact, it
is usually not even necessary to model specific
stock keeping units (SKUs) being stored or
retrieved, but only distinguish between load type
insofar as it affects routing and subsequent opera-
tions.

Modeling an AS/RS as a Vertical
Bridge Crane
One way to model an AS/RS with greater accu-
racy is to use the bridge crane construct. An AS/
RS is really just a vertical crane with the same
characteristics as a bridge crane.

AS/RS Simulation Benefits
Simulating your AS/RS will help you address
design and operational issues, answering the fol-
lowing questions:

•How many aisles do you need to handle the
required activity?

•What is the best sequence of stores and
retrievals to maximize throughput?

•What is the best stationing of empty S/R
machines to minimize response time?

284 Chapter 6:
Modeling Tips
Modeling Tips
The following section provides advanced Model-
ing Tips.

Using Entity Attributes
Entity attributes are a powerful construct that
enable a user to “tag” entities with characteristics
to distinguish them from other entities of the
same name.
Entity attributes are place holders associated with
individual entities which usually contain infor-
mation about that entity. Attributes may contain
integers or real numbers. Unlike variables,
attributes are not global. To define attributes, use
the Attributes module found under the More Ele-
ments option of the Build menu.
One use of an entity attribute is to represent a
processing time. This is especially useful when
you base processing times at a location on some
characteristic other than entity type, such as size
or condition.
Suppose several types of tires enter a machining
center that places the steel belts on the tire. The
processing time of the tire increases as the diame-
ter of the tire increases. The following example
shows that for a tire entering a machining loca-
tion, the processing time uses the value of the
attribute “Proc_time.” You can make the attribute
assignment in the “Logic” field of the Arrivals
module.

In this example, ProModel attaches the attribute
“Proc_time” (short for process time) to the entity,
tire, which contains a value representing the pro-

cess time at Machine_1. You can assign a value
to “Proc_time” in the Operation field or, as men-
tioned above, in the Logic field in the Arrivals
module. The latter allows you to assign a value to
the attribute for each entity as they arrive in the
system.
When using attributes instead of operation times,
ProModel substitutes the value assigned to the
attribute directly into the Operation field. So, if
“Proc_time=4.5” were your attribute assignment
and the default units for time were in minutes, the
resulting operation time would be 4.5 minutes.
You may also use attributes to determine the
routing of an entity. Note that the Routing Rule
dialog offers a “User Condition” routing rule. In
this field, you can enter an expression that evalu-
ates the value of an attribute for the entity cur-
rently at that location. Hence, ProModel selects
the routing destination based on the attribute.

In this example, an entity attribute called
“Inspected” has a value of zero or one. For unin-

 ProModel 285
User Guide
spected tires, Inspected=0. For inspected tires,
Inspected=1. Set the attribute value equal to 1 in
the Operation field of the Inspection location to
indicate an inspected tire.
At some other location in the model, ProModel
makes a routing decision based the tire’s inspec-
tion status. The example above shows that the
entity, tire, will route to either Inspect or
Machine_2 based on the attribute value.
Another use for entity attributes is for assigning
entity characteristics such as number of times
reworked, color, model type, lot size, order num-
ber, etc. You may do this to reduce the number
of system entities defined.
In the following example, to show that you
reworked a casting, each entity that goes through
the location Rework has its “Reworked” attribute
set equal to 1.

You may assign values to entity attributes in the
Operation field in the Processing edit table, the
Logic field in the Arrivals edit table, and the
Move Logic in the Routing edit table.

Customizing Graphics
Background graphics can enhance the look of
your models and provide valuable visual infor-
mation to convey meaning and lend credibility to
your models. Several file types can be imported
from various sources including CAD drawings.

How to Import a background
graphic:

1. Choose Background Graphics from the Build
menu.

2. Select Front of Grid or Behind Grid.

3. Choose Import Graphic from the Edit menu.

Front of Grid When the grid is on, the grid
lines will not cover or obstruct the imported
graphic.
Behind Grid The imported graphic will be
behind the grid lines when the grid is on.
You may paste any *.BMP or *.WMF image cop-
ied to the Windows clipboard on the Layout by
choosing Paste BMP or Paste WMF from the Edit
menu.
Once you select Import Graphic from the Edit
menu and select the desired file and type, Pro-
Model imports the image into the layout. Once
this procedure is complete, you may select or
activate the graphic by clicking with the left
mouse button on the graphic. You may then drag
the mouse to move the graphic to the desired
position on the layout. You may stretch or com-
press the graphic to the size you desire using any
of its four sizing handles.
ProModel allows you to import *.BMP, *.WMF,
*.GIF, and *.PCX file types. BMPs and WMFs
can also be copied to the clipboard from other
applications and pasted directly into the back-

286 Chapter 6:
Modeling Tips
ground. To import a CAD drawing, you must
save it to one of the file formats described above.

Batching & Unbatching Entities
Batching refers to congregating or consolidating
multiple entities of the same or different type for
processing or movement purposes. Batching
may be either temporary or permanent. For tem-
porary batching, use the GROUP statement. For
permanent batching, use the COMBINE state-
ment.

Temporary Batching Using
GROUP/UNGROUP
The GROUP statement allows you to group enti-
ties together and ungroup them at a later time.
You may group entities by individual entity type
by defining a process record for the type to
group, or group them irrespective of entity type
by defining an ALL process record. To combine
multiple entity types in which you must control
the quantity of each type requires controlling the
routing which sends parts to the grouping loca-
tion. ProModel maintains all of the identities and
attributes of the grouped entities and allows them
to remain with the individual entities after an
UNGROUP command.
To illustrate how GROUP/UNGROUP works,
suppose we want to consolidate 20 incoming
entities into a group called Batch. If the current
location performs no additional operation steps
once you group the entities, you can simply use
the statement “GROUP 20” to group the 20 enti-
ties and then specify an output of 1 Batch in the
routing. If, on the other hand, the current location
performs additional operation steps after the
grouping occurs, use the statement “Group 20 as
Batch” and define no output routing for the
grouped entities. Instead, the entities become a
new entity called “Batch” that needs a process

record defined afterwards for the same location
where you batched them.

Once you accomplish the purpose for which you
grouped the entities, such as moving them, you
can unbatch the entities using the UNGROUP
statement as shown next. Note that after the
ungrouping takes place, you must define pro-
cesses for each potential entity that could have
been in the group (alternatively you could define
an ALL process record).

COMBINE Statement
ProModel uses the COMBINE statement to accu-
mulate and consolidate a specified quantity of
entities into a single entity, optionally with a dif-
ferent name. The entities may be the same type of
entity or they may be different. Combined enti-
ties lose their identities and attributes and you
cannot ungroup them later. When defining the

 ProModel 287
User Guide
location, the location capacity where you use the
COMBINE statement should be at least as large
as the combined quantity. The following shows
the correct syntax for combining 5 Castings into a
single entity called Pallet (the location, Out,
should have a capacity of at least 5).

LOAD/UNLOAD Statements
Another method of batching and unbatching
involves the LOAD and UNLOAD statements.
As with the GROUP statement, ProModel main-
tains the identities and attributes of the batched
entities. Therefore, when you use the UNLOAD
statement, each entity still has its attribute assign-
ments.
The difference between LOAD and GROUP is
that LOAD requires a “base” entity on which you
load other entities that might represent a pallet or
container. Also, the entities you are going to load,
travel to the loading location on an “If load
request” routing rule.
In the following example, four Gears are loaded
onto a pallet. Pallet is the entity which issues the
LOAD statement. In addition, the example
includes a time element (LOAD 4 in 10 min).
This means “load 4 gears or wait 10 minutes,
whichever occurs first.” If after 10 minutes only
3 gears arrive, the entity loaded with the 3 gears
continues.

Note that the loaded entity, Gear, has “LOAD” in
the Routing Rule field as shown here. This tells
ProModel that the gear only goes to Loc2 when a
Load command requests it.

Since the example does not specify an entity type
as part of the LOAD statement, ProModel will
load entity type waiting for the LOAD request.
To control which entity types the model loads,
use the “IFF” option with the LOAD statement
(e.g., LOAD 4 IFF Entity()=gear).
Once the batch moves to its destination, the
model uses the UNLOAD statement to break it
into individual components (Gear and Pallet).
You must define a routing for the entity Gear
after the UNLOAD takes place. Typical uses for
LOAD/UNLOAD are palletizing operations,
AGV systems, and AS/RS systems.

288 Chapter 6:
Modeling Tips
ACCUM Statement
The ACCUM statement is short for “accumu-
late.” Its use is slightly different than the GROUP
and LOAD statements. ACCUM does not “batch
together” entities, but rather holds entities at a
location until a certain number accumulate. It
behaves much like a gate restricting entities until
a certain number arrive at the location. After the
required number accumulate, ProModel releases
them for downstream processing. This allows
you to model a certain type of batching which
involves simply the accumulation of parts and
their subsequent release—all at a single location.
When using the ACCUM statement, make sure
the capacity of the location where you are using
the ACCUM statement is at least as large as the
amount accumulating.

Modeling Priorities
Priorities are an important part of modeling any
system. They range from determining which
location has priority for processing parts to
choosing the appropriate resource. Priorities
allow you to determine the order in which events
occur in the simulation. The three most common
uses of priorities deal with choosing processing
destinations, selecting resources, and prioritizing
downtimes.

Choosing a Processing
Destination
When one downstream destination exists and
there are two or more upstream entities compet-
ing to get there, you can use priorities. In the fol-
lowing example, two entities at different
locations are both trying to get to Process C.

If you want the entity coming from Process B to
have priority and go to Process C first, define a
priority in the destination field for the routing of
Process B. In the following example, we entered
a priority of 10 for the routing of the entity Cast-
ing at the location Process_B.

How to enter a priority for a destina-
tion:

Enter a priority value directly in the destination
field, making sure there is a comma separating
the destination and priority.

or...

Click the Destination... button and enter the prior-
ity in the appropriate field.

Selecting Resources
Similar to the previous example, this type of pri-
oritizing refers to which of two or more pro-

 ProModel 289
User Guide
cesses, requesting the same resource will have
priority in capturing the resource. In the Opera-
tion field, in conjunction with the USE or GET
statements, the process with the higher priority
number gets the resource first.

Downtimes and Preemption
ProModel uses priorities in conjunction with
resource or location downtimes to determine
which defined downtime takes priority. Down-
times with priorities that are 99 or less do not
interrupt or “preempt” the activity, but begin
after the current process completes. Downtimes
with a priority of 100 or higher preempt the cur-
rent activity. After the downtime, the activity
resumes from where it left off.

Displaying Statistics On Screen
Effective use of statistics lends meaning and
credibility to simulation models. This section is
designed to show ways of displaying statistics on
screen while the simulation is running. It also
provides examples you can incorporate into any
model.
Displaying on-screen statistics is valuable for
adding model clarity as well as providing a way
to keep track of what is happening in the model.
The technique used for displaying statistics is to
define variables within your model, perform cer-
tain functions on those variables (e.g., addition,
subtraction, etc.), and then display those vari-
ables on the screen.
ProModel defines variables as symbols (e.g., x, y,
and var1) that hold numeric values. They are
defined in the Variables edit table. When defin-
ing variables, you must include the following
information:

•Name (may be alphanumeric combination)
•Type (real or integer)
•Initial value (may be any value)

After defining a variable, you may display it any-
where on the layout screen by simply clicking
with your mouse in the desired position with the
variable highlighted in the edit table.

How to show system throughput on
the screen:

1. Define the variable “thruput.”

2. Display the variable on the screen.

3. In the processing edit table, increment the
variable by one each time an entity leaves the
system.

Another common, on-screen statistic is work in
process (WIP). To show this statistic on the
screen, follow the first two steps above. To accu-
rately indicate the WIP in your model, increment
a variable as entities enter the system and use the
decrement statement as they exit the system.

How to display the total system time
for entities:

1. Assign the simulation clock time to an entity
attribute at the beginning of your simulation.

2. Subtract that attribute from the current clock
time at the ending location and assign it to a
variable you can display.

For example, to display total system time for
entities in the system, define a variable and an
attribute. The entity attribute, Input_Time,
records the time an entity entered the system.
The variable, Sys_Time, records the elapsed time
each entity spent in the system (clock-input
time). By displaying the variable on the layout,

290 Chapter 6:
Modeling Tips
you will have a dynamic value showing system
time of the exiting entity.

Creating Pull Systems

Types of Pull Systems
A pull system is a system in which locations pro-
duce parts only on downstream demand. There
are two types of pull systems:

•those based on limited buffer or queue sizes.
•those based on more distant “downstream”
demand.

The first method, that of limited buffer sizes, is
quite easily to model using ProModel. By simply
defining limited capacity locations, a preceding
location will not send parts until capacity is avail-
able. This method works fine for most pull sys-
tems. The second method, triggering part
movement, based on more distant downstream
demand requires use of the SEND statement to
trigger part movement.
There are additional ways to model pull systems
using ProModel. As you review the modeling
requirements of your own pull system, you
should verify that these constructs will satisfy
your needs.
This section shows how to use the SEND state-
ment to model a pull system. The diagram below
shows the pull system we will model. Orders for
finished goods arrive at the OrderQue. The arriv-
ing order triggers the release of a unit from the
location Stores. The order continues to wait at
OrderQue until the unit goes through Processes 1
and 2. At Process_1, Unit processes for two min-
utes. At Process_2, Unit processes for four min-
utes. Finally, the Unit joins to the requesting
order waiting in the OrderQue.

Stores

Process 1

Process 2 OrderQue

Creating the Pull System
Now let's examine the ProModel steps to build
this pull system.
1. Define four locations: Stores, Process_1,

Process_2, and OrderQue.
2. Define two entities: Order and Unit.
3. Define the processing as shown previously.
4. Define the arrivals. Schedule Units to arrive

at location Stores. Schedule Orders to arrive
at location OrderQue.

5. The entity Order “drives” the system by
sending Units to Process_1 to fulfill the
order. In the operation logic at OrderQue,
use the SEND statement to send a Unit to
Process_1 from location Stores. A corre-
sponding SEND rule must be used as a Rout-
ing Rule for Unit at Stores.

6. After the SEND statement in the operation
logic at the OrderQue, use a JOIN statement
to join a Unit to an Order. A corresponding
JOIN rule must be used as a Routing Rule
for Unit at Process_2.

7. Place the processing times for the Unit at
Process_1 and Process_2.

 ProModel 291
User Guide
When you finish, the processing and routing
should appear as shown below.

Process Table Routing Table

Entity Location Operation (min) Blk Output Destination Rule Move Logic
Unit Stores 1 Unit Process_1 SEND 1
Unit Process_1 WAIT 2 1 Unit Process_2 FIRST 1 MOVE FOR .5
Unit Process_2 WAIT 5 1 Unit OrderQue JOIN 1 MOVE FOR .5
Order OrderQue SEND 1 Unit TO Process_1

JOIN 1 Unit
1 Order EXIT

Making Assemblies
An assembly occurs when you attach specific
items or entities to another entity such as a base
part or frame. To assemble entities, use the JOIN
statement. Implementing JOIN is a two-step pro-
cess:
1. Employ the JOIN statement at the designated

assembly location.
2. Use the JOIN routing rule for all joining

entities.
It is helpful to designate one of the joining enti-
ties to be the “base” entity which issues the JOIN
statement. In the following example, “Comp” is
the base entity. All other joining entities must
travel to the assembly location on an “If Join
Request” routing rule. Note that for “Monitor”
traveling to the assembly location, the word
“JOIN” appears in the Rule field. This indicates
that “Monitor” will go to the location Assembly
only if a JOIN statement requests it elsewhere in
the model.

Several other ProModel statements similar to
JOIN exist such as GROUP/UNGROUP, COM-
BINE, LOAD, and ACCUM. You generally use
these statements for temporary or permanent
batching. To learn more about these statements,
see the discussion on Batching and Unbatching
earlier in this section.
For more information see “Join” on page 504.

292 Chapter 6:
Modeling Tips

 ProModel 293
User Guide
Chapter 7: Building the
Logic

Logic Builder
The Logic Builder provides a quick and powerful
way to create valid statements and expressions in
logic windows or fields. It takes you through the
process of creating statements or expressions, as
well as providing point-and-click access to every
element defined in your model. The Logic
Builder knows the syntax of every statement and
function, and allows you to define logic simply
by filling in the blanks.

How to access the Logic Builder:

Click the right mouse button in the logic window
or expression edit field. Or click the Build button
on the logic window’s toolbar.

Using the Logic Builder
When the Logic Builder is opened from a logic
window, it remains on the screen until you click
the Close button or close the logic window or
table from which it was invoked. This allows you
to enter multiple statements in a logic window
and even move around to other logic windows
without having to constantly close and re-open
the Logic Builder. The Logic Builder closes
automatically when pasting to an expression
field.

You can move to another logic window or field
while the Logic Builder is still up by right click-
ing in that field or logic window. The Logic
Builder is then reset with only valid statements
and elements for that field or window, and will
paste the logic you build into that field or win-
dow.

294 Chapter 7:
Logic Builder
How to build a statement or
expression:

1. Right click in an expression field or logic
window to open the Logic Builder or click on
the Build button in a logic window.

2. Select the statement or expression you
want to use from the list box. When opened
from a logic window, you have the option to
click on the Build Expression button to create
only an expression.

3. Enter the parameters for the statement or
expression. These may be expressions using
model elements and/or functions or other
statements. Parameters may be edited or
entered manually in the Parameter Entry
field.

4. Paste the results into the logic field or win-
dow by clicking the Paste button.

Logic Builder Components
When invoking the Logic Builder from a logic
window, you have the option of building either
statements or expressions. Different buttons and
lists appear in the Logic Builder as you use the
Logic Builder’s options depending upon whether
you are selecting a statement or building an
expression. The Logic Builder shown at the
beginning of this section shows a statement being
selected for building.

At the top of the Logic Builder is a display (logic
text box) of the statement or expression you are
building exactly as it will appear after it is pasted
into the logic window. A brief description of the
selected statement or function is displayed in the
logic text box. This description is replaced with
the statement or function syntax when you type a
parameter, click a parameter or logic button, or

double-click on the statement name. Other com-
ponents of the Logic Builder are as follows:

parameter entry field

logic text box

keypad &

parameter buttons

logic buttons

Parameter buttons Below the logic text box are
one or more buttons to control which parameter
to enter for the statement or expression. Parame-
ters can be expressions, statements, or functions.
These buttons only appear when parameters may
be required by the statement, and may change
when you select a different statement. The name
of the currently selected button appears immedi-
ately below the row of buttons and indicates
whether or not the parameter is optional.

Parameter entry field This edit field allows
you to enter or edit the current parameter. This
only appears when parameters may be required
by the statement. As soon as something is entered
in this field, the Logic Builder switches to build
mode to allow selection of functions or elements
of the model.

 ProModel 295
User Guide
Keypad button Click on this button to display
the numeric keypad for entering numbers in the
parameter entry field without using the keyboard.

Logic buttons These buttons can be used to
insert logical operators and other punctuation in
the parameter entry field above. When you click
the button, the operator is inserted at the cursor
position in the field. A button appears only when
the currently selected parameter can use that par-
ticular logical operator.

•Logical & String Operators:

•Time Unit Operators:

Category This combo box allows you to select
which type of statements appear in the statement
selection list below it. You can select all or a
specific type.

Build Expression button This button allows you
to create only an expression. It displays the logic
elements list (see below) for you to create the
expression. An expression consists of a combina-

tion of numbers, model elements, and/or func-
tions, but does not include statements.

Statement selection list Choose which state-
ment you wish to use from this list. Only valid
statements are displayed for the logic window or
field you are using.

Paste button This button pastes the text of the
logic text box into your logic window or field. It
is only available once the minimum requirements
of the statement or expression have been com-
pleted. The Paste button closes the dialog if you
are pasting to a field.

Clear button This button clears whatever you
have done since the last paste and allows you to
start over.

Close button Closes the Logic Builder without
pasting the current logic text box.

Help button Launches the context sensitive help
system.

Logic Elements When editing an expression in
the parameter entry field, the Statement selection
list is replaced by Logic Elements. The box on
the left lists logic and model element types. The
box on the right lists individual selections from
the logic or model element type selected.

Return and Cancel Buttons When editing the
parameters of a function or nested statement, two
additional buttons appear to the right of the
parameter edit box: Return and Cancel.

296 Chapter 7:
Logic Builder
•Return button This button (available only
when required parameters have been
entered) returns to the previous parameter
entry field and pastes the function or state-
ment at the last cursor position.

•Cancel button Aborts editing of the func-
tion or nested statement and returns to
editing the previous statement or function.

Selecting Statements
The first thing to do in creating a statement with
the Logic Builder is to select the desired state-
ment from the statements list box. You can
restrict the list of statements to choose from using
the Statement Type combo box above the state-
ment list. If you are just starting to use Pro-
Model, you may want to select the Basic
Statements type to list only the most commonly
used statements.

To select a statement, left click on the statement
name in the list box. The statement name appears
in the logic text box along with a brief descrip-
tion. The parameter buttons also appear just
below the logic text box.

Before you begin editing the parameters of the
statement, you can select a different statement.
However, once you begin defining a parameter,
you must click the Clear button to abandon that
statement and select another.

Editing Statement Parameters
Building a statement is simply a matter of filling
in the parameters. To enter a parameter, click the
appropriate parameter button below the logic text
box. The parameter name is displayed above the
parameter entry field. Whatever you type in this
field or select from the Logic Elements list

replaces the parameter name in the logic text box.
The parameter name reappears when the entry
field is cleared. The names of optional parame-
ters are not displayed in the logic text box.

An optional shortcut to begin editing the state-
ment’s first parameter is to double click on the
statement name in the statement list box.

Selecting Logic Elements
The Logic Elements list box, containing model
elements and functions, appears with a selection
list box to its right. A number pad element is
included in the list, which can also be accessed
using the Keypad button.

When you click on an item in the Logic Elements
list, the model elements or functions related to
that item are listed in the selection box on the
right. For example, when you click on Entities,
the selection list is entitled Entities and it con-
tains all the entities defined in the model.

 ProModel 297
User Guide
How to place a model element in
the parameter entry field:

1. Left click on the desired element type in
the Logic Elements list box. The elements for
that type will be placed in the selection list
box.

2. Left click on the desired element to paste
it into the parameter entry field at its current
cursor position. Note that the element is high-
lighted in the parameter field; clicking on
another element will replace it.

How to place a function in the
parameter entry field:

1. Left click on the desired function type or
on All functions in the Logic Elements list box.
The functions for that type will be placed in
the selection list box.

2. Left click on the desired function to paste it
into the parameter entry field at its current
cursor position. The Logic Builder jumps into
build mode for that function’s parameter(s).
Note that two new buttons are placed to the
right of the parameter edit field: Return and
Cancel.

3. To fill in the function’s parameter(s), repeat
steps one and two. If you do not want to use
this function, abandon it by clicking on the
Cancel button.

4. Once the function’s parameters are com-
plete, click on the Return button. The param-
eters you just completed will be pasted into
the function’s parameter entry field, and the
completed function with its parameters is
pasted into the original statement’s parame-
ter entry field.

Nested Functions & Statements
When you select a function as the parameter for
your statement, you must also define that func-
tion’s parameter(s). In defining the function’s
parameter(s), you may use another function
which will also require defined parameters. This
second function is called a nested function. In
addition, a function may be nested within a
nested function. Functions can be nested as many
levels as you like. In this way, the logic builder
helps you create complex expressions that would
be difficult to enter manually.

Control statements such as IF...THEN and
WHILE...DO contain parameters that are them-
selves statements. These are called nested state-
ments. For example, an IF...THEN...ELSE
statement might look something like this:

Nested IF, THEN, ELSE

If (Variable1 > 10) Then

{
< Statement1 >
< Statement2 >
}

Else

{
< Statement3 >
< Statement4 >
}

One or more statements may appear in the block
between the curly braces. The Logic Builder
allows you to define the first statement of the
block. To add other statements to the block, place
the cursor in the logic edit window where you
want the next statement and use the Logic
Builder to write the statement and paste it in. For

298 Chapter 7:
Logic Builder
example, in the following Logic Builder window,
an IF...THEN...ELSE statement is being built.

The ELSE statement is built with the parameter
button labeled Else and the statement following
THEN is built using the button labeled State-
ment. When you click on the parameter button
labeled Statement, the statement list box is dis-
played where you can select from the list of valid
logic statements. Click on paste in the above
example and you get:

The parameters of nested statements may be
model elements or functions, and within those
functions you may have nested functions. This
allows you to easily build complex control state-

ments without worrying about syntax and place-
ment of nested statements and functions.

Creating Expressions or Pasting
Logic/Model Elements Only
In addition to creating statements, the Logic
Builder can also be used to create just an expres-
sion or to simply paste a particular element such
as a variable or resource name. You may not need
to create a complete statement, or the field may
not accept statements. Pressing the Build Expres-
sion button allows you to build and paste expres-
sions, including individual logic or model
element names, into your logic window or field.

The expression being built or element being
selected is displayed at the top of the window in
the logic text box. Use the parameter edit field to
build the expression. You can use model ele-
ments and/or functions in your expression. When
you are finished, click the Paste button to place
the expression or selected logic/model element in
the logic window or edit field.

 ProModel 299
User Guide
Operation Logic
Operation logic defines what happens to an entity
when it enters a location. Operation logic is
optional, but typically contains at least a WAIT
statement for the amount of time the entity should
spend at the location. For modeling purposes, the
exact nature of the operation (joining, grouping,
etc.) is irrelevant. What is essential is to know
what happens in terms of the time consumed, the
resources used, and any other logic that impacts
system performance. For operations requiring
more than a time and resource designation,
detailed logic may need to be defined using
IF...THEN or action statements.

Special operation statements are provided to
define the activities that are to occur. By using
operation logic, any of the following activities
can be defined:

•Detain an entity for a specified length of
time while an activity is performed.

•Detain an entity until one or more resources
are obtained.

•Detain an entity until one or more additional
entities are joined to it.

•Detach one or more entities from the current
entity.

•Consolidate one or more entities into a
group.

•Separate an entity into two or more entities.
•Detain an entity until a particular system

condition is reached.
•Destroy an entity.
•Create one or more new entities.
•Execute a block of logic (assignment of vari-

ables, etc.).
•Signal the start of some other action in the

system (e.g., place an order).
•Make some decision about further routing.

Statements can be typed directly into the opera-
tion field, or inside a larger logic window after

double-clicking in the field or clicking on the
Operation button. Alternatively, the Logic
Builder can help build logic and is accessed by
clicking the right mouse button inside the opera-
tion field or logic window. All statements, func-
tions, and distributions available in the operation
field are discussed in detail, including examples,
in “Statements and Functions” on page 439.

Example

Each entity processes the operation statements
defined for it at a particular location, indepen-
dent of other operations performed on other enti-
ties at the same location. The following example
presents the operation logic for an entity joining
an entity, EntB, and renaming the entity as EntC.

300 Chapter 7:
Preemption Process Logic
Preemption Process Logic
With Preemption Process Logic, ProModel
makes it possible to control preemption rather
than limit you to default preemption priority lev-
els and values. This feature pertains only to the
preemption of entities using a location. It does
not include preemption of downtimes.

Normally, if an entity or downtime attempts to
preempt an entity that is using a location, the
location is immediately preempted (assuming it is
preemptable). Once the location finishes the pre-
empting activity, the original preempted entity
regains possession of the location and resumes
processing where it left off.

To override this default preemption procedure, in
the case of entities that are preempted by another
entity or a downtime, ProModel allows a Pre-
emption Process Record to be defined which
postpones the actual preemption of the location
until after the current entity explicitly releases it.

The Preemption Process Record, allows you to
control if and when the location is given up. In
the case of a preemptive request for a location,
the preemption process record allows the entity to
be routed elsewhere if desired. If a preemption
process is defined, the actual preemption does not
occur until the preemption process explicitly
frees the location.

After the location is given up, the entity may (1)
elect to use an alternative location to complete
the process, or (2) seek to regain access to the
same location to complete the process.

While an entity is executing a preemption pro-
cess, it cannot be preempted by any other entity
or downtime.

How to create a preemption pro-
cess record:

1. Using the same entity and location names,
create a process record somewhere follow-
ing the process record where the preemption
may occur.

2. Click on the Entity button to display the
Entities dialog shown here.

3. Check the Preemption Process option box
and click OK.

4. Click on the Operation button to enter the
preemption logic. You can use any valid
operation logic including delays. It is recom-
mended that you enter a comment as the
first line in the logic indicating that this is a
preemption process. This will make the record
easily identifiable as a preemption process.

 ProModel 301
User Guide
Please note

When a preemption occurs, the entity looks for-
ward and then from the beginning of the process
list trying to find a preemption process that
matches the same entity and location (a process
with ALL as the entity name will match any
entity). If a match is found, the preemption pro-
cess gets executed. Otherwise the default pre-
emption occurs. Only the first preemption
process encountered will be executed in the event
that multiple preemption processes are defined
with the same entity and location names.

Possible Effects of Delayed
Preemption
Several circumstances can be created through the
use of preemption process records. An entity
delaying a preemption, for example, may find at
the conclusion of the delay that the preemption is
no longer required, or that it faces an even higher
preemption priority.

In cases where an entity has multiple locations or
resources from which to choose, a preemptive
request for any one of them is not necessarily a
commitment to select that particular location. If
any of the alternative locations becomes avail-
able, the entity will select it and withdraw the
preemption request.

Functions for Defining Logic in a
Preemption Process
The Preemption Process Logic feature includes
the following functions for use in the preemption
logic.

PREEMPTOR() Identifies whether a downtime or
entity is making the preemptive request. It returns
a 0 if the preemptor is a downtime, otherwise it

returns the index number of the preempting
entity.

TIMELEFT() Returns the amount of time remain-
ing if the preemption occurred during a WAIT or
USE statement. It returns a time value in default
time units (real). If multiple entities are pre-
empted from a location, it returns the longest
remaining time for all of the entities.

Please note

The values returned by these functions must be
checked before any processing delay occurs since
they are updated whenever a preemption takes
place. If the values must be referred to later, they
should be assigned to the entity’s attribute or to a
local variable.

Preemption Process Example
In this example, a Gear may be preempted in its
occupancy of the Lathe. This preemption may be
because of either a preempting entity or down-
time. Before the actual preemption takes place,
the operation time for the Gear is interrupted and
the Gear immediately begins processing the oper-
ation logic defined in the preemption process.

In the preemption process, the remaining opera-
tion time is stored in Attr1. The Gear routes to
Lathe_Backup where it finishes processing.
Because the backup lathe is not as efficient as the
other Lathe, it takes 50% longer to process the
Gear on Lathe_Backup. Therefore, we multiply
the time left to process the Gear by a factor of
1.5.

302 Chapter 7:
Routing Move Logic
Process Table

Entity Location Operation (min)
Gear Lathe WAIT 10 min
Gear Lathe Attr1=TIMELEFT()
Gear Lathe_Backup WAIT Attr1*1.5

Routing Table

Blk Output Destination Rule Move Logic
1 Gear Mill FIRST 1
1 Gear Lathe_Backup FIRST 1
1 Gear Mill FIRST 1

Routing Move Logic
To accommodate the use of multiple resources
for entity movement, the Move Logic window
allows you to define the method of movement as
well as any other logic to be executed upon
movement.

Once the route condition or rule has been satis-
fied for allowing an entity to route to a particular
location, the move logic is immediately executed.
The entity does not actually leave the current
location until a move related statement (MOVE
FOR, MOVE ON, or MOVE WITH) is executed
or until the move logic is completed, whichever
happens first. This allows the entity to get one or
more resources, wait additional time, or wait until
a condition is satisfied before actually leaving the
location.

Any statements encountered in the move logic
after a move related statement are executed after
the move is complete, but before the entity actu-
ally enters the next location. This is often useful
for freeing multiple resources used to transport
the entity.

When you access the Processing module in the
Build menu, the Routing edit table appears with
the Move Logic button in the right hand column
as shown here.

 ProModel 303
User Guide
When you click the Move Logic the following
Move Logic window appears.

This window allows you to manually edit the
logic or click on the Build button to use the Logic
Builder. It also provides other convenient but-
tons for editing and printing the move logic.

Move-Related Statements
Admissible statements in the Move Logic win-
dow include the new move-related statements
listed here. A brief description of how each state-
ment functions in ProModel follows the list. See
“Statements and Functions” on page 439 for
complete syntax, description, and examples of
these statements.

MOVE statements

MOVE FOR <time>

MOVE WITH<res1>{,{p1}} {FOR <time>} {THEN
FREE}

MOVE ON <path network>

MOVE FOR <time> Used to specify the amount
of time required to move the entity. If the <time>
is zero, events for other entities occurring at the
same simulation time will be processed before
any additional logic is processed for the current
entity.

MOVE WITH This statement is used to move an
entity using a designated resource, such as a fork-
lift. With the OR operator, you can designate
alternative resources for making the move. In this
case, the statement captures the first available
alternative resource designated in the expression
and makes the move. If one of the resources is
already owned by the entity, that resource will be
used. Please note that you cannot use the AND
operator to capture (and move with) more than
one resource with this statement. To move an
entity with multiple resources, you must use a
GET statement to capture the additional
resources.

This statement also allows you to set the priority
(p1) for accessing the designated resource. If the
resource is already owned by the entity, this pri-
ority is ignored.

If the resource is static, a time (FOR <time>) may
be specified for the move.

The resource used to make the move is only freed
if the THEN FREE option is used.

MOVE ON <path network> Use this statement
to move an entity along a path network.

304 Chapter 7:
Routing Move Logic
Please note

Not entering no move related statement in the
Move Logic window causes entities to move
immediately to the next location when the move
logic is completed and begin executing the opera-
tion logic for that location.

Related Logic Statements
In addition to these routing specific statements,
all statements and functions allowed in exit logic
may be used in the Move Logic window. Note,
however, that the LOCATION() function returns
the current location when executed before the
MOVE statement and returns the destination
location when executed after the MOVE state-
ment. Additional statements permitted before a
move-related statement include: WAIT, WAIT
UNTIL, GET, JOINTLY GET, and USE.

See “Statements and Functions” on page 439 for
full description, elements explained, and exam-
ples.

Statement Processing
Statements executed before a MOVE related
statement are processed after the entity claims the
next location but before the entity actually
departs from the current location.

Statements executed after a MOVE related state-
ment are processed after the move has been com-
pleted but before the entity enters the location. If
there is no move logic, the entity continues pro-
cessing until it encounters an implicit WAIT.
However, if “MOVE FOR 0” is placed in the
move logic, the event list is broken and other pro-
cesses scheduled to occur at the same time are
executed. Once these processes are executed, the
entity enters the destination location.

This processing sequence allows you to GET or
JOINTLY GET one or more resources before the
move and optionally FREE one or more
resources at the end of the move. Please note that
if a move related statement is not encountered in
the logic, an implied MOVE will be assumed and
executed at the end of the logic.

 ProModel 305
User Guide
Shift & Break Logic

Shift & Break Logic
Shift and break logic are optional and are defined
in four distinct logic windows. Each logic win-
dow is executed in a specific sequence through-
out the simulation run. You can define logic that
controls how resources and locations go off duty
or off line and what happens once they are off-
line.

To define shift or break logic, click on the Logic
button in shift assignments to display a submenu
of four shift events for which logic may be
defined. Selecting an event from the submenu
displays a standard logic window. You can enter
separate logic for each of these four events to be
executed when the event occurs. See Sequence of
Events below.

You may want to use the Logic Builder to help
you enter the logic. Just click on the Build button
in the logic window.

Pre-Off Shift or Pre-Break Logic Executed
whenever the location or resource is scheduled to
go off shift or on break. This occurs before the
location or resource is checked for availability,
and is executed regardless of availability. This
logic may be used to check certain conditions
before actually taking the resource or location off
line. The logic is executed for each resource and
location listed as members for this shift assign-
ment record. This allows some members to be
taken off line while others may be forced to wait.
(Pre-off shift and pre-break logic may be referred
to in this manual as pre-start logic when speaking
of either one.)

Off Shift & Break Logic Logic executed at the
instant the location or resource actually goes off
line.

How to determine the sequence
of events

1. When a location or resource is scheduled
to go off line due to a break or the end of a
shift, the pre-start logic for that particular
location or resource is executed.

2. After executing the pre-start logic, which
may contain conditional (WAIT UNTIL) or time
(WAIT) delays, the location or resource is
taken off line, assuming it is either available or
the priority is high enough for preemption.

3. At the instant the location or resource is
taken off line, the Off-Shift or Break logic is
executed.

4. After executing this logic, the location or
resource waits until the time defined in the
shift file expires before going back on line.

Please note

If the off-shift and break nodes are not specified
in the Resource Specs dialog, the resource will
stay at the current node. If no resources or loca-
tions are assigned to a shift, the shift is ignored.

Functions and Statements
ProModel uses several functions and statements
specifically for off-shift and break logic: SKIP,
PRIORITY, DTLEFT(), FORLOCATION(),
FORRESOURCE(), and RESOURCE(). Follow-
ing is a brief description of each. For more
details, see “Statements and Functions” on
page 439.

306 Chapter 7:
Shift & Break Logic
SKIP If used in pre-start logic, it causes the off-
shift or break time (including any off-shift or
break logic) to be skipped so that the location or
resource never goes off line. If used in the off-
shift or break logic, it causes the off-line time
defined in the shift file to be skipped. This
allows you to specify a WAIT statement for the
off-line time and then SKIP the off-line time
defined in the shift file.

PRIORITY This statement provides an alternative
way to specify off-shift or break priorities. It also
allows the priority to be changed after some time
being off-shift or on break. If the priority is
changed to a value lower than the current value,
the system will check if any preemption may
occur at that time. This statement is not allowed
in pre-off shift or pre-break logic.

DTLEFT() This function returns the remaining
off-shift time based on when the location or
resource is scheduled to go back on shift as
defined in the shift file. It may be used in off-shift
and break logic to adjust the actual time that the
location or resource is off-line.

FORLOCATION() This function returns TRUE if
the member for which the shift or break logic
being executed is a location. This may be
fol0lowed by a test using the LOCATION() func-
tion to determine the precise location.

FORRESOURCE() This function returns TRUE if
the member for which the shift or break logic
being executed is a resource. The RESOURCE()
function may then be used to determine the pre-
cise resource if multiple resources are listed as
members.

RESOURCE() This returns the name-index num-
ber of the resource currently processing the off-
shift or break logic.

In addition to these functions, the LOCATION()
and DTDELAY() functions are particularly use-
ful when defining off-shift and break logic.

 ProModel 307
User Guide
Chapter 8: Using Auxiliary
Tools

Tools Menu
The Tools menu gives you access to powerful
tools to help you through the model building pro-
cess.

Expression Search Allows you to perform glo-
bal search and replace functions on expressions
throughout any part of the model.

Graphic Editor Allows you to create, edit, rear-
range, or delete library graphics for use as enti-
ties, locations, resources and background
graphics.

Stat::Fit Launches Stat::Fit and allows you to fit
analytical distributions to user data.

3D Animator Launches 3D Animator if it is
installed. If 3D Animator is not installed, a dialog
will provide information about purchasing 3D
Animator or obtaining a demonstration version.

License Manager Launches the license man-
ager. Since license changes cannot be made while

ProModel is running, you will be prompted to
close ProModel prior to running the License
Manager.

Options Allows you to set various directory
and display defaults.

Customize Allows you to customize the Tools
menu.

Additional Tools Tools can be added to the
Tools menu by using the Customize option.
These tools are discussed in the latter part of this
chapter.

308 Chapter 8:
Expression Search
Expression Search
The Expression Search feature is used to find or
replace text entered into logic windows and
expression fields, such as location downtime
logic or location capacity. Name fields can be
found, but not replaced. Reference fields can be
found and replaced. However, when the name of
a location, resource, or entity is changed, the user
will be prompted to automatically change all ref-
erences to the new name. There are three types of
searches: Find expression, Replace expression,
and Search Next expression.

How to perform an expression
search:

• Select Expression Search from the Tools
menu.

Expression Search Sub-Menu
Choices

Find
A dialog box gives you the following options
after choosing Find from the Expression Search
submenu:

Modules to Search Check the modules you
want to search. “Other” includes all other edit
tables and some dialog boxes where text is
entered for defining the model, such as attributes
or arrays.

Search Notes Check this box to include Notes
fields in the text search.

Whole Words Only Check this box to search for
only whole words or groups of whole words that
match the text to find. For example, searching for
“Attr” without the Whole Words Only box
checked will find “Attr1” and “Attr2” whereas a
search with the box checked would find neither.

Text to Find Enter the text expression you want
to find.

Replace
Choosing replace gives you these options in addi-
tion to the find options:

Prompt on Replace Check this box if each
time ProModel finds a match, you want Pro-
Model to ask if you want that particular match
changed to the replacement text. The prompt will
give you the option to replace that particular
match, skip that particular match, or to cancel the
search altogether.

New Text Enter the text you want to replace the
search text.

Search Next
Choosing Search Next in the Expression Search
submenu will resume the most recently canceled
search. For example, suppose you begin a search
and then break out of the search to adjust some-
thing in the model. If you want to continue the
original search, you can select Search Next and
ProModel will start the search again at the place
you stopped searching.

 ProModel 309
User Guide
Find Expression
The Find Expression option allows you to find
each occurrence of an expression in a model.

How to find an expression:

1. From the Tools menu, select Expression
Search.

2. Select Find... from the submenu.

3. Supply the necessary details in the Find
dialog box shown below. Clicking Select All or
Deselect All button will check or uncheck
every module.

4. Click OK.

Once the Expression Search has found the first
occurrence of an expression, a dialog box will
appear giving information on exactly where the
text was found. Then ProModel will display the
following dialog, including a box displaying the

entire line on which the text was found, with the
search expression highlighted.

How to find the next match of a
text expression:

• Click on Search Again

Replace Expression
The Replace Expression option allows you to
find each occurrence of an expression in a model
and replace that expression with a new expres-
sion.

How to replace an expression with
another expression:

1. Select Replace... from the Expression
Search submenu.

2. Supply the necessary details in the
Replace dialog box shown below. Clicking

310 Chapter 8:
Expression Search
Select All or Deselect All button will check or
uncheck every module.

3. Click on OK. If you have chosen “Prompt
on Replace,” ProModel will then display the
following dialog box if it finds the text you
specified.

4. Choose:

Yes to change the text and search for the
next match.

Change All to change every match.

No to skip this match and search for the next
match.

Go to Module to edit the text directly.

Cancel to leave the match intact and stop
searching.

Important Notes Regarding
Expression Searches
1. Not every field of every module is included.

Fields such as statistics, text in graphics, or
yes/no fields which may not be edited cannot
be searched for or replaced. To replace
record identifiers, see number six.

2. Under “Modules to Search,” the Other
option refers to information entered in places
not listed in the dialog box, including the
Simulation Options dialog box.

3. Notes fields are not part of the actual model
data, therefore they are not automatically
included in the search. Notes also include
comments in the model. If you want to
search or replace Notes fields, check the
Search Notes option in the Find or Replace
dialog boxes.

4. The Whole Words Only option interprets
words loosely enough to distinguish words
not separated by spaces. For example,
searching for “Attr1” in the expression
Attr1=Attr1+Attr2, would find both occur-
rences. You can search for expressions
longer than a whole word, such as
“Attr1=Attr1+Attr2,” as whole word expres-
sions. To find a portion of a name, like
“Attr” in “Attr1,” deselect the Whole Words
Only option.

5. Once the Expression Search has found the
first occurrence of an expression, a dialog
box will appear giving information on
exactly where the text was found. This
includes a box displaying the entire line on
which the text was found, with the search
expression highlighted. In some cases the
box may be too small to display the entire
line. To see the hidden portion of the text,
left click with the left mouse button on the
text, and use the left and right arrow keys to
scroll the text horizontally.

 ProModel 311
User Guide
6. The Replace feature cannot be used to
change an element identifier. To change all
occurrences of a model element name (such
as a location name), change the name of the
element where it is defined and all other
expressions containing the name, as well as
any references to this record, will be changed
automatically.

Local Find and Replace
In the process of creating logic, you may need to
search for specific text. The local find and
replace button in the operation logic window
opens a dialog that will allow you to search the
logic for specific text.

312 Chapter 8:
Graphic Editor
Graphic Editor
The Graphic Editor allows you to create, edit,
rearrange, or delete library graphics within a par-
ticular graphics library file. You can also copy
graphics from one library to another. Graphics
from several libraries can even be merged into a
single graphic. Each graphics library is saved
with the grid size and scaled used to create the
graphics.

How to access the graphic editor
from within ProModel:

• Select Graphic Editor from the Tools menu.

How to access the graphic editor
from the program manager:

• Double click the Graphic Editor icon in the
ProModel Group. This method allows you to
use the Graphic Editor as a separate applica-
tion from ProModel.

Overview
The Graphic Editor consists of a menu bar, a
Graphic Tools button bar, a Graphic Library
menu, Library Edit buttons, an Edit window, and

a set of icons representing the graphics in the
graphics library.

Graphic Tools
Library Edit

Edit Window

Graphic Icons

Button Bar
Buttons

Each of the tools in the Graphic Tools button bar
is discussed in this section, including the proce-
dures for creating and editing a graphic’s compo-
nents (called “objects”) using the drawing tools.

Graphic Editor Menus
The Graphic Editor menu bar includes the fol-
lowing menus:

File The File menu allows you to open a graph-
ics library for editing and saving a current library.
It also allows you to print a single graphic or an
entire library.

Edit The Edit menu provides functions for
selecting and duplicating one or more objects that
comprise a library graphic. In addition, it pro-
vides functions to import and export graphics
from other applications.

Graphics The Graphics menu is for manipulat-
ing one or more objects that comprise a library
graphic. With this menu, you can group several
objects together, flip and rotate objects, and alter
the color, fill pattern and line style of objects.

 ProModel 313
User Guide
You can also adjust the dimensions of the entire
graphic.

Options The Options menu controls the editing
environment. With this menu you can use a grid
to help you align component objects, edit that
grid, and require objects to snap to it. Finally, the
Options menu allows you to zoom in and out on
the graphic so you can edit the graphic at differ-
ent sizes.

Window The Window menu allows you to
arrange the windows (or iconized windows) cur-
rently displayed on the screen such that all win-
dows are visible at once. It also allows you to
bring any individual window to the forefront of
the display. This is particularly useful when you
are opening multiple graphic libraries and want to
view all libraries simultaneously.

File Menu

New Creates an empty graphics library.

Open Brings up the Open Library Graphics dia-
log box for specifying which graphics library file
to retrieve. Graphics library files have the file
extension GLB.

Close Closes the current graphic library. If the
graphics library has been changed since the last
save, you will have the option to save it.

Save Saves an open graphics library under the
current file name or prompts you for a name if the
graphics library has not been named.

Save As Brings up the Save As dialog box for
saving the current Graphics library file under a
new filename. Graphic Library files have the file
extension GLB.

Print Graphic Prints the graphic in the Edit win-
dow only.

Print Library Prints the entire current graphic
library.

Exit Quits the Graphic Editor with an option to
save the current library if changes have been
made since the last save.

Recently Opened Files Lists the five most
recently retrieved graphics libraries. Selecting
one of these options will retrieve the listed graph-
ics library.

Opening a Graphics Library File
All individual library graphics are loaded from
and saved to the current graphics library, which,
by default, is the one specified for the current
model. However, other graphic libraries may be
opened for editing at any time. The name of the
current library is displayed in the title bar of the
window for each library. More than one library
can be opened and viewed on the screen at a time.
Opening more than one graphic library simulta-
neously facilitates copying graphics between
libraries.

How to open another graphics
library file:

1. Choose Open from the File menu.

2. Enter or select the name of the desired
graphics library.

3. To view all open graphic libraries, choose
Tile or Cascade from the Window menu.

314 Chapter 8:
Graphic Editor
Please note

A history list is given at the bottom of the File
menu so you are able to quickly retrieve the last
five libraries opened.

Closing a Graphics Library File
When you are finished working with a graphics
library, you can close it to save screen space and
memory. This option will not affect the graphic
library used with any model.

How to close a graphics library
file:

• Choose Close from the File menu.

Saving a Graphics Library File
Once a graphic has been created or edited and
placed in the current library, the library file must
be saved in order to make the changes permanent.

How to save a graphics library file:

• Select Save from the File menu to save the
library with the same name.

How to save a graphics library file
with a new name:

• Select Save As from the File menu to save
the library with a new name.

Printing an Individual Graphic

How to print an individual graphic:

1. Double click the mouse on the desired
graphic’s icon, or select the graphic’s icon
and click the Edit button.

2. Select Print Graphic from the File menu.

3. Choose the desired options from the result-
ing Print dialog box and click OK.

Printing an Entire Graphics Library

How to print an entire graphics
library:

1. Select Print Library from the File menu.

2. Choose the desired print options from the
Library Print dialog box and select OK.

Please note

If more than one graphic library is open, Pro-
Model will print the active graphic library only.

Edit Menu
Use the Edit menu for selecting and duplicating
the individual objects comprising a library
graphic. You may also use it to exchange graph-
ics with other applications. To use the Edit menu
functions, load the graphic you wish to edit by

 ProModel 315
User Guide
selecting its icon from the library and clicking the
Edit button, or double click the icon.

Cut Removes the selected object(s) and makes a
temporary copy that may be pasted back into the
edit window later.

Copy Makes a temporary copy of the selected
object(s) to be pasted later.

Paste Adds the most recently cut or copied
object(s) to the current graphic.

Delete Deletes the selected objects from the
current graphic.

Select All Selects all of the objects comprising
the current graphic.

Copy to Clipboard Copies the entire graphic to
the clipboard as a bitmap so it can be pasted into
other applications including word processors.

Paste WMF Pastes a Windows metafile (WMF)
from the Windows clipboard into the Edit win-
dow. You must have previously copied a Win-
dows metafile to the Windows clipboard in
another application.

Paste BMP Pastes a bitmap file (BMP) from the
Windows clipboard into the Edit window. You
must first copy a bitmap file to the Windows clip-
board.

Import Graphic Imports a WMF, BMP, PCX or
GIF file into the Edit window.

Export Graphic Exports the graphic in the Edit
window to a WMF or BMP file.

Importing a Graphic

How to import a graphic into a
graphic library:

1. Select the box to which you would like to
add the graphic in the library. If you want to
create a new graphic, choose the blank box
at the end.

2. Select Import Graphic from the Edit menu.

3. Enter the name of the graphic you would
like to import.

4. Select OK to close the import graphic dia-
log box.

5. Click on the Save button on the top right
side of the library window.

Exporting a Graphic

How to export a graphic:

1. Double-click the mouse on the desired
graphic’s icon, or select the graphic’s icon
and click the Edit button.

2. Select Export Graphic from the Edit menu.

3. Enter a valid DOS name for the graphic in
the resulting dialog box.

4. Click the OK button in the export graphic
dialog box.

316 Chapter 8:
Graphic Editor
Copying a Graphic from One
Library to Another

How to copy an icon from one
library to another

1. Open both libraries.

2. Drag the graphic’s icon from the first
graphic library to the second graphic library
(preferably left to right).

3. Save the destination library by choosing
Save from the File menu.

Graphics Menu
The Graphics menu is for manipulating one or
more objects that comprise a library graphic.
With this menu, you can group several objects
together, flip and rotate objects, and alter the
color, fill pattern and line style of objects. You
can also adjust the dimensions of the entire
graphic.

Flip Horizontal Horizontally flips the entire
graphic or any selected objects of the current

graphic. This menu item works like the button of
the same name described later in this chapter.

Flip Vertical Vertically flips the entire graphic
or any selected objects of the current graphic.
This menu item works like the button of the same
name described later in this chapter.

Rotate Rotates the entire graphic or any
selected objects of the current graphic 90 degrees
clockwise. This menu item works like the button
of the same name described later in this chapter.

Move to Front Moves the selected object in
front of all other objects. Use this option to see an
object obscured by other objects. This menu item
works like the button of the same name described
later in this chapter (to move an object one posi-
tion forward at a time, use the Graphic Tools).

Move to Back Moves the selected object
behind all other objects. Use this option to send
an object obscuring other objects to the back-
ground. This menu item works like the button of
the same name described later in this chapter.

Group Combines or groups several objects into
a single object for sizing and editing.

Ungroup Ungroups several grouped objects so
they may be edited individually.

Line Styles Allows the user to choose the line
style including solid, dashed, line thickness, and
optional arrowheads on either end of the line.

Fill Patterns Allows the user to choose the fill
pattern for solid objects including transparent,
slant, backward slant, grid, crosshatch, vertical,
horizontal, solid, vertical gradient, and horizontal
gradient.

Line Color Allows the user to choose the line
color and create custom colors.

Fill Color Allows the user to choose the fill color
and create custom colors for solid objects.

 ProModel 317
User Guide
Dimension Brings up the Dimensions dialog
box for defining the graphic dimension. The
dimension can be height or width. The units can
be feet or meters.

Please note

Line Styles, Fill Patterns, Line Color, and Fill
Color set the feature and cause the setting to be
applied to the currently selected elements.

Group
When using the graphic tools to create an icon, it
is often helpful to group several graphics into a
single graphic for editing purposes. For example,
you may create an icon using the square, line, and
circle tool and want to work with them as a single
item.

How to group objects together:

1. Use selector to select all objects you desire
to group. Hold the shift key down to select
more than one object at a time.

2. Choose Group from the Graphics menu.

3. Manipulate the group as necessary.

Ungroup
The Ungroup option allows you to ungroup sev-
eral grouped objects.

How to ungroup previously
grouped objects:

1. Use the selector to select the object you
desire to ungroup.

2. Choose Ungroup from the Graphics menu.

Line Styles
You may choose different styles for the lines and
borders of objects by choosing Line Styles in the
Graphic Editor Graphics menu.

How to change the line style or
border style of an object:

1. Select the desired object(s) using the
Selector.

2. Choose Line Styles from the Graphic Editor
Graphics menu.

3. Click on the desired style.

318 Chapter 8:
Graphic Editor
Please note

The arrowhead color is the same as the line color
and is defined through the Line Color in the
Graphics menu.

Fill Patterns
Various patterns may be used to fill each object
by choosing Fill Patterns from the Graphic Editor
Graphics menu.

How to change the fill pattern of
an object:

1. Select the desired object(s) using the
Selector.

2. Choose Fill Patterns from the Graphic Edi-
tor Graphics menu.

3. Click on the desired fill pattern.

Line and Fill Color
You may also select a custom color for your lines
and graphics.

How to change line or fill color

1. Select the line or graphic you want to
change.

2. Choose Line Color or Fill Color from the
Graphics menu.

3. From the dialog below, click on the color
you wish to use.

Dimension
You can define the height or width of an object in
feet or meters from the Dimensions Dialog box.

 ProModel 319
User Guide
This will determine how large the graphic
appears when placed on a model layout. For
example, to change the width of a graphic loaded
in the Edit window to 5.00 feet, enter the follow-
ing in the Dimensions dialog box:

How to change the graphic’s
dimensions:

1. Load a graphic into the Edit window.

2. Select Dimension from the Graphics menu.

3. Enter the new graphic dimension and click
OK.

For example, a graphic of a computer is dis-
played in the Graphic Edit window. The size of
the graphic in the Graphic Edit window is 1.40 x
1.00 as shown below.

However, the computer is really 2 feet wide. To
change the graphic’s dimensions, select Dimen-
sion from the Options menu. Type 2 for the hori-
zontal dimension and click OK.

Notice the vertical dimension is automatically
adjusted to 1.43. You can only define either the
horizontal or vertical dimension of the graphic. If

you define one dimension, the software will auto-
matically calculate the other according to the pro-
portions of the graphic in the Edit window. If you
know the graphic is actually 2.00 x 1.50 feet, you
will need to adjust the proportions of the graphic
accordingly by using various tools from the Tools
button bar.

Options Menu
The Options menu controls the editing environ-
ment. With this menu you can use a grid to help
align objects, edit that grid, and require objects to
snap to it. Finally, the Options menu allows you
to zoom in and out on the graphic so you can edit
the graphic at different sizes.

Grid Settings Brings up the Grid dialog box for
choosing the size, color and visibility of the grid.

Show Grid Causes the grid to appear in the
background for editing purposes. If the grid is on,
choosing this option will turn it off. This is the
same as choosing Grid On in the Grid dialog box.

Snap to Grid Positions any object subsequently
drawn or moved on the layout on the nearest grid
line. This option works whether the grid is visible
or not.

Background Color Brings up the color dialog
box for choosing a background color for the lay-
out window.

Zoom Shrinks or enlarges your view of the
graphic by the percentage selected.

320 Chapter 8:
Graphic Editor
Grid Settings
The grid size is changed by using the scroll bar to
the right of the grid dialog box. Move the scroll
bar up to increase the grid size and move the
scroll bar down to decrease the grid size. To
change the color of the fine grid lines, select the
Ones button and then choose a color. To change
the color of the coarse grid lines, select the Tens
button and choose a color.

Instead of viewing boxes as the grid units, you
may choose dots by selecting the dots box. You
may also choose to switch the grid, as well as the
grid snap, on in this same area.

How to change the distance per
grid unit in the Graphic Editor:

1. Select Grid Settings from the Options
menu.

2. Click on the Scale button.

3. Define the distance per grid unit in either
feet or meters and click OK.

Show Grid

How to show the grid on the lay-
out window:

• Choose Show Grid from the Options menu.

Snap to Grid

How to have all new and edited
objects snap to the grid:

• Choose Snap to Grid from the Options
menu.

Background Color

How to change the background
color of the edit window:

• Choose Background Color from the
Options menu.

Zoom

How to magnify a graphic:

1. Choose Zoom from the Options menu.

 ProModel 321
User Guide
2. Choose the level of magnification from the
submenu.

Window Menu
The Window menu is used to manipulate the var-
ious windows in the Graphic Editor and follows
the Microsoft Windows standard for Window
menus.

Tile Causes all open windows to fit in the avail-
able screen space. Windows that may be hidden
behind other windows will become visible. This
is useful when desiring to view more than one
graphic library on the screen at a time.

Cascade Causes all open windows to overlap
such that the title bar of each window is visible.

Arrange Icons Takes all active iconized win-
dows and arranges them neatly along the bottom
of the screen.

Open Libraries Displays all graphic libraries
currently open in the Graphic Editor. To switch
to another open library, click on the desired
name.

Library Edit Buttons
The Graphic Editor contains four library edit but-
tons: Edit, Save, Delete, and Clear.

Edit Retrieves a selected graphic from the
library to the edit window.

Save Saves a graphic from the Edit window to
the library. For a new graphic to be added to the
library, the blank box at the end of the library
must be selected. Otherwise, the graphic in the
Edit window will replace whichever graphic’s
icon is selected.

Delete Deletes the selected graphic from the
library.

Clear Clears the contents of the edit window.

How to edit a graphic:

• Double-click on the graphic in the library.
This method clears the contents of the Edit
window before loading the new graphic.

or...

• Select the graphic by clicking once on the
graphic and then click the Edit button. This
method clears the contents of the Edit win-
dow before loading the new graphic.

Manipulating Graphics
Among other things, a graphic can be reduced,
enlarged, combined, and reordered.

How to change a graphic’s size:

1. Select the graphic in the Edit window using
the selector.

2. Choose Group from the Graphics menu.

3. Select one of the small gray boxes at the
graphic edge to reduce or enlarge the
graphic size. The selector will change to a
cross-hair when you are near a gray box.

322 Chapter 8:
Graphic Editor
4. Drag the box to the desired size.

Several graphics can be combined together to
create a single graphic. For example, a desk and a
chair are separate graphics but would be easier to
use if they were combined to form a single
graphic.

How to combine two graphics:

1. Load the first graphic into the edit window.

2. Drag the second graphic into the edit win-
dow.

3. Position and size the two graphics as
desired.

4. Click the blank box in the graphic library.

5. Click the Save button.

How to change the order of
graphics in a graphic library:

• Drag a graphic to the desired location in
the library.

Create New Graphics and
Libraries

How to create a new graphic

1. Select Graphic Editor from the Tools menu.

2. Use the drawing tools to create the new
graphic.

3. Click the Save button on the graphic edi-
tor.

4. The image appears at the end of the exist-
ing icons.

How to create a new graphic
library

1. Select Graphic Editor from the Tools menu.

2. Select New from the File menu.

3. Use the drawing tools to create any graph-
ics you wish to use in your library. You may
also copy and paste graphics from existing
libraries.

4. After you finish preparing each new
image, click the Save button on the graphic
editor.

Naming a Graphic
Graphics can be named for resources, locations,
and entities, or merely for easier identification.
When a named graphic is chosen while building a
model, instead of entering a default name, such as
Loc1, ProModel will enter the graphic's name,
such as Desk. If the name already exists for a
location or resource graphic, a number will be
appended (Desk1, Desk2, etc.). If the name
already exists for an entity graphic, a letter will

 ProModel 323
User Guide
be appended (ChairA, ChairB, etc.). This will
make the model easier to understand and use.

How to name a graphic:

1. Enter the desired name at the bottom left
of the screen where it says “Name.”

2. Click the Save button to save the named
graphic.

Please note

Correct syntax for location, resource, and entity
names should be used when entering a name in
the Name field if the graphic is intended to repre-
sent locations, resources, or entities. Graphic
names are allowed to have spaces which auto-
matically convert to underscores “_” when used
for locations, resources, or entities.

Graphic Tools Button Bar
The Graphic Tools Button Bar contains the tools
necessary to create and edit a graphic’s compo-
nent objects. The drawing tools are the main tools
through which graphics are created and edited in
the Editing window. The drawing tools include
the following:

•Selector
•Entity Spots
•Text
•Status Lights
•Lines
•Flip Horizontal
•Arcs
•Flip Vertical
•Triangles
•Rotate
•Regular Squares and Rectangles
•Cut
•Rounded Squares and Rectangles
•Copy
•Circles and Ellipses
•Paste
•Chords
•Step Back
•Pies
•Step Front
•Polygons
•Line Color
•Raised Squares and Rectangles
•Fill Color

324 Chapter 8:
Graphic Editor
Selector
The Selector is a pointing device that allows you
to select one or more objects of a graphic. It also
allows you to move, size, and shape all graphic
objects.

Selector

How to move an object:

1. Click on the Selector button.

2. Drag the object to the desired location.

How to size or shape an object:

1. Click on the Selector button from the but-
ton bar.

2. Select the desired object.

3. Drag the sizing points. The arrow will turn
into a cross-hair when it approaches the siz-
ing points.

Text Tool
Text may be placed anywhere in the graphic by
using the Text tool.

Text Tool

How to place text in a graphic:

1. Select the Text tool from the button bar.

2. Click where the text is to appear. The Text
dialog box will open.

3. Enter the desired text in the Text dialog box
below. Set the desired options for the text.
When finished, click the OK button.

How to edit text already in the
graphic:

• Double click on the text.

 ProModel 325
User Guide
Lines
Lines may consist of several segments and are
drawn using the line tool.

Line Tool

How to draw lines in the graphic
editor:

1. Select the Line tool.

2. Click the left mouse button where the line
is to begin.

3. Move the mouse to the end of the line seg-
ment.

4. Click the left mouse button to create a
joint and begin the next segment.

5. Double click the left mouse button or click
the right mouse button to end the line.

Please note

Lines can be drawn at 15 degree increments by
holding the shift key while moving the end of a
line segment.

Arcs
Arcs are drawn using the Arc tool.

Arc Tool

How to draw an arc in the graphic
editor:

1. Select the Arc tool from the Tools window.

2. Press the left mouse button at one end of
the desired arc.

3. Drag the mouse to the other end of the
arc and release the left mouse button.

Please note

To have the arc bow left, start the arc from the
top and drag down. To have the arc bow right,
start the arc from the bottom and drag up.

Triangles
Triangles are drawn using the Triangle tool.

326 Chapter 8:
Graphic Editor
Triangle Tool

How to draw a triangle in the
graphic editor:

1. Select the Triangle tool from the Tools but-
ton bar.

2. Press the left mouse button where the cen-
ter of the base of the triangle is to be located.

3. Drag the mouse until the triangle’s base is
the desired size, but do not release the mouse
button.

4. Press the shift key and move the mouse to
adjust the size of the other two sides. Release
the mouse button when done.

Squares and Rectangles
Squares and rectangles may be drawn using the
regular rectangle tool, the rounded rectangle tool,
or the raised rectangle tool.

Rectangle

Rounded Rectangle

Raised Rectangle

How to draw a rectangle in the
graphic editor:

1. Select either the regular, rounded, or
raised rectangle tool from the Tools window.

2. Press the left mouse button at the top left
corner of the desired rectangle.

3. Drag the mouse to the lower right corner
of the rectangle and release the mouse but-
ton.

How to draw a square in the
graphic editor:

• Hold the shift key while drawing or editing a
rectangle.

 ProModel 327
User Guide
Circles and Ellipses
Circles and ellipses may be drawn using the
ellipse tool.

Circle/Ellipse Tool

How to draw an ellipse in the
graphic editor:

1. Select the ellipse tool from the Tools win-
dow.

2. Press the left mouse button at one end of
the desired ellipse.

3. Drag the mouse to the other end of the
ellipse and release.

How to draw a circle in the
graphic editor:

• Hold the shift key while drawing or editing
an ellipse.

Chords and Pies
Chords and pies are drawn using the Chord tool
and Pie tool.

Chord Tool

Pie Tool

How to draw a chord or pie in the
graphic editor:

1. Select the chord tool or pie tool from the
tools menu.

2. Press the left mouse button at one end of
the desired chord or pie.

3. Drag the mouse to the other end of the
chord or pie and release the left mouse but-
ton.

How to draw a circular chord or
pie in the graphic editor:

• Hold the shift key while drawing a chord or
pie.

328 Chapter 8:
Graphic Editor
How to adjust the size of the
“slice” in the chord or pie after the
graphic has been drawn:

1. Select a corner of the “slice” on the
graphic.

2. Press the left mouse button at the corner of
the “slice.”

3. Drag the mouse to the desired position of
the “slice” and release the left mouse button.

Polygons
Polygons are drawn using the Polygon tool.

Polygon Tool

How to draw a polygon in the
graphic editor:

1. Select the Polygon tool from the Tools win-
dow.

2. Click the left mouse button to begin the
first point of the polygon.

3. Click the left mouse button at each suc-
cessive point of the polygon.

4. Click the right mouse button or double-
click the left mouse button to end the poly-
gon.

Please note

The sides of a polygon may be drawn at 15
degree increments by holding down the shift key
while moving the mouse to the next vertex.

Positioning Spot
A positioning spot controls the positioning of an
entity on a location, resource, or path. It also con-
trols the positioning of an entity or resource on a
path. There are two types of positioning spots:
entity spots and alignment spots.

Entity spots can be defined for a graphic in either
the Graphic Editor or in the Locations module.
Alignment spots can only be defined for a
graphic in the Graphic Editor. In the Graphic Edi-
tor, the button showing the red circle with the
white X represents the positioning spot. The
default type is entity spot. To change the type, the
user may double click on the spot to display the
Spot Type dialog. This allows the user to define
the type of positioning spot.

A graphic may have any number of entity spots.
A graphic may also have any number of align-
ment spots. However, only the first alignment
spot defined will be used. An entity or alignment
spot is ignored if it is inapplicable for the model
element it is used to represent. The following def-
initions explain uses of the entity and alignment
spots for locations, entities, and resources.

Positioning Spot

 ProModel 329
User Guide
How to place a positioning spot
on an icon:

1. Select the positioning spot tool from the
button bar.

2. Click on the icon where the entity is to
appear.

Location Graphics May only use entity spots.
Whenever an entity arrives at the location, the
entity graphic will be placed on the first entity
spot defined for the location. The next arriving
entity will use the entity spot defined second, and
so forth. If entity spots are defined for a location
graphic in the Locations module, they are used
ahead of any entity spots defined in the Graphic
Editor. If no entity spot is defined for the location
graphic, no entity is shown on the location.

Entity Graphics Use only alignment spots.
When an alignment spot is defined for an entity
graphic, the entity graphic will be positioned so
the alignment spot of the entity graphic and the
entity spot for the location or resource graphic are
aligned. If the entity is traveling along a path, the
entity graphic will move along the path with the
alignment spot and the path segment or node
aligned. If no alignment spot is placed on an
entity graphic, the center of the entity graphic is
used for alignment.

Resource Graphics May use both entity spots
and alignment spots. An entity spot on a resource
graphic may be used to locate an entity a resource
is carrying. An alignment spot can be placed on a
resource graphic so that when the resource travels
along a path, the resource graphic will move
along the path with the alignment spot and the
path segment or node aligned. If no alignment
spot is placed on a resource graphic, the center of
the graphic is used for alignment.

Status Lights
A status light is a circle that changes color
depending on the status of a location. A status
light can be placed anywhere relative to a loca-
tion to show the status or current state of the loca-
tion. At run time, a window can be displayed
showing what status each color represents.

Status Light

How to place a status light on an
icon:

1. Select the Status Light tool from the button
bar.

2. Click on the icon where the status light is to
appear.

Please note

Status lights for location graphics may also be
defined in the Locations Editor.

330 Chapter 8:
Graphic Editor
Flip and Rotate
Objects may be flipped about the horizontal axis
and vertical axis or rotated by 90 degrees using
the flip and rotation tools from the Tools button
bar.

Flip Horizontal

Flip Vertical

Rotate

How to flip or rotate an object:

1. Select the desired object(s).

2. Click on the Flip Horizontal, Flip Vertical, or
Rotate buttons.

Using the flip and rotate buttons is the same as
choosing flip and rotate options under the Graph-
ics menu.

The figure below shows an object that has been
flipped horizontally, vertically, and rotated
through all phases.

Original Flip Horizontal Flip Vertical

Rotate 90 Rotate 180 Rotate 270

Cut, Copy, and Paste
To speed the development of complex graphics,
you may cut, copy, and paste objects from one
area of the workspace to another. Each of these
buttons works exactly the same as the corre-
sponding item from the Edit menu.

Cut

Copy

Paste

How to cut an object:

1. Select the desired object(s) using the
Selector.

2. Click the Cut button. The object is
removed from the Edit window but remains in
the Graphic Editor’s internal clipboard.

How to copy an object:

1. Select the desired object(s) using the
Selector.

2. Click the Copy button. The original object
remains on the screen and a copy is placed
on the Graphic Editor’s internal clipboard.

How to paste an object:

1. Click on the Paste button. The contents of
the internal clipboard are pasted next to the
last object cut or copied.

2. Move the new object to the desired loca-
tion using the Selector.

 ProModel 331
User Guide
Step Back and Step Front
You can move an object behind or in front of
another object. The Step Back option allows you
to move a selected object behind another object.
The Step Front option allows you to move a
selected object in front of another object.

For example, suppose you have five graphic
objects displayed and you want to move the top
object to the third object. You can use the Step
Back or Step Front option.

How to move an object behind or
in front of another object:

1. Select the object to move using the Selec-
tor.

2. Click on the Step Back or Step Front tool
from the button bar.

3. Continue to press the Step Back or Step
Front button until the selected object is
behind the desired object.

Please note

If you would like to move an object behind or in
front of all objects, use the Move to Back or Move
to Front option in the Graphics Menu. Alterna-
tively, use the Page Up or Page Down keys.

Line and Fill Color
An object’s line and fill colors can be chosen
using the Line tool and the Fill tool. You may use
one of the predefined colors or create your own
custom color. Each tool’s color changes accord-
ing to the color chosen.

How to define the line color or fill
color:

1. Select the object(s) to change using the
Selector.

2. Click on the Line or Fill tool from the button
bar.

3. Choose the desired color. The tool will
change to the color specified.

Please note

The line color and fill color can also be defined
in the Graphic Editor Options menu.

Editing a Library Graphic
Various editing functions allow you to alter the
objects that comprise a library graphic. These
functions may be applied to the entire graphic or
to one of the objects from which the graphic is
constructed. The following is a description of
how to edit a graphic (All mouse actions are per-

332 Chapter 8:
Graphic Editor
formed using the left button unless stated other-
wise).

TO... DO THIS

Select an object. Choose the Selector tool
and click on the object.

Select multiple
objects.

Drag in an empty region
until a bounding rectangle
encompasses the objects.

or

Shift+Click on each of the
objects you want selected
(Shift + Click again on a
selected object deselects it).

Move one or more
selected objects.

Drag the selected object(s).

Delete selected
objects.

Press the Delete key.

or

Select Cut from the Edit
menu (This method puts
the object on the clipboard
for subsequent pasting).

Copy selected
objects.

Press the Copy button to
copy the selected objects to
the clipboard. Then press
the Paste button to place a
copy of the selected objects
into the Edit window.

or

Choose Copy from the Edit
menu. Then choose Paste
from the Edit menu.

Edit text. Double click on the text to
bring up the text editor dia-
log box.

Change the shape of
a selected object.

Drag one of the sizing
points of the selected
object.

Add a vertex to a
selected line or poly-
gon.

Right click on the line or
polygon where the vertex is
to be added.

Delete a vertex of a
selected line or poly-
gon.

Right click on the vertex.

Change the fill pattern
for a selected object.

Choose Fill Patterns from
the Graphics menu and
select the desired pattern.

Change the color of a
selected object.

Click on the Line or Fill
Color button with one or
more objects selected.

Change the line style
for a selected object.

Choose Line Styles from
the Graphics menu. Then
choose the desired line
style.

Flip or rotate a
selected object.

Click on the flip or rotate
button with one or more
objects selected.

Move a selected
object in front of
another object.

Click on the Step Front but-
ton until the selected object
is in front of the other
objects.

Move the selected
object in front of all
other objects.

Choose Move To Front
from the Graphic menu.

or

Press the Page Up key.

Move a selected
object behind another
object.

Click on the Step Back but-
ton until the selected object
is behind the other objects.

Move a selected
object behind all other
objects.

Choose Move To Back
from the Graphic menu.

or

Press the Page Down key.

Nudge a selected
object one pixel left.

Press the Left arrow key.

TO... DO THIS

 ProModel 333
User Guide
Nudge a selected
object one pixel right.

Press the Right arrow key.

Nudge a selected
object one pixel up.

Press the Up arrow key.

Nudge a selected
object one pixel
down.

Press the Down arrow key.

Size a background
graphic proportion-
ally.

Select the graphic, group it,
then size using the handles.

Create a perfect circle
or square.

Select a graphic and, while
holding down the shift key,
size the graphic.

TO... DO THIS

334 Chapter 8:
Options
Options

The Options dialog contains default folders,
selections for displaying the long build menu,
defaults for record deletion, and the time between
auto-saves.

Default Folders These fields contain the
default folders for your model.

Default File: Graphics Library This field
allows you to specify a default graphic library file
for every new model you create.

Auto-Save time interval Allows you to select
how often ProModel will automatically save your
model.

Confirm record deletion Use this option to
have ProModel display a dialog box confirming
that the user wants to delete a record from an edit
table.

Show shortcut panel at start-up Check this
option to display the shortcut panel at start-up.

Long build menu Allows the user to view the
long build menu.

Recalculate path lengths when adjusted
Recalculates the time or distance of a path net-
work or conveyor as it is graphically lengthened
or shortened.

Directories
The Directories section of the Settings dialog
allows you to specify which drives and folders to
use for storing models, graphic libraries, and out-
put results.

How to change the default
folders:

1. Select Options from the Tools menu.

2. Click on the Browse button next to the
Folder name you would like to change.

3. Specify the desired folders for models,
graphics libraries, output results, and auto-
save.

4. Click OK.

Long Build Menu
The Long Build Menu option reorganizes the
Build menu. The long build menu takes the first
section of the More Elements submenu and
places it in the Build menu. This includes
attributes, variables, arrays, macros, and subrou-
tines. Using the long build menu is especially
helpful when using these elements frequently.

 ProModel 335
User Guide
How to display the long menu:

1. Choose Options from the Tools menu.

2. Check the Long build menu option.

Please note

To display the short menu, follow the same pro-
cedure above and uncheck the Long build menu
option.

AutoSaving Files
ProModel automatically saves the open model
every few minutes, which is useful in the event of
unforeseen crashes and power outages. ProModel
uses a model file called “AUTOSAVE.MOD” for
all autosaves and only modifies the original file
when Save is chosen from the File menu.

How to specify the amount of time
between AutoSaves:

1. From the Tools menu, select Options.

2. In the Time between autosaves field, enter
the time.

3. Click OK.

Please note

Models are always autosaved at the start of a
simulation run. To deactivate the auto-save fea-
ture, set the time between auto-saves to 0.

How to specify the autosave
directory:

1. From the Tools menu, select Options.

2. In the Auto-save field, enter the directory
path you wish to use.

3. Click OK.

336 Chapter 8:
Customize
Customize
You can add direct links to applications and files
right on your ProModel toolbar. Create a link to
open a spreadsheet, a text document, or your
favorite calculator–it’s your menu.

To create or modify you Custom Tools menu,
select Customize from the Tools menu.

This will pull up the Custom Tools dialog win-
dow. The Custom Tools dialog window allows
you to add, delete, edit, or rearrange the menu
items that appear on the Tools drop down menu
in ProModel.

Three tools come already added to the Custom
Tools menu by default: QuickBar, Models to Go,
and Model Package Association. These tools can
be added to or deleted from the Tools menu.

Add a new menu item:

1. Click on the New button.

2. In the Name text box, type the name of
the item you will be referencing, as you want
it to appear on the drop menu.

3. Click the Browse button.

4. Use the browse window to find the file or
application that you wish to have launched,
then double click on it or click Open.

5. The file or application name and path will
appear in the Source window.

Delete a menu item

1. In the Menu Items list, click on the name of
the item you would like to delete.

2. Click the delete button.

Edit a menu item

1. In the menu Items list, click on the name of
the item you would like to edit. Its properties
will appear in the Edit Item panel, on the
right.

2. Change the name that appears in the
Name text box.

3. To redirect the item to another file or appli-
cation, change the path and file name in the
Source text box by either typing in a new
source, or using the Browse window.

Rearrange items on the menu

1. You can rearrange the order in which
menu items appear on the Tools menu, or
add separators to divide them into logical
groups. To move an item up in the list, select
the item you wish to move.

 ProModel 337
User Guide
2. Click on the Up or Down button to move
the menu item’s position in the menu list.

Add a Separator

1. Clicking on the Separator button adds a
Separator line to the drop down list. In the
Menu Items list, this line is represented as --
<Separator>--, in the Tools menu it appears as
a single solid line.

2. The Separator line is inserted into the menu
list above the highlighted Menu Item. Its
placement can then be adjusted similar to
other menu items, using the Up and Down
buttons

Please note

Custom Tool settings are saved in your Windows
Registry. They are not a part of your model file or
model package. If you have multiple installations
of ProModel Corporation products (such as a
LAN version, MedModel, or ServiceModel) your
Customized Tool menu will be available to your
other ProModel Corporation products as well.

Power Tools
Packaged with ProModel are several powerful
tools that can help you better use and understand
your ProModel software and the statistical data it
creates. These tools include:

•ProClare
•ProSetter
•Shift Library
•ProActiveX

Any of these tools can be added to the custom
Tools menu using the steps outlined in the section
“Add a new menu item:” on page 336.

338 Chapter 8:
Power Tools
ProClare

ProClare is a quick way to add new variables,
attributes, macros and arrays into your ProModel
Corporation product without having to leave
where you are in the model building process.
This is extremely useful if, for example, you are
into heavy logic and need to add a new variable.
With this tool you can add the new variable with-
out losing your place.

Tools
Startup Loads the default ProModel Corpora-
tion product for model building and editing. You
can choose to specify a model to be loaded.

Please note

When using the ProClare tools, if no ProModel
Corporation products is currently open, Pro-
Clare will launch the default ProModel Corpora-
tion product for you.

Variables This will allow the addition of new
variables into the model. The name, initial value,
type, and RTI stats can be set here.

Attributes This allows for the addition of new
attributes. The attribute name, type, and value
can also be configured.

Arrays This allows the user to add arrays, with
their corresponding name, dimensions and type.

Options
Select the Options button to customize ProClare
in these additional ways:

Always on Top This option allows ProClare to
always be on top of all other windows, which is
useful if you plan on adding a lot of new items.

Auto Roll-up When enabled, ProClare is
reduced to just the title bar when the mouse cur-
sor is outside the window. When the cursor is
inside the window, the window is restored to nor-
mal size.

 ProModel 339
User Guide
ProSetter

This tool is useful only if you have more than one
ProModel Corporation product installed. This
includes having more than one installation of
ProModel, or having every ProModel Corpora-
tion product installed.

When you start this tool, it will scan all your
hard-drives for ProModel Corporation products
(ServiceModel, ProModel, MedModel, or multi-
ple installations of any one of these). To change
the default product, click which product you want
to be your default. If you have multiple copies of
a product, select which location. Having made
your selection, you must then click the “Make
Default” button to process the change. When you
make a product the default product, it will modify
the registry, indicating to Windows that this
product is now your default product. It will also
reset your icon cache to reflect the new file asso-
ciation.

Products
This tool supports ServiceModel, ProModel and
MedModel. It supports multiple installations of
these products as well.

Each product has 2 labels: Installed and Default.
Both labels say either Yes or No next to them to

reflect whether it is installed, and indicate if it is
the default product.

Locations
When you click on a product, it will populate the
location box with all of the locations to which
that product is installed. The default product
location will have a “(Default)” caption next to it
to indicate that it is the default.

340 Chapter 8:
Power Tools
Shift Library
For your convenience, predefined shift files are
now included with your ProModel Corporation
product. When installed they will appear in a
Shift Library folder within your product installa-
tion folder i.e. C:\ProModel\Shifts\shift_file.sft.

These files have common nomenclature to sim-
plify the process of identification and implemen-
tation of the proper shifts. Each shift file is
named in the following fashion:
####x_####x_#(_###).sft. The first four num-
bers tell you what time the shift starts along with
a letter to designate am or pm. The second four
numbers specify what time the shift ends along
with a letter designating am or pm. The third
number specifies how many days of the week for
which there is a shift definition. The numeral 1
means the shift occurs one day out of seven;
seven means the shift is defined for every day of
the week; a Monday through Friday schedule
would be represented with the number five. The
last value in brackets is only used when breaks
are defined for the shift. The first of these three
numbers indicates the number of breaks in a day,
and the next two numbers indicate the cumulative
minutes of those breaks.

Example

7a_330p_5_360.sft

This file name represents a shift that starts at 7:00
a.m. and ends at 3:30 p.m., five days a week.
There are three breaks defined, one for 15 min-
utes, one for 30 minutes, and another for 15 min-
utes. These breaks add up to a cumulative 60
minutes of break time, represented by 360.

ProActiveX

Overview
The ProActiveX spreadsheet is designed to help
you understand how to use ProModel’s ActiveX
components. The worksheets and macros give
clear and functional examples of how to access
all currently enabled data elements.

The ProActiveX spreadsheet may be used “as is”
or modified to suit your specific needs. With Pro-
ActiveX and a fundamental knowledge of Visual
Basic for Applications, you can create custom-
ized user interfaces for ProModel–or let our con-
sulting division do it for you!

ProActiveX.xls has nineteen data worksheets
corresponding to the module with the same name
in ProModel. Additionally, there is one hidden
sheet with data for drop-down lists used on the
other sheets.

Please note

ProActiveX is only compatible with Excel 2000
or newer.

Worksheets

Drop-down lists, check boxes and text
boxes

Many of the worksheets in ProActiveX have
drop-down lists which make it easier to fill in the
required data. In all cases, the value you select
will be inserted into the selected cell or range of
cells. However, the assigned macros do not pre-
vent you from selecting a different column than
the one with the drop-down used.

Using a combo box with a pre-defined list is one
way to ensure consistency in the data. In most

 ProModel 341
User Guide
cases, the numeric value of the list selection is
temporarily recorded on the hidden sheet (named
Hidden Sheet). On the Simulation Options
sheet, instead of filling in a cell or range, the
value shows in the drop-down box itself and the
numeric value is hidden in the cell behind it.

The Simulation Options sheet also contains sev-
eral check boxes and a text box. The values for
the check boxes are hidden in the cells behind
them. The method used for hiding the values is
simply to make the text color the same as the
background color.

Not Enabled and Partially Enabled

A few of the worksheets have data columns
defined for methods which have not yet been
implemented in the ProModel Data Object.
These columns have been included to acknowl-
edge that these elements were not forgotten when
ProActiveX was created–these data elements will
be enabled in future releases of ProModel.

Shift Editor Button

The Shift Assignments worksheet has a button to
the far right labeled Shift Editor. Clicking on this
button will show the Shift Editor, just like when
you invoke the menu call from your default Pro-
Model Corporation product.

Browse Button

The General Info worksheet has a Browse... but-
ton that uses the Microsoft Common Dialog to
display a file selection window.

Comments

Several worksheets have comments in the cells of
the title rows. These comments are included to
give you important information about the data
contained in that column–like limitations or for-
matting requirements.

Panes and Sections

In each worksheet where the data columns go
beyond the right-hand border of a single screen,
separate panes have been created and ‘frozen’ to
allow you to scroll through the columns without
moving the column that identifies the record.
The title rows have also been frozen, so that the
user can scroll down the sheet without losing
sight of the titles.

In each worksheet, title labels spanning more
than one column indicate that all the columns
beneath that title pertain to that type of informa-
tion. For example, on the Resources worksheet,
there are several columns for downtime data
which have duplicate titles, but different section
labels. In some cases, the labels are used merely
to make the titles easier to read.

Controls Sheet
The first sheet of the ProActiveX file is the Con-
trols Sheet. The options available on this sheet
are described below.

Get (All)

The Get button copies ActiveX enabled data ele-
ments from the currently open model to the Pro-
ActiveX spreadsheet.

ProModel must be running and a model loaded.
When all of the data has been copied to the
spreadsheet, a message box will appear saying,
“Process Complete.”

Build Model

The Build Model button copies all ActiveX
enabled data elements from the ProActiveX
spreadsheet to the currently open model.

ProModel must be running and a model loaded.
When all of the data has been copied to the
model, a message box will appear saying, “Pro-
cess Complete.”

342 Chapter 8:
Power Tools
Save Model

The Save Model button saves all updates to the
loaded model. ProModel must already be open
with a model loaded.

Run Simulation

The Run Simulation button starts the simulation
for the loaded model. To view the simulation,
you will have to manually select ProModel from
your Windows Task Bar, to bring it forward.

Open ProModel

The Open ProModel button starts ProModel, but
does not load a model.

Load Model

The Load Model button gives the user an oppor-
tunity to specify a model and then open it in Pro-
Model. If ProModel is not already running, the
Load Model button will start ProModel and then
load the selected model. This button gives you
an example of a custom dialog box.

Macros
All of the processing logic for ProActiveX is con-
tained in Excel macros. In most cases each
macro is in a separate module. The controlling
modules are named Get_ALL_Model_Data and
Pop_ALL_Model_Data. There are also macros in
some of the Excel Sheet Objects. For example,
Sheet04 (Resources) has subroutines that dynam-
ically fill in the Path Network drop-down list
(using the information on the Path Networks
sheet) every time the Resources sheet is acti-
vated. This is one method for keeping the drop-
down list in sync whenever you update the data.

When the user clicks on the Build All button on
the Controls Sheet, the create_model subrou-
tine is started (found in the
POP__ALL_Model_Data module). This subrou-

tine then calls subroutines in other modules to
process each type of data. The order in which the
subroutines are called is important, since many of
the modules in ProModel depend on information
in other modules. For example, the Locations
module must be built before the Path Networks
module, because the Path Networks module ref-
erences Locations.

All of the subroutines in ProActiveX use the con-
stants established in the PM_CONSTANTS mod-
ule. You will also find this module recorded in
the file called PM_CONSTANTS.bas. The main
purpose of the constants is to provide a method
for accessing the parameters to the ProModel
properties and methods data, without having to
remember the numbers associated with each table
and field.

There are some other useful subroutines that are
used throughout the program to do things like
showing the right error message or replacing
Excel style carriage returns with ProModel style
carriage returns.

In many cases when you look at the tables in Pro-
Model, what you actually see on the screen is a
main table and one or more sub tables.

The subroutines in ProActiveX must process the
data for all tables simultaneously by using
For...Next or Do While... loops.

In many of the data tables, the first field is a
Name or ID field that identifies each record in
the table and does not allow duplicates. In the
subroutines that populate these types of tables,
the logic is designed to search for an existing Pro-
Model record with the same name or ID. If a
record is found, all of its fields will be updated. If
no record is found, a new one will be appended.
In tables that have no identifying field, records
are always appended.

 ProModel 343
User Guide
Promodel Player
Promodel Player is a browser plug-in for
Microsoft’s Internet Explorer that allows users to
view the animation and statistics of a model.
PMplayer is automatically installed on your com-
puter as you install ProModel.

Viewing Simulation Models
To view, or “play,” a simulation model in Win-
dows Internet Explorer, you may:

•Select the model file in Windows Explorer,
then right-click on the package and select
Play from the menu that appears. Three
packages, Semiconductor.pkg, DaySur-
gery.pkg, and TollPlaza.pkg, are installed on
your computer when you install ProModel.
The are found in the following directory:
C:\Program Files\PMPlayer.
or,

•View a model via HTML links to the desired
model package. Model links are available
from the ProModel Corporation Web site at
www.promodel.com. You cannot open Pro-
model Player independently of selecting a
model package.

When you open a package on your computer, or
click on a package link on the Internet, an Inter-
net Explorer window will open and you will see
the following image in your browser window
while the package is loaded:

After the model has been loaded, the layout win-
dow of the model appears in the main browser
window.

Using Promodel Player
Simulations in Promodel Player are controlled
through the Toolbar.

: Runs the animation.

: Pauses the animation.

: Stops the animation.

: Toggles the Animation on/off. Turning the
animation off increases the speed of the simula-
tion.

344 Chapter 8:
Power Tools
:Allows you to zoom in or out on the
layout.

: Toggles the Auto Zoom on/off. When
selected, this option will zoom the animation to
fit within the browser window.

: Opens an options window, which gives you
several options for controlling your animation.

: Opens this Help file.

To run the model animation, click Promodel
Player’s play button. If you have selected to view
the output, as soon as the simulation is complete,
the output statistics and graphs will open in the
browser window. Only predefined output graphs
will come up, the user cannot define new graphs
through Promodel Player.

If there are any bar graphs defined, as in the
Semicon report, the user can get a detailed pie
chart of the individual bar by left-clicking on the
bar of the desired statistic.

To close the Output window and return to the ani-
mation window, click on the red "x" on the tool-
bar.

Please Note

A user who has installed this plug-in, but has not
installed any other ProModel Corporation prod-
ucts will not have access to any of ProModel’s
model building capability, they may only view the
simulation animation and the statistical output
results. Users who have a valid ProModel Cor-
poration registration key will have access to Pro-
model Player Gold, which is described in the next
section.

Promodel Player Gold
If you have a valid registration key on your com-
puter for a ProModel Corporation product, Pro-
model Player will automatically launch Promodel
Player Gold.

The Gold version of Promodel Player is function-
ally similar to the regular version of Promodel
Player, but it contains the added functionality of
scenarios and macros.

Promodel Player Gold allows you to view values
for scenarios that are packaged with any .pkg file.

The scenario viewing area is accessible through
the green bar underneath the Promodel Player
toolbar.

 ProModel 345
User Guide
Clicking on the arrow on the far left of the green
bar will open the scenario and macro window.

From this window you can select the scenarios
you wish to run, and view the available macros.

346 Chapter 8:
Power Tools

 ProModel 347
User Guide
Chapter 9: Running the
Model

Simulation Menu
All of the run-time controls are accessed through
the Simulation menu located on the menu bar.
This menu contains options for running a model,
specifying multiple replication statistics, defining
scenario data, and other extended run-time
options.

Each of the selections available on the Simulation
menu is explained below.

Run Choose Run to begin simulating the current
model using the options previously selected in
the Simulation Options dialog box. Choosing
Run does not save the models to the current
model file. However, the model data will be
saved to the file AUTOSAVE.MOD. To run sev-
eral scenarios, you must select Run Scenarios
from the Scenarios dialog mentioned below. Oth-
erwise, it will run the RTI default values.

Save & Run Saves the current model, then runs
it.

Options Select Options to bring up the Simula-
tion Options dialog box used to specify important
run-time information such as run length, warm-
up period, number of replications, and multiple
replication statistics. (See “Simulation Options”
on page 348.)

Model Parameters Choose Model Parameters
to open the Model Parameters dialog box. The
dialog box allows you to modify the current set-
tings for the RTI (Run-Time Interface) parame-
ters defined in the Macros module. (See “Run-
Time Interface” on page 242.)

Scenarios Select Scenarios to open the Scenar-
ios dialog box. The dialog box allows you to
define different scenarios using defined RTI
(Run-Time Interface) parameters. (See “Scenar-
ios” on page 353.)

SimRunner SimRunner takes your existing Pro-
Model simulation models, evaluates them for
you, then performs tests to find better ways to
achieve the results you desire. (See “SimRunner”
on page 370.)

348 Chapter 9:
Simulation Options
Simulation Options
The Simulations Options dialog provides you
with a number of options to control the simula-
tion, such as run length, warm-up time, clock pre-
cision, and the output. You also control the type
of statistics reporting you want from the simula-
tion, including period length and number of repli-
cations.

In addition to reporting standard statistics based
on one or more replications of a simulation, Pro-
Model allows you to average statistics across
intervals of a single replication (batch mean) for
analyzing steady-state systems or take the aver-
age of the average statistics for specific time peri-
ods over multiple replications (periodic) for non-
steady state systems. You may choose from three
statistical reporting options.

How to open the simulation
options dialog:

1. Select the Simulation option from the
menu bar.

2. Select Options to open the Simulation
Options dialog.

General Options & Settings
Output Path Contains the path of the output file
(the name of the file is automatically created
using the name of the model). ProModel records
all statistical output in this file for your analysis.

If this field is left blank, the default path is used,
which points to the Output directory in the Pro-
Model directory.

When you change the default path, be sure the
path you enter actually exists, or an error will
occur at run time.

Define Run Length by ProModel allows you to
define a run length for you model based on the
duration you will test.

•Time Only The total run length in hours.

•Weekly Time The total run length by week,
day, and time.

•Calendar Date The total run length by a
specific calendar date and time.

 ProModel 349
User Guide
•Warm-up Period The amount of time to
run the simulation before collecting statis-
tics. Usually this is the amount of time it
takes for the model to reach steady state. The
warm-up period uses the same units as the
run length.

Clock Precision Select the clock precision
value from the drop down box. Then click the
radio button for the clock units you want to dis-
play at run time.

Please note

The maximum run length depends on the clock
precision and time unit selected. The following
table shows the maximum run hours for each pre-
cision setting.

CLOCK PRECISION

Time Unit .01 .001 .0001 .00001

Seconds
(sec)

11,930 hrs 1,193 hrs 119 hrs 11 hrs

Minutes
(min)

715,827 hrs 71,582 hrs 7,158 hrs 715 hrs

Hours (hr)
42,949,672

hrs
4, 294,967

hrs
429,496

hrs
42,949

hrs

Days (day)
1,030,792,128

hrs
103,079,208

hrs
10,307,904

hrs
1,030,776

hrs

The following table shows the default precision
selections based on the time unit selected in the
General Information dialog.

TIME UNIT

DEFAULT CLOCK PRECISION
SELECTIONS

Clock Unit
Clock

Precision Maximum Run

Seconds (sec) Seconds .01 11,930 hrs

Minutes (min) Minutes .001 71,582 hrs

Hours (hr) Hours .001 4,294,967 hrs

Days (day) Hours .001 1,030,792,128 hrs

Disable: Animation Use this option to improve
run-time speed by shutting down the animation.
If you choose to disable animation, you cannot
choose the Generate Animation Script option.

Disable Array Exports This option disables the
exporting of data to external arrays. This is help-
ful for skipping the array exporting at the end of
simulation, which may save time if the data being
exported is large.

Disable Cost When you select this option, Pro-
Model disables all cost information collection for
in the model.

Disable: Time Series Use this option to improve
run-time speed by foregoing time series statistics.
This also saves disk space used to store the col-
lected statistics.

At Start: Pause To pause the simulation at the
start of the run, use this option. The simulation
will pause until you select Resume from the Sim-
ulation menu in the Simulation module.

At Start: Display Notes Use this option to dis-
play the notes from the General Information dia-
log at the beginning of the simulation.

General: Adjust for Daylight Saving This
option is only available when you have defined
Run Length by Calendar Date. When checked,
the simulation clock will account for the hour

350 Chapter 9:
Simulation Options
shift of daylight saving time in April and Octo-
ber.

General: Generate Animation Script When
checked, the simulation will generate a 3D ani-
mation script for use with ProModel Corpora-
tion’s 3D Animator application. The animation
script records the graphical events of the simula-
tion for later 3D rendering in 3D Animator.

General: Common Random Numbers This
feature is a variance reduction technique used pri-
marily when running multiple scenarios, each
with multiple replications. It is intended to help
reduce the number of replications required to
determine the statistical significance of differ-
ences between scenario results. When enabled,
common random numbers will ensure that the
sequence of starting seed values for each stream
in a set of replications for one scenario is identi-
cal to the starting seed values for corresponding
replications in every other scenario.

For example, if you have this option disabled, the
match between starting seed values for each
stream in corresponding replications for each sce-
nario will not be guaranteed. The net effect of
this is that you may have to run more replications
to get the same confidence interval that you are
able to obtain by running with common random
numbers.

When common random numbers are enabled,
you can theoretically establish the statistical sig-
nificance of differences in output results between
multiple scenarios with fewer replications than
by not enabling common random numbers. Spe-
cifically, it reduces the amount of variation in dif-
ferences between outputs of corresponding
replications by ensuring that these differences are
due to true differences in performance and not to
differences due to randomness of the streams.

For more information on random number
streams, see “Using Random Number Streams”
on page 266.

General: Skip Resource DTs if Off-shift When
checked, the simulation will ingnore resource
downtimes if the resource is off-shift.

Output Reporting Options

Standard When you select Standard output
reporting, ProModel collects output statistics for
one or more replications. No interval length can
be specified when using this option. From the
output program, statistics can be viewed for each
replication; although, by default they are dis-
played as an average over all the replications.

Batch Mean The method of batch means, or
interval batching, is a way to collect independent
samples when simulating steady-state systems as
an alternative to running multiple replications.
The advantage over running multiple replications
is that the warm-up period runs only once. When
you select Batch Mean output reporting, the out-
put statistics are collected for each time interval
indicated in the Interval Length field. The num-
ber of intervals is determined by dividing the run
length by the interval length. The interval length
may be an expression but will only be evaluated
once at model translation, so it is always a fixed
interval. The Number of Replications edit field is
not used when this option is selected since it
replaces the need for running multiple replica-
tions.

Example

 ProModel 351
User Guide
The Content History graph below shows that the
contents of Lathe1 varied throughout the simula-
tion. The interval length was set to 0.5 hours and
the simulation ran a little over 3 intervals (1 1/2
hours). The average or mean of the intervals were
2.7, 3.09, and 3.15, so the average of the inter-
val averages is the batch mean or 2.98.

Periodic Useful primarily in terminating or non-
steady state simulations where you are interested
in the system behavior during different periods
(e.g., peak or lull periods) of activity.

When you select Periodic output reporting, the
output statistics are collected by period where the
length of a period is defined in the interval length
field. The interval length may be an expression
but will only be evaluated once at model transla-
tion, so it is always a fixed interval. To define
unequal intervals, see “Customized Reporting”
on page 352.

You may gather statistics for a periodic report
over multiple replications. From the output pro-
gram, you can view each replication averaged
over the periods, each period averaged over the
replications, or the pooled average (the average
for each period averaged over all of the replica-
tions).

Example

The content history table below shows how
the contents of Lathe1 varied throughout the
simulation and from one replication to the
other. The interval length was set to 0.5 hours
and the simulation ran a little over 3 periods
(11/2 hours) with two replications. The results
are shown below.

Periodic
Output

Period
1

Period
2

Period
3

Replication 1
Avg.

2.70 3.09 3.15

Replication 2
Avg.

2.20 3.13 3.01

Pooled Average 2.45 3.11 3.08

Interval Length Enter the interval length as the
number of time units for each interval or period.
The interval length may be an expression but will
only be evaluated once at model translation, so it
is always a fixed interval. To define unequal
intervals, see “Customized Reporting” on
page 352. The time unit is defined in the General
Information dialog. The interval length need only
be specified when using Batch Mean or Periodic
reporting.

Number of Replications Enter the number of
replications you want the simulation to run in this
field. Number of replications only needs to be
specified when using Standard or Periodic report-
ing.

Running a Specific Replication
ProModel allows you to run a specific replication
in order to produce time series graphs in the Out-
put Program. To run a specific replication, enter
the “@” symbol in the “Number of Replications”
box followed by the replication number. For
example, “@5” will run only the fifth replication.

352 Chapter 9:
Model Parameters & Scenarios
Customized Reporting
For customized reporting, you may want to take
advantage of the following statements: REPORT,
RESET STATS, and WARMUP. See “Report”
on page 542, “Reset Stats” on page 545, and
“Warmup” on page 579 for syntax and examples.

REPORT A general statement called from any
logic. When the statement is called, a full set of
statistics is saved to be viewed as a snapshot
report in the output processor. Optionally, the
statement allows you to reset the statistics after
the report is saved, giving you a batch or period
for any time interval you define.

RESET STATS A general statement called from
any logic and generally used in connection with
the REPORT statement. When this statement is
used, all statistics are set to zero. The output data-
base is not erased (see WARMUP).

WARMUP A general statement called from any
logic. When this statement is used, all statistics
are set to zero and the output database is erased.
Use this statement in conjunction with the WAIT
UNTIL statement to wait until specific parame-
ters in the system being modeled are at a steady
state or other conditions are appropriate to
declare the warm-up period over.

Model Parameters & Sce-
narios

Model Parameters
The Model Parameters dialog box allows you to
modify the current settings for the Run-Time
Interface (RTI) parameters defined in the macros
module. This provides a convenient interface for
making model changes without using the Build
modules. To define and run multiple scenarios
using RTI parameters, select the Scenarios option
from the Simulation menu (see discussion on
Scenarios later in this section). Model parameter
settings are saved with the model for future use.

Parameter The name of the macro defined in
the model as the RTI (Run-Time Interface)
parameter. The parameter name does not need to
be the same name as the macro.

Current Setting The current setting of the
parameter.

Change Allows you to change the current set-
ting of the parameter.

Reset All Resets all parameters to the default
RTI setting defined in the Macros module.

Run Runs the model with the defined current
model parameter settings.

 ProModel 353
User Guide
How to define an RTI parameter:

1. Choose More Elements from the Build
menu.

2. Choose Macros...

3. Type the macro name, choose the RTI but-
ton, and select Define.

4. Define the Parameter Name.

5. Enter the Prompt (optional).

6. Select the parameter type, Unrestricted
Text or Numeric Range.

7. If defining a Numeric Range, enter the
lower and upper boundary for the range.

8. Click OK.

9. Use the macro ID in the model (e.g., oper-
ation time, resource usage time, etc.).

Please note

For more information on RTI, see “Run-Time
Interface” on page 242.

Scenarios
ProModel gives you the option of defining sev-
eral scenarios for a model using RTI parameters
specified for the model. A scenario is a set of run-
time parameters with settings defined by the user.
Using scenarios allows you to alter various model
parameters to run a series of “what-if” scenarios
without changing the model directly.

Scenarios can also be helpful for allowing other
users of you model, who may not have experi-
ence using model logic, to make changes to the
model through RTI parameters.

Scenarios are saved with the model for future
use.

Add Opens the Scenario Parameters dialog box
to add a scenario.

Edit Opens the Scenario Parameters dialog box
to edit an existing scenario.

Duplicate Duplicates the selected scenario and
opens the Scenario Parameters dialog box, allow-
ing you to give the newly created scenario a name
and edit its data.

Delete Deletes the selected scenario.

Disable/Enable Disables or enables the
selected scenario.

Run Scenarios Runs the model with the defined
scenarios. When running several scenarios, click-
ing on the Abort button during translation will
terminate all scenarios instead of just the current
scenario.

Scenario Parameters Dialog
The Scenario Parameters dialog box is displayed
when choosing Add, Edit, or Duplicate from the

354 Chapter 9:
Model Parameters & Scenarios
Scenarios dialog box. This allows you to control
the specifics of a scenario.

Scenario Name The name of the scenario. This
name is chosen by the user and may contain any
alphanumeric characters.

Parameter The name of the parameter as
defined in the RTI (Run-Time Interface) defini-
tion dialog box invoked from the Macro editor.

Current Setting The current setting of the
parameter.

Change Allows you to change the current set-
ting of the parameter.

Reset All Resets all parameters to their default
settings.

Please note

Only macros defined as RTI parameters will be
displayed as parameters for the scenario. (See
“Macros” on page 241.)

How to define a scenario:

1. Choose Scenarios... from the Simulation
menu.

2. Choose the Add button.

3. Define the scenario name by typing text in
the Scenario Name box.

4. Double click on the Parameter to bring up
the parameter dialog box or select the
Parameter and click the Change button.

5. Type the text in the box in the Parameter
dialog box.

6. Select OK in the Parameter dialog box.

7. Repeat for every parameter desired.

8. Select OK in the Scenario Parameters dia-
log box.

 ProModel 355
User Guide
Running the Simulation
Choosing Run begins the simulation of the cur-
rent model. The model is automatically saved in a
file called autosave.mod. Therefore, if the simu-
lation is terminated abnormally, ProModel will
ask you if you would like to load the latest
autosave.mod file when you re-open ProModel.
If you choose Save & Run, the model will be
saved in the AUTOSAVE.MOD file as well as
the <model name>.mod file.

Once you choose the Run option, a translation
status window appears, showing which data is
currently being translated. This gives you the
option to abort the simulation run at any time. As
shown below, the path networks are being
mapped.

Abort Allows you to cancel model translation at
any time during translation.

Continue Allows you to continue model trans-
lation when a warning message is displayed.

Detailed Status Allows you to view more spe-
cific information about the data in translation.

Run-Time Menus & Controls
Once a simulation begins, a new menu bar
appears at the top of the screen with selections for
controlling and interacting with the simulation.
As shown below, these menu items appear above
the animation speed control bar and simulation
clock.

Each of the menu selections and the tools for con-
trolling the animation are described in the
remainder of this chapter.

Run-Time File Menu
The Run-Time File menu contains only one
selection, View Text.

View Text Choose this option to bring up a win-
dow with a text listing of the current model. This
feature is extremely useful for debugging and
verifying models.

Please note

You may switch back and forth between a full size
View Text window and the animation screen by

356 Chapter 9:
Run-Time Menus & Controls
choosing the desired window from the Window
menu option.

Run-Time Simulation Menu
The Run-Time Simulation menu has two options:
End Simulation and Pause/Resume Simulation.

End Simulation Choose this option to end the
simulation. You will then be prompted to collect
statistics or return to the model editor without
collecting statistics. If running multiple scenar-
ios, End Simulation will terminate all scenarios.

Pause/Resume Simulation Choose Pause Sim-
ulation to pause the simulation for an indefinite
amount of time. With the simulation paused, you
may begin a trace, zoom in or out, set up the next
pause, examine different locations in the model,
or interact with the model in a number of other
ways. Choose Resume Simulation when the sim-
ulation is paused to continue running the simula-
tion.

Run-Time Options Menu
The run-time Options menu has several selec-
tions that allow you to interact with the simula-
tion while the model is running. These options
are described in the following pages.

Animation Off/On Turns the animation on or
off. Off greatly speeds up the simulation. Anima-
tion speed may also be set with the ANIMATE
statement. (See “Animate” on page 442 for infor-
mation).

Zoom Zooms in or out on the animation.

Views Allows you to select a view, which you
have defined while building the model. This
option is only available if you have previously
defined a view.

Trace Options Lists events as they happen dur-
ing a simulation. This listing may be Step by
Step, Continuous, or Filtered.

Debug Brings up the Debugger Options Dialog
box for debugging the model.

User Pause Allows the user to enter a simula-
tion clock time for the simulation to pause.

User Pause by Date/Time Allows the user to
enter a calendar date and simulation clock time
for the simulation to pause. This option is only
available if you chose "Calendar Date" as the
Run Length in the Simulation Options dialog.

 ProModel 357
User Guide
Debug Option

Debugging ProModel Logic
The Debugger is a convenient and efficient way
to test or follow the processing of any logic
defined in your model. The debugger is used to
step through logic one statement at a time and
examine variables and attributes while a model is
running.

Before discussing the details of the Debug
option, it is important to understand the following
terms:

Statement A statement causes ProModel to
take some action or perform some operation. This
includes statements such as GET, JOIN, and
SPLIT AS. (See “Statements and Functions” on
page 439 for more information).

Logic Logic refers to the complete set of state-
ments defined for a particular process record,
downtime event, initialization logic, or termina-
tion logic for a simulation.

Thread A thread is a specific execution of any
logic. A thread is initiated whenever a logic
needs to be executed. This can be an entity run-
ning through an operation logic, the initialization
logic, a resource running a node logic, a down-
time logic, or any other logic. Note that the same
logic may be running in several threads at the
same time. For example, three entities of the
same type being processed simultaneously at the
same multi-capacity location would constitute
three threads.

A thread or logic execution can be suspended by
any statement, causing simulation time to pass
(e.g., GET Res1, WAIT 5, etc.). After such a
statement completes its task, the thread is
resumed. During the time a thread is suspended,
other threads may be initiated, suspended,
resumed, or completed. This is called thread
switching.

Please note

Even though several threads can execute the
same logic at the same time in the simulation, the
simulation processor can only process them one
at a time. So there is really only one current
thread while all other threads are suspended
(either scheduled for some future simulation
time, or waiting to be executed after the current
thread at the same simulation instant).

Example

To better explain the above concepts, con-
sider the following operation logic for a multi-
capacity location.

Logic

Line of

for Thread 3

Line of

for Thread 2

Line of

for Thread 1

execution

execution

execution

The logic includes all statements shown on
previous page. Let’s assume that there are
three different entities currently executing this
operation logic. Each executing entity consti-
tutes a thread. A possible scenario for this
case is the following: Thread 1 is an entity
using two units of resource Oper_3 for N(35,5)
minutes. Thread 2 is an entity waiting for
resource Oper_1 to become available. The
last thread is a different entity which has
completed 10 minutes of the 15 minute wait

358 Chapter 9:
Run-Time Menus & Controls
executed at the beginning of the logic. Note
that two entities arriving at a multi-capacity
location at nearly the same time could both
execute the same WAIT or USE time in the
logic, only in different threads.

In general, for a logic block containing state-
ments that pass simulation time, any number of
threads can wait for the required simulation time
to elapse, corresponding to each time elapsing
statement. These threads are scheduled to resume
at some future simulation time.

There can also be many threads (any number of
threads corresponding to each of the time elaps-
ing statements within the logic) which have com-
pleted their waiting time, but await their turn to
continue execution. These threads are on hold
because the simulation engine is busy with
another thread scheduled for the same simulation
time. There is only one thread executed at any
real time instant by the simulation engine.

The debugger window will display a unique iden-
tification number for the current, active thread.
This thread ID number will help you differentiate
between different instances of the same logic
block while you are debugging your models.

Debugger Options Dialog Box
The Debugger Options dialog box allows the user
to specify when to display the Debugger dialog
box during the simulation run.

Disable debugger Disables the debugger com-
pletely. By default the debugger is enabled. Run-
ning the model with the debugger disabled
increases the run speed. When running multiple
replications or scenarios, or when the animation
is disabled, the debugger will automatically be
disabled.

DEBUG statement Displays the Debugger dia-
log box every time a DEBUG statement is
encountered in an enabled process while running
the simulation. See “Debug” on page 465 for
more information.

Global Change Displays the Debugger dialog
box every time a global change occurs to a speci-
fied variable or array. The Debugger dialog box
shows the original and new value of the element.
Only one global name can be specified in this
box.

User Condition Displays the Debugger dialog
box when a defined user condition written as a
Boolean expression becomes true, for example,
when Var1=5. Only one expression can be speci-
fied in this box, although several conditions can

 ProModel 359
User Guide
be tested by using the OR operator. See “Boolean
Expressions” on page 410 for more information.

Check Condition Allows the user to define
how often to check the user condition. The
options include:

•Before each statement The condition,
such as Var1=1, will be checked before
each statement is executed. This option is
the most precise way to tell exactly when
the user condition becomes true, but it
slows down the simulation the most.

•At each thread switch The condition, such
as Var3>17, will be checked only if a
statement from a different thread follows
the current statement being executed.

•At each thread initiation The condition,
such as Att1=5, will be checked only if the
next statement to be executed is the first
statement in a thread (the first statement in
a thread is also the first statement of a
logic).

Debug button Pressing the Debug button dis-
plays the Debugger dialog box before the next
statement executes.

OK Closes the Debugger Options dialog box and
continues to run the simulation model.

Debugger Dialog Box
The Debugger can be used in two modes: Basic
and Advanced. The Basic Debugger appears ini-
tially with the option of using the Advanced
Debugger. The Basic Debugger dialog box is
shown below:

Error Dialog Box

Information Box Logic Display Box

Context Box

Error Display Box Displays the error message or
reason why the Debugger dialog box is dis-
played, such as the User-Condition becoming
true.

Logic Display Box Displays the statements of
the current logic being executed.

Context Box Displays the module, operation,
and line number (in which the debugger stopped)
in the Information box.

Information Box Displays local variables and
entity attributes with non-zero values in the Infor-
mation box.

End Simulation Choose this option to terminate
the simulation. This will prompt you about col-
lecting statistics.

Run Continues to run the simulation, but still
checks the debugger options selected in the
Debugger Options dialog box.

Next Statement Jumps to the next statement in
the current thread. If the last statement executed
suspends the thread (e.g., the entity is waiting to
capture a resource), another thread meeting the

360 Chapter 9:
Run-Time Menus & Controls
debugger conditions may be displayed as the next
statement.

Next Thread Brings up the Debugger at the next
initiated or resumed thread.

Into Subroutine Steps to the first statement in
the next subroutine executed by this thread.
Again, if the last statement executed suspends the
thread, another thread meeting debugger condi-
tions may be displayed first. If no subroutine is
found in the current thread, a message is dis-
played in the Error Display box.

Options Brings up the Debugger Options dialog
box. You may also bring up this dialog box from
the Simulation menu.

Advanced Changes the Debugger to Advanced
mode, provides additional options discussed next.

Advanced Debugger Dialog Box
The Advanced Debugger contains all options in
the Basic Debugger plus a few advanced features.

Next (Thread) Jumps to the next initiated or
resumed thread. This button has the same func-

tionality as the Next Thread button in the Basic
debugger.

New (Thread) Jumps to the next initiated
thread.

Disable (Thread) Temporarily disables the
debugger for the current thread (see also enable).

Exclusive (Thread) The debugger displays the
statements executed within the current thread
only. When the thread terminates, the exclusive
setting is removed.

Next (Logic) Jumps to the next initiated or
resumed thread that is not executing the same
logic as the current thread.

New (Logic) Jumps over any resumed threads
to the next initiated thread not executing the same
logic as the current thread.

Disable (Logic) Temporarily disables the
debugger for all threads executing the current
logic (see also enable).

Exclusive (Logic) The debugger displays only
the statements executed in any thread executing
the current logic.

Enable disabled threads and logics Enables
the threads and logics which were disabled previ-
ously.

Debugger Options Examples

Debug Statement Example

A simulation model demonstrates a proposed
flexible manufacturing system which produces
castings. A variable, WIP, is used to track the
work in process for the system. Suppose we want
to display the Debugger when the variable, WIP,
reaches a value of 300. We could place an
IF...THEN statement including DEBUG after the

 ProModel 361
User Guide
statement incrementing the variable, WIP, as
shown below:

By checking the box next to the DEBUG state-
ment in the Debugger Options dialog, the Debug-
ger is displayed when the variable, WIP, reaches
300.

Global Change Example

Suppose we want to know when the variable,
COUNT, is incremented. We would check the
box to the left of Global Change and type
COUNT in the Global Change field. This will
display the Debugger dialog box each time
COUNT changes. It will also display the previ-
ous and changed value of COUNT.

User Condition Example

Suppose we want to follow a casting through the
entire system (i.e., from when an entity enters the
system to when it exits). We would set an
attribute equal to a unique number in the arrival
logic for a single casting (Att1=3). In other
words, only one casting in the system should
have Att1=3. We would then check the User
Condition box and enter the condition as
“Att1=3.” We would then select At Each Thread
Initiation as the Check Condition. The debugger
is displayed each time a particular customer ini-
tiates a new thread. For example, the debugger
may display the following information:

Debugger syntax

Casting @ loc1: GET Oper_1

WAIT N(5,3)

INC Var1

Casting @ loc2: JOIN 1 Fixture

...

...

...

Trace Options
A trace is a list of events occurring over the
course of a simulation. For example, a trace
statement might state “EntA arrives at Loc1,
Downtime for Res1 begins.” A trace listing also
displays assignments, such as variable and array
element assignments. A trace listing of a simula-
tion run may be viewed in several ways through
the trace options provided.

Trace Mode
A trace listing is generated in one of three modes,
Step, Continuous, or Filtered.

Trace Off

Select this option to discontinue a current trace.

Trace Step

Select this option to step through the trace listing
one event at a time. Each time you click the left
mouse button, the trace will advance one event.
Clicking and holding the right mouse button
while in this mode generates a continuous trace.

362 Chapter 9:
Run-Time Menus & Controls
Trace Continuous

Select this option to write the trace continuously
to the output device selected from the Trace Out-
put submenu. This is useful when you do not
know exactly where to begin or end the trace.
Clicking and holding the right mouse button
stops the trace until you release the button.

Filtered Trace...

When you view the Trace during simulation, you
see a list of all the events that occur as your
model is running.

Although it may be helpful to view every event in
the simulation, there are many times when you
will want to focus on just the events that affect
specific elements (locations, resources, variables,
etc.) of your model.

The Trace feature contains an optional, custom
filter, which allows you to pick the elements of
your model, or custom text string, that you wish
to view in the Trace window.

From the Custom Trace Options dialog, you may
choose which elements of your model you want
displayed in the Trace window.

The Custom Filter works by showing the speci-
fied elements in the trace according to the follow-
ing:

•Specified elements found in the main head-
ing of the Trace will be displayed along with
the entire contents of the sub-headings.

•Specified elements found in a sub-heading
will only display the main heading and the
sub-heading with the specified element. All
other sub-headings of the main heading,
which do not contain the specified elements,
will not be displayed.

 ProModel 363
User Guide
The Enable button in the Custom Trace Options
dialog must be checked for the Trace Filter to
take effect.

Output to File

Select this option to send the trace listing to a text
file. Trace statements are automatically written to
a <model name>.TRC file.

Animation Options
In addition to the debug and trace options, anima-
tion options allow you to control the animation
screen.

Animation Off Choose this option to tempo-
rarily suspend the animation. To resume the ani-
mation, select this option again. (The selection
automatically changes to “Animation On.”) Note
that running with animation off greatly increases
the run speed, especially for models with a large
amount of graphic detail. To increase the run
speed to an even faster rate, check the Disable
Animation in the Simulation Options before run-
ning the model (see “Animation Options” on
page 363).

Zoom Select this option to Zoom in or out on
the animation. When this option is selected, you
may choose a preset zoom level, enter your own
zoom level, or choose Zoom Full to fit the entire
animation on one screen. The Zoom function
zooms to the center of the screen. If the zoom
factor causes the model layout to appear outside

the layout window, the zoom function will auto-
matically pan to show at least part of the layout.

To zoom in a specific area of the simulation lay-
out, press and hold the CTRL key, then click and
drag the mouse to create a rectangle around the
are in which you would like to zoom. Release the
mouse, then the CTRL key. The layout will zoom
in on the selected area.

Views Click on this menu item to display the
available views. Select the desired view.

User Pause Choose this option to enter a time
for the simulation to pause. The proper format for
specifying a user pause is hh:mm:xx where hh
represents hours, mm represents minutes, and xx
represents hundredths of a minute.

Run-Time Information Menu
The Run-Time Information menu allows you to
see the status of locations in two different ways.
In addition, you may view the current state of all
variables and array elements. Each of these
options is defined in the following pages.

364 Chapter 9:
Run-Time Menus & Controls
Status Light Select this option to bring up the
Status Light Legend.

Locations Select this option and choose a loca-
tion to view an information box with real time
information about the location. Information for
all locations may also be displayed.

Variables Select this option to show the current
state of all real and integer global variables.

Arrays Select this option to show the current
value of all cells for arrays of up to three dimen-
sions.

Dynamic Plots Allows you to graphically moni-
tor the performance of model elements during run
time and store statistical data in an Excel® spread-
sheet.

Location Status Legend
The Location Status Legend shows the different
colors of a location status light and the meaning
of each color. Single capacity locations may be in
any of several states, while multi-capacity loca-
tions appear only as up or down. This window
may remain open during the simulation.

Dynamic Plots
Dynamic plots allow you to select certain metrics
for various model elements and observe value

changes for those metrics dynamically as the
model runs. Configurations of one or more plot
windows can be saved and later retrieved to
quickly view a customized set of graphs.

Features include:

•Up to six elements many be graphed on the
same chart at the same time.

•More than one chart may be active at a time.
•Charts can be resized.
•Plots display a meaningful scale for both
axes.

•Improved customization for graph appear-
ance

•Chart settings may be saved to use over from
one simulation run to the next.

•Dynamic plots work with multiple replica-
tions and scenarios.

Basic Operation

Please note

The Dynamic Plot dialog is only accessible dur-
ing simulation run-time. If you will be creating
saved chart views, you may wish to pause the
simulation, define Chart views, then resume the
simulation.

Starting Dynamic Plots

Dynamic plots are set up using the Information |
Dynamic Plots menu during simulation. Under

 ProModel 365
User Guide
Dynamic Plots you will find two sub-items, New
and Configurations…

New opens a window similar to the one below.

Setting up a Plot

Tree View

The tree view represents a hierarchical list of all
plottable items in the model. Expanding and col-
lapsing of tree items works in a manner consis-
tent with standard Windows tree controls,
including, but not necessarily limited to, double-
clicking on a parent item, clicking on plus or
minus graphic next to a parent item, and using the
plus and minus keys on the number pad of most

keyboards. When a subtree is fully expanded,
individual plottable items are shown, as below:

Each plottable item displays a checkbox to its
left. When checked, the item is added to the list
of currently plotted items below the tree view and
the chart view begins to plot the value of the
item. When unchecked, the item is removed
from the list of currently plotted items, and the
item is removed from the chart view. Items can
also be added or removed from the chart view by
double-clicking the item. If the item was not
checked, this will check the box next to the item,
add it to the current item list and the chart view,
and switch immediately to the chart display. If
the item was checked, this will uncheck the box
next to the item, remove it from the current item
list and the chart view, and switch immediately to
the chart display.

The maximum number of statistics that can be
plotted on a single chart is six. When six items
are being charted and you attempt to add an addi-
tional item by either clicking the box next to the
item or by double-clicking the item, nothing will
happen and no changes to the chart will take
place.

Statistic List

The item list below the tree view contains the
items currently being graphed, arranged into two
columns: a label and a statistic name. The label

366 Chapter 9:
Run-Time Menus & Controls
initially consists of only the text directly right of
the item icon in the tree view, while the statistic
name is composed of the names of the items
ancestor nodes and the name of the item node
itself. For example, for the "Avg Min per Entry"
item under the Input location, the label would ini-
tially be set to "Avg Min per Entry" and the sta-
tistic name would be "Locations\Input\Avg Min
per Entry."

Please note

When you click on the Label portion of the item in
the list to select it and then click again, the label
becomes editable, and you can type over or edit
the existing text. This text becomes the new label
for the item, and will now be displayed in the leg-
end in the chart view.

The Remove button removes the selected item, if
any, from the list, unchecks it in the tree view,
and removes it from the chart view. Clicking the
Clear button does this for every item in the statis-
tic list.

Clicking the dividing lines between headings and
dragging left or right resizes the columns in the
statistic list.

Chart View

The chart view is where graphical representations
of changing model elements are displayed. It
consists of a chart area and, optionally, any com-
bination of the following: toolbar, legend, x- and
y-axis scales, x- and y-axis labels, vertical and

horizontal gridlines, and a chart title. An exam-
ple of a chart view is shown below.

The x-axis indicates time elapsed from the start
of the simulation, measured in clock precision
units specified in the Simulation Options dialog.
The y-axis measures values of the items being
plotted. Both axes are re-scaled when necessary
so that all data points fit within the chart area.
When in the chart view, the maximize button in
the title bar expands the chart itself to completely
fill the area within the dialog, removing the
“Stats to Plot” and “Chart” tabs and extra spac-
ing. This may be helpful when you want to size
the chart window as small as possible and still
view the chart update. Clicking the minimize but-
ton will restore the chart to its normal state. The
items being plotted are color-coded and the key is
on the right-hand side of the window. Many of
the chart options such as title and colors are cus-
tomizable; simply click the right mouse button
and select Properties… from the context sensi-
tive menu options.

Dynamic Plot Configurations

Information | Dynamic Plots | Configura-
tions... is disabled if no saved configurations
exist for the model and no dynamic plot windows
are open. If enabled, selecting it opens a dialog
box like the one below. The dialog box consists

 ProModel 367
User Guide
of a list box containing the names of any saved
dynamic plot configurations for the model, an
edit field, and Load, Rename, Delete, Save, and
Exit button.

If you select a configuration from the list and
click Load, the indicated saved configuration of
chart(s) will be loaded, with all of the previous
settings as far as selected data items, chart style,
colors, fonts, visible elements, screen position
and size, etc. If any of the previously selected
data items no longer exist in the model, they will
simply not be displayed. For example, if a statis-
tic had been selected for a location that was later
deleted from the model, it will no longer be
selected.

Double-clicking on a configuration in the list has
the same effect as selecting it and clicking the
Load button.

The Delete button removes the selected configu-
ration from the list and deletes the associated data
from the model.

The Rename button changes the name of the
currently selected configuration to the text in the
Save/Rename As edit field.

Clicking the Save button saves all settings of any
open dynamic plot windows, including selected
data items, chart style, colors, fonts, visible ele-

ments, screen position and size to a configuration
with the name specified in the edit field. If the
name matches one of the configurations in the
configuration list, this data will replace the previ-
ous data for that name.

The Save button does not actually save data into
the model file. Rather, it creates or modifies a set
of configuration data associated with a particular
configuration name in memory and tags the
model as being modified. If you exit the pro-
gram, load a model, or execute the New com-
mand from the File menu you will be prompted to
save the model. Using the Delete or Rename
buttons in the configuration dialog also tags the
model as modified.

Advanced Operation
To enhance your simulations and presentations
you can turn your dynamic plots on and off using
the DynPlot “” statement in your model logic.
Predefine the statistics to be graphed and a chart
name, then open your plot through subroutines or
processing logic.

368 Chapter 9:
Run-Time Menus & Controls
Run-Time Window Menu
The Run-Time Window menu allows you to rear-
range windows and icons and select the active
window. These functions are standard to all Win-
dows applications.

Tile Causes all open windows to fit in the avail-
able screen space. Windows hidden behind other
windows become visible.

Cascade Causes all open windows to overlap
such that the title bar of each window is visible.

Arrange Icons Causes all icons representing
iconized applications or windows to be arranged
neatly along the bottom of the screen.

Run-Time Interact Menu
The Run-Time Interact menu displays the Inter-
act dialog box. It allows you to execute interac-
tive subroutines during run-time. Interactive

subroutines are defined in the Subroutines edit
table (see “Subroutine Editor” on page 246).

How to execute an interactive
subroutine during run-time:

1. Select Interact from the run-time menu.

2. Select the identifier for the subroutine from
the list box in the Interact dialog box.

3. Choose the Activate button.

Run-Time Help Menu
The Run-Time Help menu contains selections for
accessing the ProModel on-line help system. It
operates the same here as in the model editing
functions.

Index... Choose this option to bring up the Main
Help Index.

 ProModel 369
User Guide
Context Choose this option to go directly to the
help screen that corresponds to the active win-
dow. If no context sensitive help exists for the
active window, the Main Help Index will appear.

About... Choose the option to display a message
containing software version information.

Run-Time Controls
In addition to the animation options discussed in
the previous section, you may pan the animation
screen in any direction, control the speed of the
simulation, and change the format of the simula-
tion clock display. These and other procedures
are discussed in this section.

How to pan through the anima-
tion:

1. Press and hold the left mouse button any-
where on the animation screen. This point
then becomes the “anchor point” by which
the entire animation is moved.

2. Drag and release the mouse where you
desire the anchor point to be located. The
following diagram illustrates this procedure.

Desired Location

Anchor

How to control the simulation
speed:

• Move the animation speed control bar to
the left to decrease the simulation speed or
to the right to increase the simulation speed.

Slower Faster

Please note

The speed of the animation may be altered by
model logic with the use of the ANIMATE state-
ment (See “Animate” on page 442).

How to change the format of the
simulation clock display:

1. Click on the simulation clock button.

370 Chapter 9:
Run-Time Menus & Controls
2. Select a format for the clock display.

How to identify any location on
the layout during the simulation:

• Click on a location while holding the CTRL
key. (An identifier box appears and allows
you to bring up the location information win-
dow for that location.)

Run-Time Right-Click Menu
Right clicking in the simulation window will
bring up a right-click menu, which gives you
easy access to several animation controls.

•Animation Off Turns off the animation,
which makes the simulation run faster.

•Zooms Allows you to choose a level of
zoom.

•Views Allows you to choose a view that
you have previously defined. See “Views”

on page 84 for information on defining
views.

•Pause/Resume Simulation Allows you to
toggle the simulation’s pause on and off.

•Trace Options Lists events as they happen
during a simulation. This listing may be Step
by Step, Continuous, or Filtered.

•Dynamic Plots Opens the Dynamic Plots
window.

Please note

Right clicking to bring up the right-click menu
will pause the simulation as long as the right-
click menu is open.

SimRunner
SimRunner takes your existing ProModel simula-
tion models, evaluates them for you, then per-
forms tests to find better ways to achieve the
results you desire. Typically, most people use
simulation tools to predict and improve a sys-
tem’s performance by modeling the actual loca-
tion (e.g., a plant floor, a bank lobby, or
emergency room) or abstract process (i.e., a logi-
cal process). Through testing various “what-if”
scenarios, SimRunner can help you determine the
most ideal way to conduct operations—we call
this optimization.

When you conduct an analysis using SimRunner,
you build and run projects. With each project,
SimRunner runs sophisticated optimization algo-
rithms on your model to help you optimize multi-
ple factors simultaneously. For each project, you
will need to provide SimRunner with a model to
analyze or optimize, identify which input factors
to change, and define how to measure system
performance using an objective function. Sim-
Runner can conduct two types of tests: Pre-Anal-

 ProModel 371
User Guide
ysis (Statistical Advantage) and Simulation
Optimization.

SimRunner Benefits
Using SimRunner will help you find accurate
solutions for your modeling needs. No longer
must you sit and experiment with what you think
might work, only to find that your solution actu-
ally interferes with productivity in other parts of
the model. SimRunner will help you locate true
solutions by monitoring how changes affect each
part of the model. In other words, SimRunner
will not let you improve one area of your model
at the expense of another—the results you get are
beneficial to the entire model.

Starting a New Project
The following describes how to start and prepare
a project for analysis. Remember that you must
create and validate your model prior to analyzing
or optimizing it in SimRunner.

How to select a model:

1. Click the New button on the button bar or
select New Project from the File menu.

2. From the Open dialog, select the model
file you wish to use.

3. Click OK.

4. Once you select a model, the model’s
name will appear in the Project Information
dialog.

How to define the input factors:

1. Click on the Inputs button.

2. To select input variables, click next to each
variable in the Selected column. SimRunner
will mark the selected items.

Please note

SimRunner will optimize only single value RTI
macros.

How to define the objective func-
tion (output variables):

1. Click the Outputs button.

2. In the Objective Function Setup dialog,
select the category of the item(s) you wish to
minimize or maximize.

3. Highlight an item in the list.

4. Select Maximize, Minimize, or Custom to
select the type of optimization you wish to
use for the variable.

5. Enter the Weighting. This number repre-
sents the importance of Maximizing or Mini-
mizing the item. (The higher the number, the
higher the importance.)

6. After you set the values for the item, click
the right arrow to place the item in the
selected list. To remove an item from the
selected list, select the item and click the left
arrow. (Alternatively, you may double click
on an item to add it to or remove it from the
list of selected variables.)

Stage one: Pre-Analysis
With the model built, the input factors selected,
and an objective function defined, you are ready
to conduct a Pre-Analysis. Also known as Statis-

372 Chapter 9:
Run-Time Menus & Controls
tical Advantage, the Pre-Analysis runs several
tests to identify the initial bias (warm-up period),
determine appropriate run-length to reach steady-
state, find the number of replications necessary to
ensure that each event occurs at least once, and
locate the model averages.

Stage two: Simulation
Optimization
Simulation Optimization is a multi-variable opti-
mization that tries different combinations of input
factors to arrive at the combination that provides
the best objective function (output) value.
Depending on the number of selected input fac-
tors and the complexity of the solution space, this
process can take a long or short time. Optimiza-
tions with many factors and complex solutions
take longer to run.

How to run an optimization:

1. Click on the Optimize! button or select
Start Optimization from the Project menu.

2. Click Play on the dashboard to begin.

 ProModel 373
User Guide
Chapter 10: Reports and
Graphs

Once your model has been built, and the simulation run, you are ready to begin making important deci-
sions about your real-world process based on your simulation’s data. To help you make the most of the
data collected during simulation, ProModel comes with a powerful, easy-to-use Output Viewer 3DR.
This Output Viewer 3DR allows you to view your date numerically, in spreadsheet format, or graphi-
cally in a variety of charts.

374 Chapter 10:
Output Viewer 3DR
Output Viewer 3DR
Output Viewer 3DR organizes and displays the
data gathered during your model’s simulation.
You can open Output Viewer 3DR from Pro-
Model or from the Window’s Start menu in the
ProModel program group.
Output Viewer 3DR’s Menu bar and Toolbar
give you the controls necessary to create the
reports and charts needed to help interpret your
data.

Menu Bar
The Menu bar contains all of the tools necessary
to view your simulation’s data. The Menu bar is
located just beneath the Output Viewer 3DR cap-
tion bar, and allows access to the following
menus:

File Menu
The File menu allows you to open and close data
files, export data, and print data.

Output Viewer 3DR opens files with the .idb
extension; however, .rdb files, which are gener-
ated by ProModel or Process Simulator can be
converted to .idb files when they are opened
using Output Viewer 3DR.
Data can be exported to a .csv (comma-delim-
ited) file using the Export Data option. This

allows you to later import the data into other data
viewing programs, such as Excel
Data sets can also be printed using the print
options in this menu.

View Menu
The View menu lets you specify how you want
the data displayed.

Reports and Charts
The first five selections in the View menu display
the output data in different ways:

•Report Spreadsheets of the data collected
during the simulation. see “Creating
Reports” on page 382.

•Category Charts Bar charts of your data.
see “Category Chart” on page 391.

•State Charts Stacked bar charts of state
variables such as location and resource
states. see “State Chart” on page 392.

•Histogram Displays graphically the fre-
quency of occurrences of time plot data. see
“Histogram” on page 394.

•Time Plot Shows variables, states and
events over time. see “Selection Window”
on page 396.

Sheet/Chart Properties
The title of the last option in the View menu will
vary between Sheet Properties and Chart Proper-
ties, depending on whether a spreadsheet report
or graphical chart is currently displayed. This

 ProModel 375
User Guide
selection brings up a window where you can
choose the data you want to appear in the open
report or chart.

Sheet Properties - Display Items
If you choose Sheet Properties while you are
working with a Report, the following window
appears. The default Display Items Tab is
described below.

•Display gridlines with this desired
color: When this box is checked gridlines
will appear in the data sheet in the selected
color. Unchecking this box will hide all grid
lines for the data sheet.

•Display header with desired
settings: When this box is checked the
header will appear with the font styles
selected when you click the Font & Color
button. If you uncheck this box, no heading
will be displayed above the sheet.

•Caption: The text displayed in the sheet
heading. The default caption uses the follow-
ing construct: [model name] ([scenario
name] - [replication information]).

•Additional Records: The options in this
area allow you to display additional replica-
tion information, which includes: the min
and max, standard deviation, and various
confidence interval information for the repli-
cations.

Please note

If you are working with a database that does not
contain multiple replications, the Additional
Records field of the Sheet Properties window is
not applicable, and therefore not accessible.

Sheet Properties - Columns
The “Columns” tab for Sheet properties is
described below.

•Columns: You may choose to show or
hide columns by checking or unchecking the
boxes in this list. The available columns in
this list will vary depending on the sheet you
have selected.

376 Chapter 10:
Output Viewer 3DR
•Column Headers: Choose the font styles
of the column headers.

•Non-scrolling columns from the left: Use
this column to lock columns in place as you
scroll horizontally through your sheet data.
For example, entering “1” in this field will
lock the left-most column in place, so that it
will not scroll with the rest of the sheet’s col-
umns.

•Display time values in: By default, time
values are shown is hours, but you may
choose to have time units shown in seconds,
minutes, hours, days, or weeks.

Chart Properties
The Chart Properties dialog will vary depending
on what type of chart you choose to view proper-
ties for. See each chart type description (begin-
ning with “Category Chart” on page 391) for
more information on the options available from
its Chart Properties dialog.

Tools Menu
The Tools menu allows access to the View Man-
ager and Output Viewer 3DR options.

View Manager
The View Manager allows you to save custom-
ized report and chart views for quick retrieval.
The View Manager is great for creating custom
presentations. Views are associated with the
model, so the next time the model is run the same
view appears.

A view describes the way a report or chart
appears. For instance, you may choose to create a
category chart as explained on page 391.

That chart may then be customized using the
tools in the Chart toolbar, page 389, and the right-
click menu, page 379.

In the example shown, the fonts, coloring and
window size were changed, but the data remains
the same.

 ProModel 377
User Guide
This particular customized view of the chart can
be saved using the View Manager.

The View Manager contains a field with the
names of your views and the following tools:

• : Creates and saves a new view based
on the report or chart you currently
have selected in the Output Viewer
3DR.

• : Saves a view after you have modified
it.

• : Deletes the view you have selected in
the View Manager.

• : Renames a selected view.

• , : Moves the name of a selected
view up or down within the list in the
View Manager. This is helpful for cre-
ating an ordered list of customized
views. The first view in the list is the
initial view displayed after rerunning
the model again and opening the Out-
put Viewer 3DR.

How to Save a Customized View

1. Open a report or chart window. See “Reports
and Charts” on page 374 for a list of possible
reports and charts.

2. Customize the report or chart as desired using
the tools in the Chart toolbar, page 389, and the
right-click menu, page 379.

3. Open the Views Manager by clicking on the
 tool in the Output Viewer 3DR toolbar, or

selecting View Manager from the Tools menu.

4. Click the New Icon, , in the View Manager
and give the view a name.

5. Click OK to save your new view.

Next/Previous View
The Next/Previous View options in the Tools
menu allows you to scroll through the views you
have saved in the View Manager.

Set as Default Style
This option allows you to set the characteristics
of a report or chart as your default style. This is
helpful, for instance, if you customize the color
scheme of a chart, and want it to apply to all the
charts you open.
Setting a default style is different from saving a
view, which will only save color and font
changes for just one report or graph.
If a report or chart is selected when you choose
the Set as Default Style option, all of the font and
color changes you have made to the selected
report or chart will be applied to any new reports
or charts you open.
The default style settings can be restored from the
Options window described next.

378 Chapter 10:
Output Viewer 3DR
Options
The Options window allows you to change basic
settings for the Output Viewer 3DR.

The decimal precision can be changed to increase
or decrease the number of digits that appear for
all real numbers that are displayed.
You can choose to have the current database
close whenever you open a new database.
Selecting the check box for Enable Multi-create
Dialogs will leave the Select Report and Select
Chart windows open until you close them. This
allows you to open multiple reports or charts at
the same time without having to reopen the cre-
ation window each time.
This option is checked by default. If you want the
selection widow to close when you open a report
or chart, uncheck the box.
If you have changed your report or chart style as
described in the previous heading, you can
restore the default styles by using the Reset
Defaults menu and Reset button.

How to Reset Default Styles

1. Select Report or Chart Defaults from the pull-
down menu in the Options window.

2. Click the Reset button.

3. Click OK to close the Options window. The
default styles will be reset for reports or charts.

Window Menu
The Window menu contains useful tools for mak-
ing multiple data windows easier to view and
compare with one another.

•Tile Horizontally Sizes and places each open
window horizontally across the screen so
none of them overlap. Since most data in the
Output Viewer is arranged horizontally
within a window, this option is very helpful
for comparing data from one window with
another.

•Tile Vertically Sizes and places each open
window vertically across the screen. This
makes comparing data across two or more
windows convenient when the data in the
window is arranged vertically.

•Cascade Places windows on top of each
other in an overlapping manner.

•Arrange Icons If you have report or chart
windows minimized within the Output
Viewer 3DR window, this options will align
them in a row along the bottom of the Output
Viewer 3DR window.

•Close All Closes all open windows in the
Output Viewer 3DR.

•Open Windows This last field in the Win-
dow menu displays the names of all the open
windows. This is helpful for navigating

 ProModel 379
User Guide
through data windows when you have many
open at one time.

Help Menu
The Help menu gives you access to the Output
Viewer’s help file as well as information about
the Output Viewer 3DR.

Toolbar
The Output Viewer 3DR Toolbar gives you quick
access to some of the options found in the Menu
bar.

File Tools
The File tools allow you to quickly open data
files, export data, and print files.

• : Opens an .idb or .rdb data file.

• : Exports data.

• : Prints the data.

For more information on these features see “File
Menu” on page 374.

Report and Chart Tools
The Report and Chart tools gives quick access to
options found in the View menu.

• : Creates a report.

• : Creates a category chart.

• : Creates a state chart.

• : Creates a histogram.

• : Creates a time plot chart.

For more information on these features see
“View Menu” on page 374.

Option Tools
These tools allow you to access some of the fea-
tures in the Tools menu as well as the Sheet Prop-
erties window.

• : Displays Sheet Properties.

• : Displays the Options window.

For more information of Sheet Properties, see
“Sheet/Chart Properties” on page 374. For more
information on the Options windows, see “Tools
Menu” on page 376.

Help Tool
• : Starts the Output Viewer 3DR Online

Help.

View Manager Tools
The View Manager tools are located on the far
right of the toolbar. These tools allow you to
quickly select a view.

• : Allows you to
select a view from the pull-down menu.

• : Scrolls through your views.

• : Displays the View Manager window.

For more information on Views and the View
Manager, see “View Manager” on page 376

Right-click Menu
The Right-click menu provides a shortcut for
editing the appearance and structure of your
reports and charts.
The Right-click menu is available in report and
chart windows. Additionally, the options that
appear when you right-click in the Output Viewer

380 Chapter 10:
Output Viewer 3DR
3DR vary depending on which area you right-
click on.

Right-click Menu in Reports
When you right-click anywhere in a report win-
dow, the following menu appears.

•Format Cells This option brings up a win-
dow that allows you to edit the size and
alignment of the cell fonts, and the color of
the cells.

•Copy Copy transfers the contents of the
highlighted cells to the clipboard. This is
useful for transferring select information to a
separate spreadsheet.

•Sheet Properties This option brings up the
Sheet Properties of the current report. For
more information on this window see
“Sheet/Chart Properties” on page 374.

When you right-click anywhere in a report win-
dow that contains numerical values, the Right-
click menu contains two additional options
depending on whether the values are percentage
values or not.

•Create Chart If you right-click on a column
of numerical value, including percentage
value, you can choose to have that data dis-
played as a Category Chart. The Category
Chart that’s created is the same as one cre-
ated using the Category Chart option. See

“Category Chart” on page 391 for more
information.

•Create State Chart If you right-click on a
column that contains percentage values, you
can choose to have that data displayed,
together with all other percentage columns
on the sheet, as a State Chart. The State
Chart that’s created is the same as one cre-
ated using the State Chart option. See “State
Chart” on page 392 for more information.

Right-click Menu in Charts
The Right-click menu that appears for charts is
different than the menu for reports.
There are three areas within a Chart window that
you can right-click to bring up a different menu:

•On the legend area.
•In the Chart area.
•On a title or label.

Right-click Menu for the Legend Area
The legend area is located within the Chart win-
dow, and gives an explanation of the chart’s color
codes.
An example of a legend area is shown below.

 ProModel 381
User Guide
When you right-click anywhere in the legend
area, the following menu appears.

There are four areas in this menu:
•Font This features lets you change the font

options for the legend labels.
•AutoSize The AutoSize option resizes the

legend area to fit the labels in the legend.
•Legend Position The position of the legend

area can be moved to any one of the four
sides of the Chart window, or it can float in
its own window.

•Hide Selecting this option makes the leg-
end disappear. You can bring the legend
back by opening the Chart Properties win-
dow in the View menu.

Right-click Menu for the Chart Area
Right clicking anywhere in the Chart window,
except for the legend area, brings up the follow-
ing window.

•Color This will allow you to change the
color of the area your mouse was positioned
over when you opened the Right-click menu.

This could be the color of the background or
bars in the chart.

•Toolbar Toggles the toolbar for chart win-
dows on and off. This is helpful, for exam-
ple, to make the chart appear less cluttered
during a presentation of the data or on a
printout of the chart. For more information
on the chart window toolbar see “Chart
Toolbar” on page 389.

•Chart Properties Opens the Properties win-
dow. For more information on this window
see “Sheet/Chart Properties” on page 374.

•Modify Chart Items This options opens the
chart’s data dialog, which was initial dialog
shown when you first created the chart. This
option is only available for Histogram and
Time Plot chart types.
For more information on the data dialog see
the corresponding chart descriptions, begin-
ning with “Category Chart” on page 391.

Right-click Menu for Titles and Labels
Titles and labels are the text within the chart area.
Right-clicking on either of these two will bring
up a Right-click menu similar to that of a chart
area’s menu, but with two additional options.

•Edit Title Edits the text for the title of the
chart or axes.

•Font Allows you to change the font charac-
teristics for the titles and labels.

382 Chapter 10:
Creating Reports
Creating Reports
Reports contain the numerical data that is col-
lected during your simulation.

This information is presented in spreadsheet
form, and grouped into the following categories:

•General
•Entity Activity
•Entity Costing
•Entity States
•Failed Arrivals
•Location Costing
•Location States Multi
•Location States Single/Tank
•Locations
•Logs
•Node Entries
•Resource Costing
•Resource States
•Resources
•Variables

For more information on each of these categories
see “Report Data” on page 383.

How to create a report

1. Choose the Reports option from the View
menu or the Reports icon, , from the Toolbar.

2. If the model you ran had multiple scenarios or
replications, the following window appears.

3. From this window you may choose which sce-
narios and replications to view. If you chose to
run the simulation with Batch Mean or Periodic
reporting, you may also choose a Period.

4. Click on the Create button. This will open a
new window with the chosen report.

Please note

If your model was run for only one replication
and one scenario, the report window will open
immediately after selecting the Reports option.

Report Window
The Report window contains the categorized
information from your simulation.

The data appears in spreadsheet format, and is
grouped by the categories listed by tabs along the
top of the Report window.

 ProModel 383
User Guide
Selecting a tab will bring up a new table, and
additional tabs can be accessed using the left and
right arrows, .
The caption of a report can be renamed by either
double clicking on it and then typing in the new
name or opening the sheet properties window and
typing a new name in the Caption area.

Report Data
The spreadsheet for each button contains the fol-
lowing information.

Please note

The default time units shown in the report will be
one unit longer than the unit selected in the Simu-
lation Options dialog box. For example, if you
select minutes in Simulation Options, the time
displayed in the report will be in Hours. You may
also notice that Day is the last option available in
Simulation Options, in which case the time unit
will be in weeks for the report.

General
•Run Date/Time The date and time the

model was run for the displayed output.
•Model Title The name of the model.
•Model Path/File The path and name of the

model file.
•Warmup Time The amount of initial time

the simulation spent in a warmup state. No
statistics were gathered during this time. The
time unit used is one unit longer than defined
in the Clock Precision field of the Simulation
Options dialog.

•Simulation Time The total simulation time,
including the warmup time. The time unit
used is one unit longer than defined in the

Clock Precision field of the Simulation
Options dialog.

Entity Activity
Entity activity is reported for only those entities
that have exited the system.

•Total Exits The number of entities that
completely exit the system either through the
EXIT routing or when they are joined,
renamed, or combined. In some cases, enti-
ties also exit the system when you use the
SPLIT AS, UNGROUP, or ROUTE state-
ments.

•Current Quantity In System The total
number of entities remaining in the system at
the time the simulation ends. These are enti-
ties that have not exited.

•Average Time In System The average
total time the entity spends in the system.

•Average Time In Move Logic The aver-
age time the entity spent traveling between
locations, including any delays incurred in
move logic.

•Average Time Wait For Res The average
time the entity spent waiting for a resource
or another entity (to join or combine). Also
includes time waiting in queue behind a
blocked entity.

•Average Time In Operation The average
time the entity spent processing (i.e., WAIT
or USE statements) at a location or traveling
on a conveyor/queue.

•Average Time Blocked The average time
the entity spent waiting for a destination
location to have available capacity.

Entity Costing
•Explicit Exits The number of entities that

have explicitly exited. Whenever an entity
exits the system, it is an explicit exit
except in the following cases:

384 Chapter 10:
Creating Reports
- When an entity JOINS or COMBINES
with another entity, it implicitly exits the
system, and is reported as an exit in the
Entity Activity report. However, for
costing purposes, the entity did not
explicitly exit, but its costing informa-
tion was added to the entity it was
JOINED or COMBINED with.

- When an entity LOADS or GROUPS with
another entity, and the entire LOADED
or GROUPED entity exits the system,
the original entity implicitly exits the
system, and is reported as an exit in the
Entity Activity report. However, for
costing purposes, the original entity did
not explicitly exit, but its costing infor-
mation was added to the entire load or
group.

•Total Cost Dollars Total Cost = cumulative
entity cost, or the sum of costs incurred on
all locations the entity passed through +
the sum of all costs incurred by use of
resource + initial cost + any IncEntCost

•% Total Cost % Total Cost refers to the
entity’s percentage of sum of all entity
costs

In the above calculations, the rate defined (per
day, hour, minute, and second) converts to the
default time units specified in the General Infor-
mation dialog.

Please note

ProModel does not allow you to generate a Cost-
ing Graph. However, if you set a variable equal
to GetCost (e.g., Var1=GetCost), you can gener-
ate a time series graph to track changing entity
costs.

Entity States
Reported by entity type for only those entities
that have exited the system.

•% In Move Logic The percentage of time
the entity spent traveling between locations,
including any delay time incurred in move
logic.

•% Waiting The percentage of time the
entity spent waiting for a resource, a WAIT
UNTIL condition, another entity to join or
combine, or behind other entities. (100% -
Sum of %’s for all other states.)

•% In Operation The percentage of time
the entity spent in processing at a location or
traveling on a conveyor/queue. If an entity is
on a conveyor behind another entity which is
blocked because the next location is unavail-
able, the time the entity spent behind the
other entity is considered % in Operation.

•% Blocked The percentage of time the
entity spent waiting for a the next location to
become available.

Failed Arrivals
The number of entities that failed to arrive at a
specific location due to insufficient capacity.

Locations Costing
•Operation Cost Dollars Operational Cost

= (Active Operation Time * Rate) + (Any
IncLocCost)

•% Operation Cost Refers to the location’s
percentage of the sum of all operation costs

•Resource Cost Dollars Resource Cost =
(Utilization * Rate) + (Times Used * Cost
per use)

Please note

For Resource Cost, Utilization and Times Used
refer to the utilization of a resource while at a

 ProModel 385
User Guide
location. This applies only to resource use
through operation logic.

•% Resource Cost Refers to the location’s
percentage of the sum of all resource costs

•Total Cost Dollars Total Cost = (Operation
Cost + Resource Cost)

•% Total Cost Refers to location’s percent-
age of the sum of all location costs

Location Setup
•Name The name of the location where the

setup downtime occurred.
•Entity The name of the entity that caused

the setup downtime.
•Total Setups The number of times this

location/entity combination resulted in a
setup downtime.

•Avg Time Per Setup (HR) The average
time in hours the location was down for each
setup downtime.

Location States (Multiple Capacity)
•Scheduled Time The total amount of time

the location was scheduled to be available.
This value is now in decimal format, not
truncated. (Excludes off-shift time, break
time, and scheduled downtimes.)

•% Empty The percentage of time the loca-
tion had no entities.

•% Partially Occupied The percentage of
time the location has entities but was not
filled to capacity (100% of time - %Full -
%Empty).

•% Full The percentage of time the location
was full to capacity with entities.

•% Down The percentage of time the loca-
tion was down as the result of unscheduled
downtimes. This does not exclude the possi-

bility of overlap with any of the previous
three states.

Location States (Single Capacity/
Tank)

•Scheduled Time The total amount of time
the location was scheduled to be available.
This value is now in decimal format, not
truncated. (Excludes off-shift time, break
time, and scheduled downtimes.)

•% Operation The percentage of time the
location was actually processing an entity.

•% Setup The percentage of time the loca-
tion spent in setup in order to process the
entities.

•% Idle The percentage of time no entities
were at the location, but the location was not
down.

•% Waiting The percentage of time the
location was waiting for a resource, another
entity, or a WAIT UNTIL condition in order
to begin processing or move to the next loca-
tion. Any delays in processing move logic
(even WAIT statements) are counted as
waiting time and include the following state-
ments:

•ACCUM
•COMBINE
•GROUP
•JOIN
•LOAD
•MATCH

•% Blocked The percentage of time entities
spent waiting for a freed destination.

•% Down The percentage of time the loca-
tion was down due to unscheduled down-
times.

Locations
•Scheduled Time The total amount of time

the location was scheduled to be available.

386 Chapter 10:
Creating Reports
This value is in decimal format, not trun-
cated. (Excludes off-shift time, break time,
and scheduled downtimes.)

•Capacity The capacity defined in the
Locations module for this location.

•Total Entries The total number of entities
that entered the location, not including enti-
ties arriving to be joined and loaded. Entities
split, unloaded, or ungrouped from another
entity at a location do not count as additional
entries. Arriving entities that have been pre-
viously grouped or loaded to form a single
entity only count as one entry.

•Average Time Per Entry The average time
each entry spent at the location. This time
may include partial times from the beginning
and end of the actual run time.

•Average Contents The average number
of entries at the location.

•Maximum Contents The maximum num-
ber of entries which occupied the location
over the course of the simulation.

•Current Contents The number of entities
remaining at the location when the simula-
tion ended.

•% Utilization The percentage of capacity
occupied, on average, during the simulation.

Cumulative Occupancy Time x 100
 Capacity x Scheduled Time

Cumulative Occupancy Time refers to the
sum of the clock time each entity spends at a
location for processing.

Logs
•Numbers of Observations The number of

log entries that occurred during the simula-
tion for the given Log Name.

•Minimum Value The minimum log entry
value during the simulation for the given
Log Name.

•Maximum Value The maximum log entry
value during the simulation for the given
Log Name.

•Average Value The average value of all
log entries during the simulation for the
given Log Name.

Please note

Log statistics are set up by the user with a LOG
statement to track the time entities spend between
any two points in the model.

Node Entries
A node entry summary is generated for each non-
passing path network in the system. It contains
the following information.

•Path Name The name of the path the node
resides on.

•Total Entries The number of times that a
resource entered the path node.

•Blocked Entries The number of times a
resource tried to claim a path node occupied
by another resource.

Resources Costing
•NonUse Cost Dollars NonUse Cost = (1-%

Utilization) * Scheduled Time * Rate
•% NonUse Cost Refers to the resource’s

percentage of the sum of all nonuse costs
•Usage Cost Dollars Usage Cost = (% Uti-

lization * Scheduled Time * Rate) + (Times
Used * Cost per use)

•% Usage Cost Refers to the resource’s
percentage of the sum of all resource usage
costs

•Total Cost Dollars Total Cost = Usage
Cost + NonUse Cost

 ProModel 387
User Guide
•% Total Cost Refers to the resource’s per-
centage of the sum of all resource costs

Resource States
•Scheduled Time The total amount of time

the resource was scheduled to be available.
(Excludes off-shift time, break time, and
scheduled downtimes.)

•% In Use The percentage of time the
resource spent transporting or processing an
entity, or servicing a location or other
resource that was down. This also includes
deposit time.

•% Travel To Use The percentage of time
the resource spent traveling to a location or
other resource to transport or process an
entity, or to service a location or other
resource. This also includes pickup time.
(This information is not available if your
model does not have dynamic resources.)

•% Travel To Park The percentage of time
the resource spent traveling to a path node to
park or traveling to its downtime node. (This
information is not available if your model
does not have dynamic resources.)

•% Idle The percentage of time the resource
was available but not in use.

•% Down The percentage of time the
resource was unavailable due to unscheduled
downtimes.

Resources
•Units The number of units defined in the

Resources module for that resource.
•Scheduled Time The total amount of time

the resource was scheduled to be available.
(Excludes off-shift time, break time, and
scheduled downtimes.)

•Number of Times Used The total number
of times the resource has been acquired to
transport or process an entity or to service
locations or other downed resources.

•Average Time Per Usage The average
time the resource spent transporting or pro-
cessing an entity, or servicing a location or
other resource. Includes any pickup and
drop-off time as well as any blocked time
while in use. (See note on time units.)

•Average Time Travel To Use The average
time the resource spent traveling to a loca-
tion or other resource to transport or process
an entity, or to service a location or other
resource. Does not include any pickup time,
but does include any blocked time. (This
information is not available if your model
does not have dynamic resources.)

•Average Time Travel To Park The aver-
age time the resource spent traveling to
either a park node or a downtime node. (This
information is not available if your model
does not have dynamic resources.)

•% Blocked In Travel The percentage of
time the resource was unable to move to a
destination because the next path node along
the route of travel was blocked (occupied by
another resource). (This information is not
available if your model does not have
dynamic resources.)

•% Utilization The percentage of time the
resource spent traveling to be used, trans-
porting or processing an entity, or servicing a
location or other resource.

Total Travel to Use Time + Total Time In Usage
x 100
Total Scheduled Time

Please note

ProModel reports resource groups and multi-unit
resources both by unit and collectively. The col-
lective unit (aggregate) report for a resource
totals the first three fields and averages the last
five fields discussed above.

388 Chapter 10:
Creating Reports
Variables
•Total Changes The total number of times

the value of the given variable changed dur-
ing the simulation.

•Average Time Per Change The average
time a given variable remained at any one
value.

•Minimum Value The lowest value of the
variable during the simulation.

•Maximum Value The highest value of the
variable during the simulation.

•Current Value The final value of the vari-
able when the simulation ended.

•Average Value The average value of the
variable during the simulation. This value is
time weighted.

Please note

In the report, if a variable name is followed by an
asterisk (*), the variable is an observation-based
variable. Otherwise, it is a time-weighted vari-
able. This determination is made in the Variable
edit table where the variable is defined.

The initial value for observation-based variables
is not accounted for in the statistics.

 ProModel 389
User Guide
Creating Charts
Charts provide visual representations of the data
contained in Reports.
The Output Viewer 3DR can display four main
types of charts with several sub-types:

•Category Charts
•State Charts
•Histograms

- Time-Weighted Values
- Simple Values

•Time Plots
- Time-Weighted Values
- Simple Values
- State Values
- Counts

Chart Window
The chart window contains your chart and
options to modify your chart.

Regardless of the type of chart you open, all chart
windows have options and fields in common:

•Chart Toolbar
•Legend Field
•Chart Area
•Display and Alias

Chart Toolbar
The toolbar that appears in a Chart window gives
you several options to change the way the infor-
mation is presented in your chart.

• : Toggles between a three-dimensional
and two-dimensional bars in your
chart. Three-dimensional is the default
view.

• : Toggles between bars and cylinders in
the Chart area.

• : Expands the chart along the z-axis to
show multiple scenarios in layers. This
option will not be available if only one
scenario was run.

• : Shows the results in a stacked bar
chart.

• : When the chart is three-dimensional,
this option will allow you to rotate the
view using the cursor.

• : Use this tool to enlarge regions of your
chart. Select this tool then click and
drag to outline the chart area you want
to enlarge. You can continue to zoom
in on an area, or you can reset the view
to the default zoom level by selecting
this tool again.

• : Use this tool to change the colors in
the Chart area. Selecting this tool will
open a menu with color options.
Choosing a color will change your cur-
sor to a paint bucket. Position the
bucket over the area you want to
change, and click to fill the area with
the new color.

• : Opens the chart’s properties dialog.

390 Chapter 10:
Creating Charts
• : Opens a dialog, which allows you to
modify the items displayed in the
chart. This option is only available for
Histogram and Time Plot charts.

• : Allows you to change the chart’s titles
and labels.

• : Allows you to change the font charac-
teristic of the chart’s titles and labels.

• : Toggles the point labels on and off.
Point labels are the numbers that the
bars in your chart represent. These
numbers will appear at the top of the
bars when this option is selected.

• : Toggles the point makers on and off.
Point markers are small graphics that
show the data points on your graphs.

• : Toggles the Legend area on and off.

• : Toggles the Display and Alias field on
and off. For more information on this
field see “Display and Alias” on
page 390.

• : Toggles the vertical grid lines in the
chart on and off.

• : Toggles the horizontal grid lines in the
chart on and off.

• : Copies the chart to the Windows clip-
board as a bitmap, a metafile, or as
plain text (data only).

Please note

The Bar/Cylinder, , tool is not available for
Simple Values and Time-weighted Values time
plot charts, since they do not use bars to repre-
sent data.

Legend Field
The Legend field shows the definition and color-
coding of the bars in your chart.

Chart Area
The Chart area contains your chart.

The appearance of this chart will depend on the
type of chart you are viewing; i.e. category, histo-
gram, etc.

Display and Alias
The Display and Alias field, which can be tog-
gled on and off from the toolbar, allows you to
quickly select the data items you wish to display
in the chart and optionally assign aliases to the
data items.

Select which series and items you would like dis-
played in the chart by checking the box in the

 ProModel 391
User Guide
Visible column. To show or hide all the items
you can click check or uncheck the box in the
<ALL> row or click on any box while holding
the CTRL key.
Double click on a series or item name to rename
it with an alias.

Category Chart
Category Charts displays bar charts for columns
of data found in reports.
The Category Chart is an excellent way to visu-
ally compare the different items in your reports.
It is also helpful for organizing data attractively
for presentations.
To display a Category Chart, select Category
Chart from the View menu or the Category Chart
icon from the Toolbar. As a shortcut, you can
also right-click on any column of data in a report
and select Category Chart from the drop-down
menu.
When you choose to view a Category Chart, the
Category Chart Selection dialog will be dis-
played.

From this menu you can select the scenarios, rep-
lications, periods (only available if Batch Mean
or Periodic Output Reporting is selected in the
Simulation Options dialog) and categories of the
data you want displayed.

392 Chapter 10:
Creating Charts
For information on each category, see “Report
Data” on page 383.

Category Chart Properties
Choosing the properties option for a category
chart will open the Chart Properties dialog.

•Display Properties: Select the angle of
the text for the X-Axis labels.

•Axis Range - X-Axis Range (min-
max): These two boxes show the range of
items displayed in the X-Axis.

•Axis Range - Y-Axis Range (min-
max): In the first box choose the value for
the minimum range for the Y-Axis. The
maximum range is entered in the second box.

•Axis Zoom Range - X-Axis Range (min-
max): Choose which range of X-Axis
items to zoom in on by using these two
boxes.

•Axis Zoom Range - Y-Axis Range (min-
max): Choose which range of Y-Axis val-
ues to zoom in on by using these two boxes.

Please Note

Changes to a chart’s properties does not apply to
other charts or persist when the chart is closed
and then regenerated.

Category Chart Example
An example of a Category Chart is shown below.

Please Note

Positioning your cursor over a bar on the chart
will display specific information about that par-
ticular bar. The appearance and structure of
your chart can be edited using the chart toolbar
or the right-click menu. For more information
see “Chart Toolbar” on page 389 or “Right-
click Menu” on page 379.

State Chart
State Charts show stacked bar charts of location,
resource, and entity states. States describe the
condition of these objects.

 ProModel 393
User Guide
This type of chart is useful for quickly seeing
what your locations, resources, and entities spent
their time doing. Such visualizations can help
identify problem areas in your process.
To display a State Chart, select State Chart from
the View menu or the State Chart icon from the
Toolbar. As a shortcut, you can also right-click
on any column of data in a report containing per-
centage values and select State Chart from the
drop-down menu.
When you choose to view a State Chart, the State
Chart Selection dialog will be displayed.

State Chart Selection Window

From this menu you can select the scenarios, rep-
lications, periods (only available if Batch Mean
or Periodic Output Reporting is selected in the
Simulation Options dialog) and state categories
of the data you want displayed.

State Chart Properties
The State Chart Properties window is function-
ally equivalent as the Category Chart Properties

window. See “Category Chart Properties” on
page 392.

State Chart Example
An example of a State Chart is shown below.

This chart shows the percentage of time by sce-
nario each location spent in the six different
states: operation, setup, idle, waiting, blocked,
and down.
Right click on any bar in the chart, and choose
Create Pie Chart to have that item’s state infor-
mation displayed as a pie chart.

Please Note

Positioning your cursor over a bar on the chart
will display specific information about that par-
ticular bar. The appearance and structure of

394 Chapter 10:
Creating Charts
your chart can be edited using the chart toolbar
or the right-click menu. For more information
see “Right-click Menu” on page 379.

Histogram
A histogram is a bar chart showing the percent-
age of time or times that time plot data fell within
a particular range of values.
There are two types of histograms that can be dis-
played:

•Time-weighted Values Percentage of total
simulation time that the values fell into a
specific range. (e.g. the Contents variable of
a location.)

•Simple Values Percentage of total simula-
tion time that a variable was within a range
of values (e.g. cycle times).

Time Weighted Values Histogram
The time weighted values histogram shows the
percentage of total simulation time the values fell
into specific ranges. The example further
explains how values are grouped.

Selection Window

Choose the scenarios and replications you would
like displayed for the data item selected. Double

click on an item to move it from the Available
Items area to the Selected Items area or back
again. You may also use the arrow buttons to
move items between the two areas.
If you check the Manual Bar Width option, you
may choose the range value for each bar shown in
the chart. If you leave this field unchecked, 3DR
will automatically calculate the range value for
each bar, which will not necessarily be the value
in the Bar Width field.

Chart Properties
Choosing the properties option for time weighted
values histogram will open a window with two
tabs: Data and Display

Chart Properties: Data

•Display Series: This is a list of the series
data displayed in the histogram.

•Min/Max Values: Choose whether to dis-
play the minimum and/or maximum values
for all replications in the histogram.

 ProModel 395
User Guide
•Mean/Median/Mode Values: Choose
whether to display the mean, median, and/or
mode values for all replications in the histo-
gram.

•Percentile: Displays the maximum value
the series could reach for the chosen percent-
age of total simulation time. For example, if
you choose to display an 80 percentile for a
location’s contents, 80% of the simulation
time the location’s contents were at the dis-
played value or less.

•Data Properties: Displays the time units
used to calculate the histogram’s values, and
optionally allows you to choose your own
bar widths, which are the range of values
each bar will display. Entering a smaller bar
width results in more bars, while the greater
the bar width the fewer bars will be dis-
played.

Chart Properties: Display
The Display tab for the time-weighted histogram
properties window is functionally equivalent as
the Category Chart Properties: Display window,
with the exception of the “Discrete label the X-
Axis” option.

•Discrete label the X-Axis: When this
option is checked the full range of each bar is
shown in the X-Axis.

See “Category Chart Properties” on page 392.

Chart Example
The example chart below shows the time-
weighted histogram contents of a queue.

Along the X-Axis is the contents of the queue
divided into bar units of 10. The Y-Axis shows
the percentage of total simulation time the con-
tents of the queue were at the values along the X-
Axis.
The mouse over shows that for 18.21% of the
total simulation time, for all replications, the con-
tents of the queue were between exactly 20 and
almost 30 (29.99).
The average minimum and maximum contents of
the queue, for all replications, were 18 and 64
respectively, while the mean contents were
39.81.
The 80% Percentile line shows that for 80% of
the total simulation time the contents of the queue
were 50 or less.

396 Chapter 10:
Creating Charts
Simple Values Histogram
The simple values histogram shows when, by
percentage of total simulation time, a variable’s
value was within a certain range.

Selection Window

Choose the scenarios and replications you would
like displayed for the data item selected. Double
click on an item to move it from the Available
Items area to the Selected Items area or back
again. You may also use the arrow buttons to
move items between the two areas.
If you check the Manual Bar Width option, you
may choose the range value for each bar shown in
the chart. If you leave this field unchecked, 3DR
will automatically calculate the range value for
each bar, which will not necessarily be the value
in the Bar Width field.

Chart Properties
The chart properties for the simple values histo-
gram are the same as for the time-weighted val-
ues histogram. See “Chart Properties” on
page 394.

Chart Example
The example chart below shows the simple val-
ues histogram for the variable WIP.

The X-Axis shows the value of the WIP variable
divided into bar units of 4. The Y-Axis shows the
percentage of times the WIP variable fell into the
ranges shown on the X-Axis.
This chart also shows the median value of the
WIP value for all replications. The 80% Percen-
tile shows that for 80% of the counts the value the
WIP variable was 19 or less.

 ProModel 397
User Guide
Time Plot
Time plots show state and performance values as
they occur over time. This allows you to see
trends and spikes in activity as the simulation
progressed.
Time plots can only be displayed if the user has
selected Time Plot as the statistics type for
objects as the model was being built.
There are four types of time-plot statistics that
can be displayed:

•Time-weighted Values Variable values
weighted by time (e.g. the Contents variable
of a location.)

•Simple Values Variable values as they
change over time (e.g. cycle times).

•State Values Shows location states over
time.

•Counts The number of occurrences of
some particular event (e.g. the number of
exits from a location).

Time Weighted Values Time plot
The time-weighted time plot chart shows variable
values over time.
The chart’s X-Axis shows time periods, while the
Y-Axis shows variable values for each time
period.

Selection Window

Choose the scenarios and replications you would
like displayed for the data items selected. Double
click on an item to move it from the Available
Items area to the Selected Items area or back
again. You may also use the arrow buttons to
move items between the two areas.
If you check the “Average data by period” box,
all the values in each period of selected time will
be averaged together. If left unchecked, each
value will be displayed.

Chart Properties
Choosing the properties option for time weighted
values time plot will open a window with two
tabs: Data and Display

Chart Properties: Data
The chart properties:data for the time-weighted
values time plot are the same as for the time-
weighted values histogram. See “Chart Proper-
ties” on page 394.

398 Chapter 10:
Creating Charts
Chart Properties: Display
The Display tab for the time-weighted time plot
properties window is functionally equivalent as
the Category Chart Properties: Display window,
with the exception of the “Line Properties”
option.

•Line Properties: Choose the pattern and
thickness for the lines on the chart.

See “Category Chart Properties” on page 392.

Chart Example
The example chart below compares the time-
weighted time plot contents of a queue for two
scenarios.

The X-Axis shows the time periods for the chart.
The Y-Axis shows the average content values of
the queue for the time periods in the X-Axis.
The One Operator scenario additionally displays
the minimum and maximum contents of the
queue for each time period for all replications, as
well as the contents 99.99% confidence interval,
which means that 99.99% of all queue contents
will be with the two confidence interval lines by
period.
This chart shows the impact that an additional
operator has on the contents of a queue.

Simple Values Time plot
The simple values time plot shows the change in
variable values over time.

Selection Window

Choose the scenarios and replications you would
like displayed for the data items selected. Double
click on an item to move it from the Available
Items area to the Selected Items area or back
again. You may also use the arrow buttons to
move items between the two areas.
Choose the number of hours in each period that
will be displayed along the X-Axis.

Chart Properties
Choosing the properties option for simple values
time plot will open a window with two tabs: Data
and Display

Chart Properties: Data

The chart properties:data for the simple values
time plot are the same as for the time-weighted
values histogram. See “Chart Properties” on
page 394.

Chart Properties: Display
The Display tab for the time-weighted time plot
properties window is functionally equivalent as

 ProModel 399
User Guide
the Category Chart Properties: Display window,
with the exception of the “Line Properties”
option.

•Line Properties: Choose the pattern and
thickness for the lines on the chart.

See “Category Chart Properties” on page 392.

Chart Example
The example chart below compares the value of
the variable “WIP” over time for two scenarios.

The Y-Axis shows the value of the WIP (work in
progress) variable over the time in the X-Axis.
The example shows how adding two additional
resources to the demo model increases WIP and
reduces the fluctuation in WIP.

State Values Time plot
The state values time plot shows location state
statistics over time.

Selection Window

Choose the scenarios and replications you would
like displayed for the data items selected. Double
click on an item to move it from the Available
Items area to the Selected Items area or back
again. You may also use the arrow buttons to
move items between the two areas.

Chart Properties
Choosing the properties option for state values
time plot will open a window with two tabs: Data
and Display

Chart Properties: Data
The only option available from this properties
window is to change the time units shown in the
X-Axis.

Chart Properties: Display
The Display tab for the state values time plot
properties window is functionally equivalent as
the Category Chart Properties: Display window.
See “Category Chart Properties” on page 392.

400 Chapter 10:
Creating Charts
Chart Example
The example chart below compares the location
states of a location for two scenarios.

The Y-Axis shows the state of the location for the
time in the X-Axis. This example shows how
adding two resource units can impact a location’s
state over time.

Counts Time Plot
The counts time plot shows the number of occur-
rences of some particular event in the simulation
(e.g. the throughput of an entity).

Selection Window

Choose the scenarios and replications you would
like displayed for the data item selected. Double
click on an item to move it from the Available
Items area to the Selected Items area or back
again. You may also use the arrow buttons to
move items between the two areas.
Choose the number of hours in each period that
will be displayed along the X-Axis.

Chart Properties
Choosing the properties option for the counts
time plot will open a window with two tabs: Data
and Display

Chart Properties: Data

The chart properties:data for the counts time plot
are the same as for the time-weighted values his-
togram. See “Chart Properties” on page 394.

Chart Properties: Display
The Display tab for the counts time plot proper-
ties window is functionally equivalent as the Cat-

 ProModel 401
User Guide
egory Chart Properties: Display window, with the
exception of the “Line Properties” option.

•Line Properties: Choose the pattern and
thickness for the lines on the chart.

See “Category Chart Properties” on page 392.

Chart Example
The example chart below compares the through-
put of a pallet entity for two scenarios.

The X-Axis show time periods. The Y-Axis
shows the throughput count for the pallet entity
for the time periods in the X-Axis.
This chart shows the improvement in pallet
throughput when an extra resource is added to the
model.

402 Chapter 10:
Creating Charts

 ProModel 403
User Guide
Chapter 11: Language
Elements and Expressions

Language Elements
Language elements are the smallest units of the
language used to define a model’s objects and
logic. Language elements include:

•Names
•Keywords
•Numbers
•Character Strings
•Operators

404 Chapter 11:
Names
Names
A name or identifier is any combination (up to
eighty characters long) of letters, numbers, and
underscores (“_”), used to identify model ele-
ments such as locations, entities, variables, and
functions. Although any valid name can refer to
any object, it is best to use names which describe
the object they identify (e.g., using “ClientA” to
describe an entity that represents a client).
Names, like all words in ProModel, are case
insensitive, meaning that ProModel sees
“PARKING_A,” “Parking_A,” and
“PaRkInG_a” as identical.

Names must use the following conventions:

•Names may contain the letters A through Z
(upper or lower case), digits (0-9) and the
underscore “_”. Names may not contain
spaces. When opening an older model,
ProModel flags improper use of these
restricted characters.

•Do not use a digit as the first character of a
name. After the first character, any charac-
ter may be a digit. For example, “2Var” is
an invalid name, but “V2”, is a valid name.

•Names may not be keywords, but names
may contain keywords. For example,
“For” is an invalid name, but “Forklift” is
a valid name. Similarly, “Queue2” and
“OrderQty” are both valid.

•No matter what they identify, every name in
a model must be unique. For example, you
cannot name both a location and an entity
“Server.” You may, however, name one
“Server1” or “Server_Location” and the
other “Server2” or “Server_Resource.”

 ProModel 405
User Guide
Keywords
Keywords are words that ProModel reserves for
special use as commands or function calls. Key-
words may not be used as names, although names
may contain keywords. Keywords, like all words
in ProModel, are case insensitive.

Please note

*Reserved for future use.

For information on tank keywords, see “Tanks”
on page 188.

accum
activate
all
alt
and
as
backup
begin
bi
board*
break
breakblk
by
cancel*
calday
calhour
calmin
case*
char
claim*
close
combine
condition
cont
convey
create
day
debug
dec
default

dep
dispatch*
display
do
dosload
drop*
dtleft
else
empty
end
ent
entity
er
exit
fifo
first
for
forlocation
format
forresource
free
full
geo
get
getcost
getresrate
goto
graphic
group
hide*

hr
if
iff
ig
in
inc
incentcost
incloccost
increscost
inf
infinite
int
join
jointly
keep
lifo
load
loc
location
log
lu
maparr
match
min
mod
most
move
move for
move on
move with

ms*
off*
or
order
ownedresource
p5
p6
pause
percentage*
pick*
preemptedres*
preemptor
priority
prompt
queue*
random
read
real
recently*
rename
report
res
reserve*
reset
reset stats
resource
resqty
return
route
sec

send
setrate
show*
skip
snapshot*
sound
split as
stop
take
then
threadnum
timeleft
to
trace
turn
ungroup
unload
until
up*
use
variable
view
wait
warmup
while
wk
write
writeline
xsub
xwrite

406 Chapter 11:
Numbers
Numbers
ProModel uses two types of numbers: real num-
bers and integers. ProModel also uses a special
category of integers, called “name-index num-
bers.” This section discusses real numbers, inte-
gers, and name-index numbers. It then discusses
converting between the different types.

Integers
An integer number is a whole number ranging
from -2,147,483,648 to 2,147,483,647. Integer
values may not include commas. Therefore, the
number 5,380 should be entered as 5380. Name-
index numbers (described in this section) work
just like integer numbers.

Examples of integers

-2234798

 0

 32

Real Numbers
A real number is any number ranging from 1.7 X
10 -308 to 1.7 X 10 +308, including decimals.
Real values may not include commas. As such,
the number 5,380.5 should be entered as 5380.5.

Examples of real numbers

-2.875638

 844.2

 65.0

Name-Index Numbers
When a simulation begins, locations, resources,
and entities are all assigned numbers according to
their position in their respective edit tables. The
number assigned to the element is called its
name-index number. For example, the third entity
in the Entity edit table will have the number three
for its name index number. The name of an ele-
ment may be used in an expression to reference
its name-index number.

For example, if EntityA were the third entity in
the Entity edit table, the statement, “Attr1 =
EntityA,” would assign the number three to
Attr1, because attributes take numbers. Addition-
ally, you may also test for an index number by
referencing the element name with a statement
like, “IF Var5 = Location3 THEN.” In fact, when
using a name-index number to identify a location,
resource, or entity (as in the previous examples),
it is usually best to use the name of the element,
because inserting or deleting an element from the
edit table, may change the name-index number
assigned to other elements.

If you need to refer to a location, resource, or
entity by name but only know its name-index
number, use the name functions: LOC(), RES(),
and ENT(). These functions allow name-index
numbers and variables or attributes containing
name-index numbers to be converted back to
their actual names for use in statements or
expressions requiring the element name.

Consider the statement, “Attr1 = PASSENGER.”
Although this statement only stores the name
index number of the element in the attribute, the
name-index number can then be used in conjunc-
tion with LOC(), ENT(), and RES() to get the
actual name of the location. For example, if PAS-
SENGER is the fifth entity in the Entity edit
table, the statement LOAD 1 ENT(Attr1) works
the same as LOAD 1 PASSENGER. Addition-
ally, a name-index number can be used with the

 ProModel 407
User Guide
name functions to output a name to the screen or
a file.

Converting Between Numeric
Types
When an expression expects one type of value
but receives another, ProModel automatically
takes care of converting between the two, so most
often the difference will not matter. However,
when ProModel expects an integer but receives a
real value, it truncates the real value at the deci-
mal point. For example, say the variable Integer1
is assigned the value 3.9, as in the following
statement: Integer1=3.9. The variable Integer1
would hold the value 3, not 4. To round 3.9 when
assigning to an integer variable would require the
statement, Integer1=Round(3.9).

Converting from name-index numbers to the
name of an element requires the ENT(), LOC(),
and RES() functions as ProModel does not auto-
matically convert numbers to names. For infor-
mation on how to output the name of an element
based on its name-index number, see “String
Expressions” on page 412.

Character Strings
A string is any collection of characters enclosed
in quotes, such as “Now Boarding.” Unlike some
programming languages, ProModel uses charac-
ter strings exclusively for output either to a file or
to the screen. Strings may contain any of the 256
ASCII characters. (ASCII characters not on the
keyboard can be included in string expressions
with the CHAR() function.) Strings may include
keywords and names, but those keywords and
names will not be executed in or used by the
logic.

Additionally, the symbol “\n” can be used to
divide a string into multiple lines when it is out-
put, as in the example below.

The statement, DISPLAY “The simulation \nis
half over.” displays this dialog box:

Examples of character strings

“EntA exited the system.”

“Location 3 is operating at capacity.”

“ProModel”

Although ProModel does not provide string vari-
ables, it does allow the names of model elements
to be stored in variables and attributes as name-
index numbers (see “Name-Index Numbers” on
page 406). The name referenced by a name-index
number may be used in statements and output to
the screen or a file with the ENT(), LOC(), and
RES() functions. See “String Expressions” on
page 412 for more information.

408 Chapter 11:
Operators
Operators
Operators are symbols used to perform opera-
tions on elements in an expression. ProModel
operators include Boolean operators, mathemati-
cal operators, and a string operator. Unlike
reserved words, you may not use operators as any
part of a name. The following sections explain
the use of these operators for different expression
types.

Mathematical Operators

Operator Meaning Example

+ Addition A=B+C

- Subtraction A=B-C

* Multiplication A=B*C

/ Division A=B/C

Mod or @ Modulus A=B Mod C
(assigns the remain-
der of B divided by C
to A)

** Exponentia-
tion

A=B**C
(assigns the value of
B raised to the C
power)

Relational Operators

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

Comparison Operators

Operator Meaning

AND TRUE if both expressions are TRUE

OR TRUE if one expression is TRUE

NOT Makes TRUE expressions FALSE
and FALSE expressions TRUE

Operator Precedence
As in conventional mathematics, ProModel eval-
uates expressions with more than one operator
according to certain rules of precedence. Expres-
sions with more than one operator evaluate in the
following order:

1. Terms inside parentheses: ()
2. Exponentiation: **
3. Multiplication: *; Division: /; and Modulus:

@
4. Addition: +; Subtraction: -
5. Equalities and Inequalities: =, <>, >, >=, <,

<=
6. NOT
7. AND
8. OR
9. Concatenation: $; (For string expressions

only.)

For more information and additional examples of
operator precedence, see “Operator Precedence”
on page 413.

Expressions
Expressions consist of a value or combination of
values (even of different types), variables,
attributes, functions, and operators that result in a
value. Many consider an expression to be a string
expression if it evaluates to a string, a numeric
expression if it evaluates to a number, and so on.
(For information on how to handle different value

 ProModel 409
User Guide
types in the same expression, see “Converting
Between Numeric Types” on page 407.)

The following are the different expression types
used in ProModel:

•Numeric Expressions
•Boolean Expressions
•Time Expressions
•String Expressions

 Numeric Expressions
A numeric expression is a combination of
numeric elements (such as numbers, variables,
and functions) and operators that evaluates to a
numeric value.

An expression can contain any of the following in
any combination:

Arrays Mathematical operators

Attributes Name-Index numbers

Boolean operators Numbers

Distributions Subroutines

Macros System functions

Math function table
functions

Variables

The following mathematical operators are avail-
able:

Operator Meaning Example
+ Addition A=B+C

- Subtraction A=B-C

* Multiplica-
tion

A=B*C

/ Division A=B/C

Mod or @ Modulus A=B Mod C
(assigns the
remainder of B
divided by C to A)

** Exponenti-
ation

A=B**C (assigns the
value of B raised to
the C power)

You can perform additional mathematical opera-
tions using math functions. For more information
on operator precedence rules and expression nest-
ing, see “Operator Precedence” on page 413.

410 Chapter 11:
Boolean Expressions
Please note

In each of the examples above, if A is an integer
number and B and C are both real numbers, the
result will be truncated unless ROUND() is used
(e.g., A = ROUND(B+C)).

Boolean Expressions
Boolean expressions are relational comparisons
between numeric expressions resulting in a value
of either True or False. Boolean expressions are
used most often in IF...THEN and other control
statements. The following relational operators are
used in Boolean expressions:

Operator Meaning
= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

Relational operator examples

A = B

A > B

A < B

A >= B

A <= B

A <> B

Spacing between the terms and operators within a
numeric expression is optional. However, for
operators with two characters (for example, >=,
<=, <>), no spaces are allowed between charac-
ters in the operator.

 ProModel 411
User Guide
Additionally, the following operators compare
two Boolean expressions.

Operator Meaning
AND TRUE if both expressions are TRUE

OR TRUE if one expression is TRUE

NOT Makes TRUE expressions FALSE
and FALSE expressions TRUE

For information on operator precedence and nest-
ing rules, see “Operator Precedence” on
page 413.

Time Expressions
A time expression is a numeric expression fol-
lowed optionally by a time unit (WK, DAY, HR,
MIN, SEC) which defines a duration. If no time
unit is specified, the default time unit specified in
the General Information dialog box is assumed.
ProModel knows whether an expression is a time
expression based on the context. Time expres-
sions are not valid within a function call. For
example, E(10 sec) is invalid, while E(10) sec is
valid. If a negative value is used for a time
expression, it is automatically converted to zero.

Syntax for time expressions

<numeric expression>{<time units>}

Examples
2 hr
E(10) min
Var1+40.25 min.01

Note that time units cannot be mixed (e.g., 3 min
21 sec), unless you use colon notation.

412 Chapter 11:
String Expressions
Colon Notation for Time Values
Colon notation allows for more complex time
expressions. You may use colon notation in the
following manner to express time values.

Colon notation

<hours expression>:<minutes expres-
sion>:<seconds expression>

Colon notated time expressions evaluate from
right to left as illustrated in the following exam-
ples:

Example Meaning
:05 5 seconds

5:00: or 5:: 5 hours

5:00 or 5: 5 minutes

2:40: 2 hours and 40 minutes

15:02:05 15 hours, 2 minutes and 5 sec-
onds

3:25 3 minutes and 25 seconds

Attr1::Var2 Attr1 hours and Var2 seconds

String Expressions
Any text to be written to a file or displayed on the
screen is created with a string expression. String
expressions are created from a combination of the
following:

• Character strings • ENT()

• Concatenation operators "$" • LOC()

• Numeric Expressions • RES()

• CHAR() • FORMAT()

A string expression must begin with a concatena-
tion operator ($) or with a string constant in
quotes (i.e., “...”). The concatenation operator
combines components together, and must be
between all components of a string expression.
For example, if Attr1 is 7.83, then the expression
“STRING1”$ ATTR1 $ “STRING2” evaluates
to “String17.83String2.”

To output the name of a location, entity, or
resource, use the appropriate function inside a
string expression: LOC() for locations, ENT() for
entities, and RES() for resources. For example,
the following logic checks the first ten locations
in a model and displays the name of any location
that is completely full.

Display name of full location

Var1 = 1

While Var1 <= 10 Do

Begin
If FreeCap(Loc(Var1)) = 0 Then
DISPLAY Loc(Var1) $ “is full.”
INC Var1

End

String expressions are valid only as part of the
following statements and functions: DISPLAY,

 ProModel 413
User Guide
PAUSE, PROMPT, STOP, WRITE, WRITE-
LINE, TRACE, XSUB(), and XWRITE.

String expressions

If a model had been running for six days, the
statement

DISPLAY “The simulation ran \n” $ CLOCK(DAY) $
“days.”

would display the following dialog box.

Operator Precedence
As in conventional mathematics, ProModel eval-
uates expressions with more than one operator
according to certain rules of precedence. Expres-
sions with more than one operator are evaluated
in the following order:

1. Terms inside parentheses: ()
2. Exponentiation: **
3. Multiplication: *; Division: /; and Modulus:

@
4. Addition: +; Subtraction: -
5. Equalities and Inequalities: =, <>, >, >=, <,

<=
6. NOT
7. AND
8. OR
9. Concatenation: $; (For string expressions

only.)

When evaluating more than one operator with the
same precedence, ProModel works from left to
right.

Arithmetic and boolean expressions may include
nested expressions (expressions in parentheses)
to indicate precedence in complex expressions
such as the following examples:

Nested expressions

A+B*(C+D)

((A>B) OR (B>C)) AND (C>D)

The expression (C+D) is a nested expression
which is evaluated first. Multiple nesting is per-
mitted, with the innermost nesting being eval-
uated first.

Example 1

15 - MATRIX[4]**2 + CLOCK(MIN) / 60

414 Chapter 11:
Operator Precedence
In this expression, Matrix[4]**2 is evaluated
first, with the result being subtracted from 15.
This value is then added to the value
obtained from Clock(min)/60.

Example 2

(A>B) OR (A>C) AND (A=D)

would evaluate

(A>B) OR ((A>C) AND (A=D))

 ProModel 415
User Guide
Chapter 12: Routing Rules

Routing Rules
Routing rules determine the next location for the
processing entity. They are specified in the
“Rule” field of the Routing edit table. They may
be typed manually or selected from the Routing
Rule Dialog box shown below by clicking on the
Rule button. For more information about routing,
see “Routing Edit Table” on page 155.

416 Chapter 12:
Alternate
Alternate

Syntax samples

ALT

Description

Causes a location to be selected as an alternate
destination if it has available capacity and the
condition for a preceding routing rule is not met.
If the ALTERNATE location is unavailable, the
entity waits until it becomes available or until the
preceding routing rule is satisfied.

ALTERNATE routings are common to all pri-
mary routings, except the Probability and User
Condition rules, and should therefore be listed
after the last primary routing but before any
backup routings.

For example, a high-speed machine might be pre-
ferred, but alternatively, a slower machine can be
used when the faster machine is unavailable.

Valid In

The rule field of the Routing edit table only. An
ALTERNATE routing may be specified after any
other type of routing (including other ALTER-
NATE routings) except for BACKUP, CON-
TINUE and DEPENDENT routings.

Example

After Shaft completes a 3 minute operation at
Drill, it routes to either Lathe1 or Lathe2 if a SEND
statement somewhere in the model directs an
EntA to be sent to one of those locations. If no
SEND request is waiting, an alternate routing will
route the entity to Lathe3. If no capacity is avail-
able at Lathe3, the entity will wait until capacity
becomes available at Lathe3 or a SEND state-
ment that matches the entity and the location in
one of the SEND routings executes somewhere in
the model.

Process Table

Entity Location Operation (min)
Shaft Drill WAIT 3

Routing Table

Blk Output Destination Rule Move Logic
1 Shaft Lathe1 Send 1

Shaft Lathe2 Send
Shaft Lathe3 ALT

See Also

See the other routing rules for exceptions and
special cases. Also see “Processing” on page 149.

 ProModel 417
User Guide
Backup

Syntax samples

BACKUP

Description

Locations specified by this rule are selected only
if all of the destinations (primary or alternate)
listed in the preceding routings of the same block
are unavailable due to any downtime, including a
shift. One use of BACKUP is to handle a
machine that is not functioning, and entities need
another destination to continue.

Valid In

Inside the rule field of the Routing edit table, at
the end of a routing block, after one or more pri-
mary routings or even an ALTERNATE rule.
Conditions for using Backup routings with either
USER CONDITION and PROBABILITY rout-
ing rules are given in the notes for these rules.

Example

After an entity, Chip, completes a 3 minute oper-
ation at CNC, it is routed to Stamp1 when
Stamp1 becomes available. Only if Stamp1 and
the alternate location (Stamp2) are both down
will it be routed to Stamp3. If Stamp3 is also
unavailable, Chip will wait for Stamp3 only as
long as both Stamp1 and Stamp2 remain down.

Process Table

Entity Location Operation (min)
Chip CNC WAIT 3

Routing Table

Blk Output Destination Rule Move Logic
1 Chip Stamp1 FIRST 1

Chip Stamp2 ALT
Chip Stamp3 BACKU

P

See Also

ALTERNATE routing rule. Also see “Process-
ing” on page 149.

418 Chapter 12:
Continue
Continue

Syntax samples

CONT 1

Description

Leaves an entity at the current location for further
processing. ProModel searches the process list
forward and then from the beginning until a pro-
cess is found for the output entity at the current
location. If the entity name remains the same and
no additional processes for that entity type are
defined at the location, the original process will
repeat continuously unless a condition bypasses
the routing block with the CONTINUE rule.

The CONTINUE routing rule also allows
dynamic priority changes. This means a low pri-
ority entity that enters a location can be dynami-
cally upgraded to a higher priority without
leaving the location. Move Logic for the routing
block with the CONTINUE rule will not be exe-
cuted.

Neither a time value nor a movement rescue is
allowed in the Move Logic column for a route
block containing a CONTINUE rule. This rule is
one way to route an entity from a single capacity
location to the same location without causing a
deadlock. The CONTINUE rule can also simu-
late an unlimited supply of a raw material at a
location.

Statistics for a location using the CONTINUE
rule are collected as one entry for the entity.

Valid In

The rule field of the Routing edit table only. A
CONTINUE rule must be the only routing in a
routing block and must always take a quantity of
one.

Example

This example simulates an unlimited supply of ore
at a location. After the Extract location extracts
the Iron from the Ore, two routing blocks execute.
The first routing block routes the Iron just extracted
on to a molding location. The second routing
block routes another unit of ore back to the loca-
tion, where the process begins again.

Process Table

Entity Location Operation (min)
Ore Extract WAIT 100
Iron Mold ...

Routing Table

Blk Output Destination Rule Move Logic
1* Iron Mold FIRST 1 MOVE FOR 10
2 Ore Extract CONT 1
...

See the next example for an illustration of
dynamic priority changing.

Example

Dynamic Priority Changing Suppose a gear
enters a location. The gear has a low priority. If
another type of gear enters the system with a
higher priority, the second gear may preempt the
first gear. Another worker in the plant needs the
first gear immediately or else he will miss his
deadline. Now the first gear’s priority is higher than
the second gear. Using the CONTINUE routing rule
allows you to change the priority of the first gear.

 ProModel 419
User Guide
An entity that enters a location with a priority 99
can increase its priority to 999 without ever leav-
ing that location. In addition, this functionality will
also allow you to specifically control which enti-
ties in a multi-capacity location will be pre-
empted by another incoming high priority entity.

Process Table

Entity Location Operation (min)
Gear Loc1 WAIT 2
Gear Loc2 WAIT 3

IF CLOCK() > 1 THEN
 BEGIN
 var = 999
 ROUTE 2
 END
ELSE ROUTE 1

Gear Loc2

Routing Table

Blk Output Destination Rule Move Logic
1 Gear Loc2, 99 FIRST 1 MOVE FOR 1
1 Gear Loc3 FIRST 1 MOVE FOR 1
2 Gear Loc2, var CONT 1
1 Gear Loc3 FIRST 1 MOVE FOR 1

See Also

“Processing” on page 149.

420 Chapter 12:
Dependent
Dependent

Syntax samples

DEP

Description

Selects a location if, and only if, the routing
immediately preceding it is selected. An ALTER-
NATE routing which follows a dependent routing
is an alternate to the last major routing preceding
the dependent condition and not to the dependent
routing itself.

A dependent routing should be used when one
process results in two different types of entities
that should go to different locations. For exam-
ple, a dependent routing could simulate the sepa-
ration of a customer and his or her order placed at
the drive-through window at a restaurant. While
the customer continues on to the cashier window,
the order is sent on to the counter for fulfillment.

Valid In

The rule field of the Routing edit table only. A
DEPENDENT routing may be specified after any
other routing rule (including other DEPENDENT
routings) except for a CONTINUE routing.

Example

After an entity named “Lamp” completes a 3-
minute preparation at Prep, the paint shop will
paint it. If the paint shop has capacity, the Base
routes to the paint shop and the Shade routes to
the Waiting area based on the dependent rule.
But if the paint shop does not have capacity, the
lamp stays together and routes to Storage on an
alternate routing.

Process Table

Entity Location Operation (min)
Lamp Prep WAIT 3

Routing Table

Blk Output Destination Rule Move Logic
1 Base Painting FIRST 1

Shade Waiting DEP
Lamp Storage ALT

See Also

“Processing” on page 149.

 ProModel 421
User Guide
Empty

Syntax samples

EMPTY {<expression>}

Description

Selects a location only if it is completely empty.
This routing rule is similar to the UNTIL FULL
rule except that a location must be completely
empty before it is initially selected. Once an
empty location is selected, it continues to be
selected until it is full. If no location is empty, the
output waits until one becomes empty.

The EMPTY condition is designed for the situa-
tion where two or more multi-capacity locations
are being filled from the same source and the
modeler desires each location to completely fill
and completely empty in an alternating fashion.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

Total entities output from the process. This expression
is valid only for the first routing of a routing block. For
more information on this expression, see “Processing”
on page 149.

Example

After EntA completes a 25 second operation at
Loc1, it is routed to one of three multi-capacity
locations (Loc2, Loc3 or Loc4) as soon as one
becomes empty. Subsequent routings continue
to the same location until it is full, and then to the
next location that is empty. Once all locations
are filled, no more routings occur until one of the
locations becomes empty.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT 25 sec

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 EMPTY 1

EntA Loc3 EMPTY
EntA Loc4 EMPTY

See Also

“Processing” on page 149.

422 Chapter 12:
First Available
First Available

Syntax samples

FIRST {<expression>}

Description

Selects the first location available among one or
more locations listed in a routing block. Specify-
ing multiple First Available routings in a routing
block has the same effect as specifying a First
Available routing followed by one or more
ALTERNATE routings. An example of using the
First Available rule in a routing block is given
below.

The First Available rule is the default rule when
defining the initial routing in the Process Editor.
In this case, the First Available routing can be
interpreted to be the “primary” routing.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see the
“Processing” on page 149.

Example

After EntA completes a 4 minute operation at
Loc1, it is routed to Loc2, Loc3 or Loc4 depend-
ing on which location is the first to have available
capacity.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT 4

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1

EntA Loc3 FIRST
EntA Loc4 FIRST

See Also

“Processing” on page 149.

 ProModel 423
User Guide
Join

Syntax samples

JOIN {<expression>}

Description

Selects a location whenever a JOIN request is
issued at that location. Since a joining entity does
not require capacity, there is no need to check for
available capacity at the destination. Multiple
JOIN requests are filled according to the oldest
waiting request with the highest priority. Entities
routed with the JOIN routing rule are not actually
sent to their destination until a JOIN statement is
encountered at the destination location.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

After EntA completes a 5.2 minute operation at
Loc1, it routes to Loc2, Loc3 or Loc4 to join to
some other entity that issued a JOIN request for
an EntA.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT 5.2

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 JOIN 1

EntA Loc3 JOIN
EntA Loc4 JOIN

See Also

JOIN statement. Also see “Processing” on
page 149.

424 Chapter 12:
Load
Load

Syntax samples

LOAD {<expression>}

Description

Selects a location whenever a LOAD request is
issued at the destination location. Since a loading
entity does not fill capacity, there is no need to
check for available capacity at the destination.
Multiple LOAD requests are filled according to
the oldest waiting request with the highest prior-
ity.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

After EntA completes a 3 minute operation at
Loc1, it is routed to Loc2, Loc3 or Loc4 to be
loaded onto some other entity that has issued a
LOAD request.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT 3

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 LOAD 1

EntA Loc3 LOAD
EntA Loc4 LOAD

See Also

LOAD statement. Also see “Processing” on
page 149.

 ProModel 425
User Guide
Longest Unoccupied

Syntax samples

LU {<expression>}

Description

Selects one of the locations listed in a block of
routings based on which has been unoccupied the
longest. If several multi-capacity locations all
have one or more current entities, the location
with the most available capacity will be selected.
If no capacity is available at any location, the first
one that becomes available is selected. This rule
is useful in situations where residual effects must
diminish before further usage of a location (e.g.,
an oven cooling to an ambient temperature, the
vapor clearing out of a paint booth, etc.).

Please note that this routing rule is not valid for
single-capacity locations

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

After EntA completes a 2.5 minute operation at
Loc1, it routes to Loc2, Loc3 or Loc4 depending
on the location unoccupied the longest.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT 2.5

Routing Table

Blk Output Destination Rule Move Logic
1 Plane Gate1 LU 1 MOVE FOR 2

Plane Gate2 LU MOVE FOR 2
Plane Gate3 LU MOVE FOR 2
Plane Gate4 LU MOVE FOR 2

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 LU 1

EntA Loc3 LU
EntA Loc4 LU

See Also

“Processing” on page 149.

426 Chapter 12:
Most Available
Most Available

Syntax samples

MOST {<expression>}

Description

Selects one of the locations listed in a block of
routings based on which has the most available
capacity. If no capacity is available at any of the
locations listed, the first one that becomes avail-
able is selected. Use the MOST routing rule to
equalize queues in front of workers. This rule is
useful in cases where inventory levels need to be
balanced among several downstream queues.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

After EntA completes a 4 minute operation at
Loc1, it is routed to Loc2, Loc3 or Loc4 depend-
ing on which location has the most available
capacity at the current time.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT 4

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 MOST 1

EntA Loc3 MOST
EntA Loc4 MOST

See Also

“Processing” on page 149.

 ProModel 427
User Guide
Probability

Syntax samples

<probability> {<expression>}

Description

Randomly selects a location listed in a block of
routings based on a probability. Several probabil-
ity routings should be used together and the sum
of all probabilities must equal one. The entity
will wait to be routed until the selected location
has available capacity. Unlike most primary rout-
ings, an ALTERNATE and BACKUP routing
may be specified after each PROBABILITY
routing in a single routing block. If the selected
location has no ALTERNATE routing and has no
available capacity, the entity will wait for the
location until it has available capacity.

Valid In

The rule field of the Routing edit table only.

Components

<probability>

The chance of the routing being taken, expressed as a
decimal less than one. All probabilities in a single rout-
ing block must add up to one. This number must be a
value and may not be an expression.

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

EntA completes an eight minute operation at
Loc1, and routes to Loc2 80% of the time, Loc3
15% of the time, and to Loc4 5% of the time. If
EntA selects Loc2 but the location has no avail-
able capacity, EntA will select an alternate loca-
tion, Loc2A. If both Loc2 and Loc2A are down,
EntA selects a backup location (Loc2B). Loc3 has
an alternate location (Loc3A) in case it is unavail-
able, but has no backup location. Loc4 has nei-
ther an alternate location nor a backup location.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT8

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 .800 1

EntA Loc2A ALT
EntA Loc2B BACKUP
EntA Loc3 .150
EntA Loc3A ALT
Claim Loc4 .050

See Also

“Processing” on page 149.

428 Chapter 12:
Random
Random

Syntax samples

RANDOM {<expression>}

Description

Randomly selects one of several available loca-
tions listed in a block of routings such that each
location having available capacity is equally
likely to be selected. If none of the locations
listed has available capacity, the first location
that becomes available will be selected.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

After EntA completes a 3 minute operation at
Loc1, it is randomly routed to Loc2, Loc3, or
Loc4.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT 3

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 RANDOM 1

EntA Loc3 RANDOM
EntA Loc4 RANDOM

See Also

PROBABILITY routing rule. Also see “Process-
ing” on page 149.

 ProModel 429
User Guide
Send

Syntax samples

SEND {<expression>}

Description

Causes an entity to remain at the current location
until one of the listed destinations issues a SEND.
Once a location has been selected, capacity must
be available at that location before the routing
actually takes place. Multiple alternative SEND
destinations may be specified in a block.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

Purchase Orders (PO’s) are held at a holding
location until final approval is received.
Once a SEND request has been generated at
some other location in the system, the PO is
sent to the appropriate vendor.

Process Table

Entity Location Operation (min)
PO Holding

Routing Table

Blk Output Destination Rule Move Logic
1 PO VendorA SEND 1 MOVE FOR 48

Hr
PO VendorB SEND MOVE FOR 48

Hr
PO VendorC SEND MOVE FOR 48

Hr

See Also

“Processing” on page 149.

430 Chapter 12:
Turn
Turn

Syntax samples

TURN {<expression>}

Description

Selects the locations listed in a block of routings
in rotation by availability. If none of the locations
listed are available, the first one that becomes
available is selected. A particular location may be
listed more than once in a routing block if it is to
have a greater proportion of turns than the others.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

In this example, Purchase Requests (PR’s) are
entered into an on-line accounting system at
location Keypunch. They are then assigned
on a rotating basis to Buyer1, Buyer2, or
Buyer3.

Process Table

Entity Location Operation (min)
PO Keypunch WAIT U(3,1) min

Routing Table

Blk Output Destination Rule Move Logic
1 PR Buyer1 TURN 1

PR Buyer2 TURN
PR Buyer3 TURN

See Also

“Processing” on page 149.

 ProModel 431
User Guide
Until Full

Syntax samples

FULL {<expression>}

Description

This rule continues to direct all output to the first
location specified until it fills to capacity and
then to the next location until it fills and so on. If
all locations are full, the first one that becomes
available is selected.

Valid In

The rule field of the Routing edit table only.

Components

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

In this example, pallets are scanned at a bar-
code location before being placed in stor-
age in a warehouse. The policy at the
warehouse calls for keeping Aisle1 com-
pletely full before storing anything in Aisle2.
Similarly, Aisle2 must be kept full before storing
anything in Aisle3.

Process Table

Entity Location Operation (min)
Pallet Barcode USE Scanner FOR U(2.3,4)

Routing Table

Blk Output Destination Rule Move Logic
1 Pallet Aisle1 FULL 1 MOVE FOR

5
Pallet Aisle2 FULL MOVE FOR

6
Pallet Aisle2 FULL MOVE FOR

7

See Also

“Processing” on page 149.

432 Chapter 12:
User Condition
User Condition

Syntax samples

<Boolean expression> {<expression>}

Description

Selects one of several locations listed in a routing
block based upon a user-defined condition. Sev-
eral User-Condition routings usually are used in
the same routing block. At least one of the user-
defined conditions in a block must be true or an
error message will appear and the simulation will
terminate. Capacity must be available at the loca-
tion before the routing actually takes place.
Unlike most primary routing rules, an ALTER-
NATE or BACKUP routing may be specified
after each USER CONDITION routing in the
same routing block.

Valid In

The rule field of the Routing edit table only.

Components

<Boolean expression>

Any expression which evaluates to TRUE or FALSE.

<expression>

The total entities output from the process. This expres-
sion is valid only for the first routing of a routing
block. For more information on this expression, see
“Processing” on page 149.

Example

Customers bring their cars to a local service
station for emissions testing and state inspec-
tion. After each car completes a 10-minute
inspection operation at location Inspect, they
are put in the proper service bay depending
on the car’s engine type. Late-model (post-
1975) cars are tested in Bays 1 and 2, pre-
1975 cars are tested in Bay3, and diesel
engine cars are tested in Bay4. If Bay1 is
selected but not available, an alternate loca-
tion (Bay2) is selected. If both Bay1 and Bay2
are down, a backup location (Bay3) is
selected. Bay3 also has an alternate location
(Bay4) in case it is unavailable, but has no
backup location. Bay4 has neither an alter-
nate location nor a backup location.

 ProModel 433
User Guide
Process Table

Entity Location Operation (min)
CAR Inspect WAIT 10

Routing Table

Blk Output
Destinatio
n Rule Move Logic

1 CAR Bay1 IF Type=1 1
CAR Bay2 ALT
CAR Bay3 BACKUP
CAR Bay3 IF Type=2
CAR Bay4 ALT
CAR Bay4 IF Type=3

See Also

“Processing” on page 149.

434 Chapter 12:
User Condition

 ProModel 435
User Guide
Chapter 13: Logic Ele-
ments

Functions
Functions return information such as a location’s
capacity, the amount of time the simulation has
been running, or a random number. A function is
a keyword followed by parentheses, which may
contain data that the function needs to complete
its operation. You should be aware that if a func-
tion or variable expecting an integer gets a real
number, it will ignore everything to the right of
the decimal point.

System Functions
The following list describes the function types
available in ProModel.

General System Functions
General system functions return information
about the simulation, such as the length of time
that the simulation has run, and may be refer-
enced in any numeric expression.

Entity-Specific System Functions
Entity-specific system functions return informa-
tion about the processing entity, such as the num-
ber of entities in an entity group. For that reason,
these functions may be used only where an entity
is processing some type of logic. This includes
Arrival, Operation, and Location Exit logic.

Resource-Specific System
Functions
Resource-specific system functions may only be
used in resource node logic when a resource
enters or leaves a node.

Downtime-Specific System
Functions
ProModel permits you to use downtime-specific
system functions only in downtime logic.

Shift & Break System Functions
ProModel allows you to use these functions only
in shift and break logic.

General Functions

Math Functions
Math functions are built-in functions used for
performing mathematical operations on numeric
expressions.

Type Conversion Functions
When two types of numbers are used in an
expression, as when a real value is assigned to an
integer variable, they must all be converted to the
same type before ProModel can evaluate them.
ProModel performs this conversion automatically

436 Chapter 13:
Statements
and, in most instances, this conversion will be
satisfactory. The only place where the user may
want to use a different conversion is when Pro-
Model converts from a real to an integer.

When converting from a real to an integer, Pro-
Model ignores everything to the right of the deci-
mal point. When converting from an integer to a
real, ProModel simply adds a decimal point to the
integer. ProModel handles name-index numbers
exactly like integers. Most often, these automatic
conversion will be sufficient, but occasionally it
will be necessary to convert between the types
differently. For these situations, use the conver-
sion functions.

Statements
Statements cause ProModel to take some action
or perform some operation. Unlike functions,
statements neither return a value nor use paren-
theses, and logic may contain comments. (See
“Comments” on page 461.) Statements can use
spacing (including a new line) before each word
in a statement, and are case insensitive so any let-
ter may be either upper or lower case.

General Action and Control
Statements
General statements can be divided into two main
categories: action and control statements. They
are called general because they can be used in
any logic. Action statements cause some action to
occur in the model, such as changing an entity’s
graphic or writing to a file. Control Statements
determine the next statement to be executed, such
as loops, branches, and statement blocks.

Resource- and Entity-Related
Operation Statements
Operation Statements perform specific actions on
entities and resources at locations throughout the

system whenever they are encountered by an
entity in the operation logic. They are valid only
in certain areas. See each statement for a list of
places where it is valid.

There are two subsets of operation statements:
entity-related and resource-related. Entity-
related operation statements perform specific
actions on entities only. Resource-related opera-
tion statements involve resources alone (for
example, GET and FREE) or resources and enti-
ties together (for example, USE).

Statement Blocks
A statement block is a group of statements that
begin with the keyword BEGIN, or the symbol
“{”, and end with the keyword END, or the sym-
bol “}”. Two examples appear below. See
BEGIN and END for more extensive examples of
statement blocks.

Statement blocks

BEGIN {

Statement 1 Statement 1

Statement 2 Statement 2

Statement 3 Statement 3

... ...

Statement n Statement n

END }

 ProModel 437
User Guide
Distribution Functions
Distribution functions are built-in functions
which, in conjunction with streams, return ran-
dom values according to a statistical distribution.
The following table is a summary of available
distribution functions. They are valid in any
numeric expression.

Distribution Syntax Individual Components

Beta B(a,b,c,d{,<s>}) a=shape value 1, b=shape value 2, c=lower boundary, d=upper
boundary

Binomial BI(a,b{,<s>}) a=batch size, b=probability of “success”

Erlang ER(a,b{,<s>}) a=mean value, b=parameter

Exponential E(a{,<s>,<ax>}) a=mean

Gamma G(a,b{,<s>,<ax>}) a=shape value, b=scale value

Geometric GEO(a{,<s>}) a=probability of “success”

Inverse Gaussian IG(a,b{,<s>,<ax>}) a=shape value, b=scale value

Lognormal L(a,b{,<s>,<ax>}) a=mean, b=standard deviation

Normal N(a,b{,<s>}) a=mean, b=standard deviation

Pearson5 P5(a,b{,<s>,<ax>}) a=shape value, b=scale value

Pearson6 P6(a,b,c{,<s>,<ax>}) a=shape value 1, b=shape value 2, c=scale value

Poisson P(a{,<s>}) a=quantity

Triangular T(a,b,c{,<s>}) a=minimum, b=mode, c=maximum

Uniform U(a,b{,<s>}) a=mean, b=half range,

User-defined <name>({<s>}) Name of a user-defined distribution as defined in the User Distri-
bution section

Weibull W(a,b{,<s>,<ax>}) a=shape value, b=scale value

General Components
<s> The optional stream to use in conjunction
with the distribution’s probabilities. If this option
is omitted, ProModel will use stream one. For
more information on streams, see “Streams” on
page 266.

<ax> An optional axis shift. The distributions,
E, G, W, L, IG, P5, and P6 all normally have a
minimum value of zero. Use an axis shift to alter
the distribution’s minimum value and at the same

time shift the entire distribution. Any time an axis
shift is specified, a stream must be specified also.

Any negative value returned by a distribution that
is used for a time expression will be automati-
cally converted to zero.

438 Chapter 13:
Priorities
Priorities
Many statements in this manual use <priority> as
a component. A priority determines the order in
which competing commands are fulfilled. For
example, priority determines which of two com-
peting requests to USE a resource gets fulfilled,
or which of two competing requests to SEND the
same entities to different locations gets fulfilled.
Commands or entities with high enough priority
can even bring back up locations that are down,
or force a location to stop processing one entity
and process another instead. This is called “pre-
emption.” All priorities must be an expression
that evaluates to a number between 0 and 999.

For a complete explanation of priorities and pre-
emption, see “Location Priorities and Preemp-
tion” on page 111, “Resource Shift Downtime
Priorities” on page 141, “Preemptive Entities” on
page 121, and “Preemption Process Logic” on
page 300.

 ProModel 439
User Guide
Chapter 14: Statements
and Functions

Accum

Entity-Related Operation Statement

Syntax samples

ACCUM <expression>
ACCUM 10
ACCUM Var1

Description

Accumulates, without consolidating, the speci-
fied quantity of entities at a location. ACCUM
works like a gate that prevents entities from pro-
cessing until a certain number arrive. Once the
specified number of entities have accumulated,
they will go through the gate and begin process-
ing individually, independent of each other.

ACCUM can be used to model situations where
several entities should be accumulated before
they get processed. For example, when a resource
processes orders at a work station, it may be more
efficient to accumulate several orders before
requesting the resource.

If you specify an ACCUM operation in a process
for an individual entity, accumulation will occur
by individual entity type. However, if you specify
ALL as the processing entity, all entity types at

that location will participate in the same accumu-
lation.

Valid In

The operation column of process edit tables only.
ACCUM must be used at a location with enough
capacity to accumulate the specified quantity.

Components

<expression>

The number of entities to accumulate. If this expres-
sion results in zero or one, it is ignored. If it results in a
number greater than the location’s capacity or a nega-
tive number, the simulation will stop with an error.

This expression is evaluated every time an entity to be
accumulated arrives, so the quantity to be accumulated
can vary as the entities to be accumulated arrive. If an
entity arrives that changes this expression to a number
lower than the number of entities already accumulated,
all of the accumulated entities begin to process.

Example

Entities named “Pallet” arrive at a location
named “Loading” and accumulate in batches of
20. Entities named “Box” also arrive at Loading
and accumulate in batches of 10. Only after the
right number of boxes or pallets accumulates
does ProModel request the forklift. The accumula-
tion of Boxes and Pallets at Loading is entirely

440 Chapter 14:
Accum
independent because the accumulation state-
ments are in different records. Note that the fork-
lift is used for two minutes per pallet or box,
because each pallet and box process individu-
ally after accumulating all of them. While the
accumulation of entities at Loading is by entity
type, the accumulation at the location, “Storage”
is independent of entity type since the ALL key-
word denotes common processing for all entities
at this location.

Process Table

Entity Location Operation (min)
Pallet Loading ACCUM 20

USE ForkliftFOR 2
Box Loading ACCUM 10

USE Forklift FOR 2
ALL Storage ACCUM 30

Routing Table

Blk Output Destination Rule Move Logic
1 Pallet Storage FIRST 1 MOVE FOR 5
1 Box Storage FIRST 1 MOVE FOR 5
1 ALL Loc3 FIRST 1 MOVE FOR 5

See Also

COMBINE, JOIN, and GROUP.

 ProModel 441
User Guide
Activate

General Action Statement

Syntax samples

ACTIVATE <subrou-
tine>({parameter1>,<parameter2>...})
ACTIVATE Sub1()

Description

Starts an independent subroutine. Only subrou-
tines of type interactive can be called with ACTI-
VATE. The calling logic then continues without
waiting for the called subroutine to finish. There-
fore, independent subroutines can run in parallel
with the logic that called them. Independent sub-
routines are not entity or location dependent and
run without regard to what happens inside the
logic that called them.

Use ACTIVATE to process logic that has WAIT
or WAIT...UNTIL statements when you do not
want to use an entity to process the WAIT or
WAIT...UNTIL statements. For example, an
ACTIVATE in the initialization logic could call a
subroutine that adjusts the arrival frequency for a
type of entity depending on the time of day.

Independent subroutines called with ACTIVATE
cannot use entity-specific or location-specific
system functions. If the subroutine has a return
value, then that value is ignored. External subrou-
tines cannot be called with ACTIVATE, although
they may be called from within an activated sub-
routine.

Valid In

Any logic.

Components

<subroutine>

The name of the subroutine to run. This name should
appear exactly as if the subroutine were being called
normally. Any return value for this function is ignored.
See “Subroutines” on page 246.

<parameters>

The parameters that the subroutine normally takes.

Example

This example uses ACTIVATE in a model’s initializa-
tion logic to start a subroutine named Res_Log().
Res_Log() is a user-defined subroutine that logs
every time that all units of a resource named
Worker are in use. After it logs the time that all
units were busy, it waits ten minutes to check
again. Note that the WHILE...DO loop in the sub-
routine is never exited. This technique allows the
subroutine to run during the entire simulation.

Initialization Logic:
Activate Res_Log()

Res_Log()
INT X = 1
WHILE X = 1 DO
BEGIN
IF FREEUNITS(Worker)=0
THEN LOG "All workers busy at ",0
WAIT 10
END

See Also

XSUB(). Also see “Subroutines” on page 246.

442 Chapter 14:
Animate
Animate

General Action Statement

Syntax samples

ANIMATE <expression>
ANIMATE 70
ANIMATE Var1

Description

Sets the simulation’s animation speed. The
higher the value, the faster the animation. ANI-
MATE is used primarily to speed up or slow
down a model for cursory or detailed observation
whenever a particular condition is encountered.
Another common use is to set the animation
speed to one-hundred in the Initialization Logic
to rapidly advance the simulation to some point
in time.

Valid In

Any logic.

Components

<expression>

The new speed of the animation. This expression can
be any number from 0 to 100 and is evaluated every
time the ANIMATE statement is encountered. The
default speed is 56.

Example

This example shows the use of the ANIMATE state-
ment in the downtime logic for the location Press.
Whenever Press goes down for service, the ani-
mation speed is slowed to 30 percent of maxi-

mum. This allows the modeler to more easily view
which resource (RES1 or RES2) is captured to ser-
vice the location.

See Also

GRAPHIC and SOUND.

 ProModel 443
User Guide
ArrayDims()

General System Function

Syntax samples

ARRAYDIMS(<arrayname>)

ARRAYDIMS(MyArray)

Description

Returns the number of dimensions in an array.

Valid In

Any Logic

Components

<arrayname>

The name of the array for which you wish to know the
number of dimensions.

See Also

ArrayDimSize().

444 Chapter 14:
ArrayDimSize()
ArrayDimSize()

General System Function

Syntax samples

ARRAYDIMSIZE(<arrayname>, <dim_num>)

ARRAYDIMSIZE(MyArray, 2)

Description

Returns the size of a dimension in an array. You
must provide the name of the array and the partic-
ular dimension of the array for which you want to
know the size.

Valid In
Any Logic

Components

<arrayname>

The name of the array.

<dim_num>

The number of the dimension for which you wish to
know the size.

See Also

ArrayDims().

 ProModel 445
User Guide
Assignment Statement

Syntax samples

<variable, array element, or attribute> =
<numeric expression>

Description

Assigns the value of a numeric expression to a
designated variable, array element, or attribute.

Valid In
Any Logic

Example

Var1 = 300
Attr2 = Clock(hr) - Attr3

Please Note

If you assign an expression that evaluates to a
real number to a variable, array, or attribute of
type integer, the number truncates unless you use
the ROUND() function.

446 Chapter 14:
Begin
Begin

General Control Statement

Syntax samples

BEGIN or {

WHILE FREECAP(Loc1) > 5 DO
BEGIN

INC Var2, 5
WAIT 5 sec

END

IF Var1 > 5 THEN
{
INC Var2, 5
WAIT 5 sec
}

Description

Defines a statement block with a corresponding
END statement. BEGIN and END are almost
always used in conjunction with other control
statements such as IF...THEN and DO...WHILE.
Every BEGIN statement must pair with an END
statement.

Valid In

Any logic.

Example

Compare the following logic examples:

The example below includes a BEGIN and END
statement. In this logic, if the attribute Attr1 equals
one, ten entities are ordered and the variable
Var1 increments. ProModel executes the state-

ments within the BEGIN and END only if Attr1
equals one.

IF Attr1 = 1 THEN

BEGIN

ORDER 10 EntA

INC Var1

END

Just as in the logic above, if Attr1 in the following
example equals one, ten entities are ordered.
However, Var1 increments regardless of the value
of Attr1. The IF...THEN applies only to the very next
statement, no matter how you format the logic.

IF Attr1 = 1 THEN

ORDER 10 EntA

INC Var1

See Also

END, IF...THEN...ELSE, DO...WHILE,
WHILE...DO, and DO...UNTIL.

 ProModel 447
User Guide
Break

General Control Statement

Syntax samples

BREAK

Description

Exits the innermost WHILE...DO, DO...WHILE,
or DO...UNTIL loop. The next statement to be
executed will be the one immediately following
the END statement associated with the innermost
loop. If a BREAK is encountered outside any
loop, then ProModel exits the entire logic.

Valid In

Any logic.

Example

Normally, a WHILE...DO loop repeats a statement
block until a certain condition becomes false.
This example shows the use of a BREAK statement
to exit the loop based on a condition not
included in the WHILE...DO loop. As long as the
variable V1 is less than three and the variable V3
is less than or equal to five, both the three-minute
wait and the five-minute wait will be executed for
a total of eight minutes. However, if V3 becomes
greater than five, the total wait will be six minutes:
three minutes in the main part of the loop and
another three minutes inside the IF...THEN state-
ment block. The five minute wait will not be exe-
cuted because the BREAK statement exits the
loop entirely.

The line “//Break to here” is a comment that marks
the next line of logic executed after the BREAK.

Process Table

Entity Location Operation (min)
Claim Station1 WHILE V1<3 DO

 BEGIN
 WAIT 3 min
 IF V3<=5 THEN
 BEGIN
 WAIT 3 min
 BREAK
 END
 WAIT 5 min
 END
//Break to here

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Station2 FIRST 1 MOVE FOR 5

See Also

BREAKBLK.

448 Chapter 14:
BreakBlk
BreakBlk

General Control Statement

Syntax samples

BREAKBLK

Description

Exits from the innermost statement block. The
next statement to be executed will be the one
immediately following the END statement of the
innermost statement block. If a BREAKBLK is
executed outside any statement block, ProModel
will exit the logic completely.

Valid In

Any logic.

Example

This example uses BREAKBLK in the logic for a
shipping department that handles two types of
entities, Letters and Packages. Both packages
and letters need to be addressed, but packages
may need to be wrapped before they are
addressed. When a package arrives, shipping
increments the variable No_of_Pkg to keep track
of the number of packages it ships. Attr1 is then
checked to see if the package has been
wrapped. If the package has been wrapped (if
Attr1 = 1), the BREAKBLK statement exits the state-
ment block that wraps packages. If the package
has not been wrapped, a resource, Wrapper,
wraps the package. Finally, all entities that Ship-
ping processes are addressed by the same
statement and routed to the location
Post_Office. The line
“// Breakblk to here” is a comment which marks
the next statement executed after the BREAKBLK.

Process Table

Entity Location Operation (min)
ALL Shipping IF ENTITY() = Letter THEN

 INC No_of_Let
IF ENTITY() = Pkg THEN
 BEGIN
 INC No_of_Pkg
 IF Attr1 = 1 THEN
 BREAKBLK
 USE Wrapper FOR 8
 Attr1 = 1
 END
//Breakblk to here
USE Addresser FOR 3

Routing Table

Blk Output Destination Rule Move Logic
1 ALL Post_Office FIRST 1 MOVE FOR

5

See Also

BREAK.

 ProModel 449
User Guide
CalDay()

General System Function

Syntax samples

CALDAY()

Description

The CALDAY() function corresponds to the
weekday of the calendar date you defined as part
of the warm-up period or simulation begin date
under simulation options. Since CALDAY()
resets with the advent of a new week, every
weekday will return the same value (i.e.,
Wednesday will always return a value of 3).

Valid In

Any logic.

Please note

CALDAY() works only when you select calendar
date in the simulation options dialog.

Example

Suppose that shipment arrival types vary from
day to day. Since Monday’s Shipment_Type_A
arrival patterns are unique, you will need to use a
distribution specific to those patterns.

IF CALDAY()=1 THEN

BEGIN
Shipment_Type_A =
Monday_Distribution_A
USE Forklift FOR Unload_Time

END

See Also

CALDOM(), CALHOUR(), CALMIN(), CAL-
MONTH(), and CALYEAR().

450 Chapter 14:
CalDOM()
CalDOM()

General System Function

Syntax samples

CALDOM()

Description

The CALDOM() function corresponds to the cal-
endar day of the month you defined as part of the
warm-up period or simulation begin date under
simulation options. Values returned by this func-
tion will be integers in the range of 1 to 31.

Valid In

Any logic.

Please note

CALDOM() works only when you select calendar
date in the simulation options dialog.

See Also

CALDAY(), CALHOUR(), CALMIN(), CAL-
MONTH(), and CALYEAR().

 ProModel 451
User Guide
CalHour()

General System Function

Syntax samples

CALHOUR()

Description

The CALHOUR() function corresponds to the
hour of the calendar date you defined as part of
the warm-up period or simulation begin date
under simulation options. Since this function ties
directly to the 24-hour clock displayed on the
screen during simulation, CALHOUR() will
never return a value higher than 23.

Valid In

Any logic.

Please note

CALHOUR() works only when you select calen-
dar date in the simulation options dialog.

Example

The following example implements a change in
personnel used to perform an operation. After the
simulation runs for 18 hours, the technician
becomes available to perform the activity.

IF CALHOUR() > 18 THEN

USE Worker FOR N(10,4)

ELSE USE Technician FOR N(8,2)

See Also

CALDAY(), CALDOM(), CALMIN(), CAL-
MONTH(), and CALYEAR().

452 Chapter 14:
CalMin()
CalMin()

General System Function

Syntax samples

CALMIN()

Description

The CALMIN() function corresponds to the
minute of the calendar date you defined as part of
the warm-up period or simulation begin date
under simulation options. Since this function ties
directly to the 24-hour clock displayed during
simulation, CALMIN() will never return a value
higher than 59.

Valid In

Any logic.

Please note

CALMIN() works only when you select calendar
date in the simulation options dialog.

Example

Suppose parts have a fixed shipping time of 4:30
PM. The following logic would order parts to the
shipping area.

IF CALHOUR() = 16 AND CALMIN() = 30 THEN

ORDER 1 Part TO Shipping_Area

See Also

CALDAY(), CALDOM(), CALHOUR(), CAL-
MONTH(), and CALYEAR().

 ProModel 453
User Guide
CalMonth()

General System Function

Syntax samples

CALMONTH()

Description

The CALMONTH() function corresponds to the
month of the year you defined as part of the
warm-up period or simulation begin date under
simulation options. Values returned by this func-
tion will be integers in the range of 1 to 12.

Valid In

Any logic.

Please note

CALMONTH() works only when you select calen-
dar date in the simulation options dialog.

Example

If CalMonth()=12 THEN WAIT 20

Else Wait 10

See Also

CALDAY(), CALDOM(), CALHOUR(),
CALMIN(), and CALYEAR().

454 Chapter 14:
CalYear()
CalYear()

General System Function

Syntax samples

CALYEAR()

Description

The CALYEAR() function corresponds to the
year of the calendar date you defined as part of
the warm-up period or simulation begin date
under simulation options.

Valid In

Any logic.

Please note

CALYEAR() works only when you select calendar
date in the simulation options dialog.

See Also

CALDAY(), CALDOM(), CALHOUR(),
CALMIN(), and CALMONTH().

 ProModel 455
User Guide
Cap()

General System Function

Syntax samples

CAP (<location>)

GROUP CAP(Loc1)

Description

Returns the total capacity of a location. CAP()
can be used to prepare a batch of entities to fill a
location.

Valid In

Any logic and any expression evaluated after
translation. For a list of expressions evaluated
after translation, see the “Appendix A” on
page 587.

Components

<location>

The name of the location to examine. If this component
is the name of a multi-unit location, CAP() will return
the capacity of the entire location. For example, if each
unit of a five-unit location has a capacity of five,
CAP() will return twenty-five. This component can
also be the name of an individual unit in a multi-unit
location.

Example

The individual ovens of a ceramics plant have
different capacities, but otherwise they are
exactly the same. While each oven could be
modeled as an individual location, it would be
easier to model this situation as a multi-unit loca-
tion. This example uses CAP() in the processing
logic of the parent location to accumulate
enough Sinks to fill each oven. The LOCATION()
function returns the value of the current location.

Process Table

Entity Location Operation (min)
Sink Oven ACCUM CAP(LOCATION())

Routing Table

Blk Output Destination Rule Move Logic
1 Sink Cool FIRST 1 MOVE FOR

5

See Also

FREECAP(), LOC(), and LOCATION().

456 Chapter 14:
Char()
Char()

String Function

Syntax samples

CHAR(<expression>)

CHAR(10)

Description

Returns the ASCII character for the number that
the expression evaluates to. This function is most
useful for outputting ASCII characters that can-
not be typed, such as accented characters. This
function is most often used in conjunction with a
string expression and the concatenation (“$”)
operator.

The number corresponding to the ASCII charac-
ter varies with each computer depending on the
character set specified in the config.sys file of
your computer. To determine the number corre-
sponding to the ASCII character at your com-
puter, run the model CHAR.MOD found in the
MODELS\REFS directory. View the file this
model generates called CHAR.TXT found in the
same directory as the model.

Valid In

Any string expression.

Components

<expression>

Any expression that evaluates to a number between 0
and 255. The expression is evaluated every time the
CHAR() function is encountered.

Example

The logic below displays the combined cost of all
the Parts ordered through a particular service
center. The simulation has kept a tally of all the
parts it has ordered in the variable Parts, and
each part cost 25 English pounds. The logic dis-
plays the cost of the parts with the pound symbol
(£), which is ASCII code 156.

DISPLAY “Total cost of parts:” $ CHAR(156) $ Parts *
25

See Also

“String Expressions” on page 412.

 ProModel 457
User Guide
Clock()

General System Function

Syntax samples

CLOCK({<time unit>})

IF CLOCK(DAY) >= 1.5 THEN PAUSE

Attr1 = CLOCK()

Description

Returns value of the elapsed simulation time in
the units specified. Clock units should be kept
consistent when comparing values. If an attribute
has been assigned a time in minutes, any time
value compared with that attribute should also be
in minutes.

When no units are specified in the parentheses in
the clock function, ProModel returns the default
time unit specified in the General Information.

Valid In

Any logic and most fields, except those fields
evaluated at translation. For a list of fields evalu-
ated at translation, see the “Appendix A” on
page 587.

Components

<time unit>

The elapsed simulation time will be returned in this
unit. This may be HR, MIN, SEC, DAY, WK. If omit-
ted, the value returned will be in the default time units
as specified in the General Information dialog box.
When using CLOCK() to capture a time for later use
with the LOG statement, the units should be omitted.

See Also

“General Information” on page 179 and “Time
Expressions” on page 411.

458 Chapter 14:
Close
Close

General Operation Statement

Syntax samples

CLOSE <file ID>

CLOSE Arrival_File

CLOSE ALL

Description

Closes a file that has previously been written to
with WRITE, WRITELINE, XWRITE, or read
with READ. Use CLOSE when finished with a
file to free system resources. A file will automati-
cally be re-opened to be read or written if it has
been closed. All opened files are automatically
closed at the end of a simulation. When you are
using many external files and you want to con-
serve system resources, this statement is espe-
cially helpful.

Valid In

Any logic.

Components

<file ID>

The file ID of the desired file as defined in the External
Files editor.

See Also

READ, WRITE, WRITELINE, XWRITE, and
RESET.

 ProModel 459
User Guide
Combine

Entity-Related Operation Statement

Syntax samples

COMBINE <expression> {AS <new entity
name>}

COMBINE Var1

COMBINE 3 AS EntQ

COMBINE Var1 as ENT(Attr1)

Description

Accumulates and consolidates a specified quan-
tity of entities into an entity, optionally with a
different name. Unlike the GROUP statement,
combined entities lose their identities and
attributes and cannot be ungrouped later. Use
COMBINE when several entities need to be com-
bined, such as when eight spark plugs are com-
bined in a box. Note that after several entities
have been combined at a location, no additional
statistics will be collected for any of the com-
bined entities at that location.

When specifying COMBINE <expression> AS
<new entity name> in the operation logic, there
must be another operating block at the same loca-
tion. In this case, the incoming entity at the new
operating block is the new entity name specified
in the COMBINE statement.

Valid In

The operation column of Process edit tables only.
COMBINE may not be used in combination with
CREATE, GROUP, UNGROUP, LOAD,
UNLOAD, SPLIT AS, or other combine state-
ments in the same process logic.

Components

<expression>

The number of entities to combine. Negative values
generate an error message. If this expression evaluates
to zero, it is ignored. If it evaluates to one, then no enti-
ties are actually combined, but the entity that encoun-
tered the combine statement is renamed (if the AS
option has been specified).

This expression is evaluated every time an entity
encounters the COMBINE statement, so the amount of
entities to be combined can vary as the simulation
progresses. If an entity arrives that changes this expres-
sion to a number lower than the number of entities
already waiting to be combined, all of the entities wait-
ing to be combined are combined, including the entity
that just arrived.

AS <new entity name>

The optional name of the resulting entity. If left off, the
new entity will have the same name as the last com-
bined entity or the output entity name.

Explicit Entity Actions

COMBINE passes cost on to new entities but not
statistical information. ProModel counts com-
bined entities as exits.

460 Chapter 14:
Combine
Example

A manufacturing plant makes computer mother-
boards. After manufacture and inspection, when
the motherboards are ready for shipping, workers
combine them into sets of twenty to distribute to
the company’s customers. A COMBINE statement
will work well for this example, because workers
do not inspect or use the individual mother-
boards again. At the final assembly location,
workers group motherboards into totes of twenty,
and route the totes to the shipping department.

Process Table

Entity Location Operation (min)
mboard Assembly COMBINE 20

Routing Table

Blk Output Destination Rule Move Logic
1 Tote Shipping FIRST 1MOVE FOR 5

See Also

GROUP, ENT(), ACCUM, and LOAD. Also see
the “Attributes” on page 225.

 ProModel 461
User Guide
Comments

Documentation Symbols

Syntax samples

#

//

/*...*/

Components

#

The pound sign signals the start of a one-line comment.
ProModel will ignore any characters on the rest of the
line.

//

Two forward slashes signal the start of a one-line com-
ment. ProModel will ignore any characters on the rest
of the line. This symbol works exactly the same as the
sign.

/*...*/

A slash followed by an asterisk signals the start of a
multi-line comment. ProModel will ignore all charac-
ters after the “/*” until it finds an asterisk followed by a
slash, “*/”. Use this type of comment for long explana-
tions and to prevent ProModel from executing long
portions of logic during debugging. Comments using //
or # may be nested inside multi-line comments.

Description

Comments are notes to the modeler inside blocks
of logic. ProModel ignores them, but they can be
particularly useful to explain logic when more
than one person will be using a model.

Valid In

Any logic.

Example

The logic below has several notes to explain it.
Additionally, ProModel ignores the ELSE statement
and the ELSE statement’s block.

IF Parts_Available > Attr2 THEN

//Parts needed is stored in attribute 2

BEGIN

JOIN Attr2#Join the number of parts
needed only if there are
enough parts available.

WAIT Attr1

END

/* ELSE

BEGIN//Start operation

INC Var1

WAIT Attr3

END */

462 Chapter 14:
Contents()
Contents()

General System Function

Syntax samples

CONTENTS(<location>{,<entity type>})

LOAD CONTENTS(Loc1)

JOIN CONTENTS(Loc1, EntA) EntA

Description

Returns either the total number of entities at a
location or the number of a certain type of entity
at a location. Use CONTENTS() to make deci-
sions based on how busy a location is. Using
CONTENTS() to keep track of the number of
entities at a location requires fewer steps and
allows more flexibility than using variables to
count the number of entities that enter and exit a
location. For example, the second syntax does in
one statement what would require several state-
ments without the CONTENTS() function.

Valid In

Any logic and all fields except those fields evalu-
ated at translation only. For a list of the fields
evaluated only at translation, see the “Appendix
A” on page 587.

Components

<location>

The name of the location to examine.

<entity type>

The optional name of the type of entity to look for. If
omitted, CONTENTS() will return the total of all enti-
ties at the location.

Example

An assembly line has a location called Clean
that often gets too busy for one operator to han-
dle and the supervisor then comes to help. The
processing logic below models this situation with
an IF...THEN statement and the CONTENTS() func-
tion. As long as the location contains fewer than
five entities, a worker processes any arriving enti-
ties. However, if the location’s contents are
greater than five, the Supervisor processes them.

Process Table

Entity Location Operation (min)
ALL Clean IF CONTENTS(Clean)<5

THEN
 USE Worker FOR 10
ELSE
 USE Worker FOR 10
 OR Supervisor FOR 10

Routing Table

Blk Output Destination Rule Move Logic
1 ALL Mold FIRST 1 MOVE FOR

1

See Also

FREECAP(), LOC(), ENT(), and FREEUNITS().

 ProModel 463
User Guide
Create

Entity-Related Operation Statement

Syntax samples

CREATE <expression1> {AS <entity name>}
 {TAKE {<expression2>} <resource>,...}

CREATE 10 AS EntX

CREATE 2 AS EntB TAKE 1 Res1, 2 Res2

CREATE Var1 AS Ent(Var2) TAKE Var3
Res(Var4)

Description

Creates a specified number of entities in addition
to the original entity and copies all attributes of
the original entity to each new entity. The first
entity created can optionally take any of the
resources owned by the parent entity. The newly
created entities require no additional capacity at
the location and are processed immediately.

The CREATE statement can simulate the cre-
ation of paperwork that needs to be hand-carried
to another location to be approved while the base
entity continues to process. Before the base entity
can exit the location, the paperwork must be
approved and routed back to the original location
where it is joined to the base entity.

Valid In

The operation column of process edit tables only.
CREATE may not be used in combination with
LOAD, UNLOAD, GROUP, UNGROUP, SPLIT
AS, or other CREATE statements in the same
processing logic.

Components

<expression1>

The number of new entities to create. This expression
is evaluated every time the create statement is encoun-
tered.

AS <entity name>

The name of the new entities. ProModel will search the
process list for the new entity type and begin process-
ing them before it finishes processing the entity that
created them. If omitted, the entities will be named the
same as the currently processing entity.

TAKE <expression2>

The first created entity will take any resources
listed here from the parent entity. This compo-
nent is optional. The second syntax example
above creates two EntB’s. The first of the two
will own one unit of Res1 and two units of Res2.

<resource>

The name of the resource whose ownership should be
transferred to the first new entity. Using the keyword
ALL here will take all resources owned by the parent
entity.

Explicit Entity Actions

The CREATE statement forms a new entity with
new statistical information and cost. ProModel
adds an initial cost to explicitly created entities
(i.e., entities created with the CREATE state-
ment).

Implicit Entity Actions

ProModel allows you to use the CREATE state-
ment implicitly as part of the routing definition.
To do this, define a route block and check the
New Entity option. ProModel does NOT add an
initial cost to implicitly created entities.

464 Chapter 14:
Create
Example

The following example shows how one entity,
Record, creates two new entities. Note that there
is no routing defined in this process for the new
entities, Copy. The new entities are handled
according to the logic defined in the subsequent
process.

Process Table

Entity Location Operation (min)
Record Station1 WAIT N(8,.3)

CREATE 2 AS
Copy

Copy Station1 WAIT U(3,.3)

Routing Table

Blk Output Destination Rule Move Logic
1 Record Station2 FIRST 1MOVE FOR 5
1 Copy File_Cab FIRST 1MOVE FOR 5

See Also

ORDER, SPLIT AS, ENT(), and RES().

 ProModel 465
User Guide
Debug

General Action Statement

Syntax samples

DEBUG

Description

Brings up ProModel’s debugger. Use DEBUG to
step through logic one statement at a time and
examine variable and attribute values while
developing a model. After a model is working,
DEBUG statements are generally removed.

Valid In

Any logic.

Example

If you were having trouble with a Client’s logic at
a particular location, we could start the process-
ing logic with a DEBUG statement, as in the fol-
lowing example. This would allow you to watch
each Client’s logic execute, statement by state-
ment, revealing problems with the logic’s flow.

Process Table

Entity Location Operation (min)
Client Recep DEBUG

IF Attr1=1 THEN
 GRAPHIC
WAIT 5 min

Routing Table

Blk Output Destination Rule Move Logic
1 Client Waiting FIRST 1 MOVE FOR 5

During run time, the ProModel debugger would
appear displaying the following information:

See Also

“Debug Option” on page 357.

466 Chapter 14:
Dec
Dec

General Operation Statement

Syntax samples

DEC <name>{, <expression>}

DEC Var1

DEC Attr1, 5

Description

Decrements a variable, array element, or attribute
by the value of a specified numeric expression.
To decrement a variable, attribute, or array ele-
ment when the current entity actually leaves a
location, use DEC in the move logic.

Valid In

Any logic.

Components

<name>

Any variable, array element, or attribute.

<expression>

The amount to decrement the value. If this expression
is omitted, the value will be decremented by one. This
can be a negative number.

Example

The example below shows two variables decre-
mented in exit logic. The variable Num_in_system
is decremented by one, while variable Var3 is
decremented by 20.

See Also

INC. Also see “Numeric Expressions” on
page 409.

 ProModel 467
User Guide
Display

General Action Statement

Syntax samples

DISPLAY <string expression>

DISPLAY “Var1 =” $ Var1 $ “and Attr1 =” $
Attr1

DISPLAY “Now beginning 100th process”

DISPLAY Number_in_Queue

Description

Pauses the simulation and displays a message.
The simulation will resume when the user selects
OK. The concatenation operator ($) should be
used to combine a numeric value into the string
(as in the first syntax example above). Using the
ENT(), LOC(), and RES() functions will display
the name of the entity, location, or resource.

Valid In

Any logic.

Components

<string expression>

The message to be displayed. To display a numeric
value, use the concatenation operator ($) as in the first
syntax example.

Example

This simple example displays the value of both
Var1 and of Attr1 if Attr2 is 1. This logic will display
the dialog box below if Attr2 is 1. If Attr2 is not 1,
an error message will appear.

Operation (min)

IF Attr2=1 THEN

DISPLAY “Var1 =” $ Var1 $ “\nand Attr1 =” $ Attr1

ELSE

DISPLAY “Error”

Please note

The “\n” character starts new lines.

See Also

PROMPT, PAUSE, CHAR(), and FORMAT().

468 Chapter 14:
Do...Until
Do...Until

General Control Statement

Syntax samples

DO <statement block> UNTIL <Boolean
expression>

DO INC Var1 UNTIL Array1[Var1] <> 10

DO

BEGIN

INC Var2, 5

WAIT 5 sec

END

UNTIL FreeCap(Loc1) > 5

Description

Repeats a statement or statement block continu-
ously while a condition remains false.
DO...UNTIL is an exit-condition loop, meaning
that the loop will always be executed at least
once. Use DO...UNTIL when an operation will
always be executed at least one time and possibly
more times.

Valid In

Any logic.

Components

<statement block>

The statement or block of statements to execute.

<Boolean expression>

As long as this expression is FALSE, the loop will con-
tinue. This expression is evaluated for each iteration of
the loop.

Example

A machining station can manufacture parts of
increasing complexity from the same entity,
called a Blank. When a Blank arrives at the sta-
tion, the value stored in Attr1 determines the
complexity of the part and the amount of time
needed to create the new part. The following
logic models this situation with a DO...UNTIL loop.
All blanks that arrive go through a five minute pro-
cessing time, and then go through the operation
several more times depending on the value of
Attr1.

Process Table

Entity Location Operation (min)
Blank Machining INT Count = 0

DO
 BEGIN
 WAIT 5 min
 INC Count
 END
UNTIL Count = Attr1

Routing Table

Blk Output Destination Rule Move Logic
1 Base Painting FIRST 1

See Also

BEGIN, END, DO...WHILE, and WHILE...DO.

 ProModel 469
User Guide
Do...While

General Control Statement

Syntax samples

DO <statement block> WHILE <Boolean
expression>

DO INC Var1 WHILE Array1[Var1] <> 10

DO
BEGIN

INC Var2, 5
WAIT 5 sec

END
WHILE FreeCap(Loc1) > 5

Description

Repeats a statement or statement block continu-
ously while a condition remains true.
DO...WHILE is an exit-condition loop, meaning
that the loop will always execute at least once.
Use DO...WHILE for processes that must be exe-
cuted one time and possibly more.

Please note

Use caution when using a DO...WHILE with a
system function (e.g., FREECAP()) to ensure that
the system does not enter an infinite loop. For
example, eliminating the “WAIT 5 sec” in the
syntax sample will cause the system to enter an
infinite loop because there is no time delay within
the loop.

Valid In

Any logic.

Components

<statement block>

The statement or block of statements to execute.

<Boolean expression>

As long as this expression is TRUE, the loop will con-
tinue. This expression is evaluated for each iteration of
the loop.

Example

The logic below orders a minimum of ten cases
to location Receiving every time it is encoun-
tered. As long as the location has a capacity
greater than ten, it will send additional sets of ten
entities to the location.

DO
ORDER 10 Cases to Receiving
WHILE FREECAP(Receiving) > 10

See Also

BEGIN, END, DO...UNTIL, and WHILE...DO.

470 Chapter 14:
Down
Down

Downtime-Specific System Function

Syntax samples

DOWN <dtname>, {<priority>}

Description

Makes a location, with the specified called down-
time, attempt to go down.

This statement is used in conjunction with the
Called Downtime dialog, where you have previ-
ously defined the called downtime’s name, prior-
ity, and logic.

When this statement is executed, the called
downtime will attempt to execute its logic. The
timing of the execution of the called downtime’s
logic will depend on the location’s state and the
called downtime’s priority.

Valid In

Any logic, except Initialization and Termination
logic.

Components

<dtname>

The name of the called downtime. This name is
defined in the Called Downtime dialog, found in the
Locations table.

<priority>

You may optionally define a priority. This will over-
ride the priority you defined in the Called Downtime
dialog for the specified called downtime.

Please Note

The DOWN statement does not need to be called
from the processing logic at the location that is to
go down. It can be called from any logic in your
model, except Initialization and Termination
logic, and still cause the location’s Called Down-
time to execute.

See Also

“Called Downtime Editor” on page 111, and
“Location Priorities and Preemption” on
page 111.

 ProModel 471
User Guide
DownQty()

General System Function

Syntax samples

DOWNQTY(<location> or <resource>>)

IF DOWNQTY(Loc1) > 3 THEN ROUTE 2

DISPLAY “Total Res1 Down Now:” $ DOWN-
QTY(Res1)

Description

Returns the number of location or resource units
down at the time of the call. Use this function to
make decisions based on how many resource or
location units are down. For example, if too many
units are down, a foreman could preempt several
units back into service.

Valid In

Any logic and all fields except those fields evalu-
ated at translation only. For a list of the fields
evaluated only at translation, see the “Appendix
A” on page 587.

Components

<location>

The name of the location to examine. LOC() can be
substituted for the name of a location.

<resource>

The name of the resource to examine. RES() can be
substituted for the name of a resource.

Example

Two resources, Welders, weld brackets onto steel
frames at a location, Man_Weld, in 6.5 minutes.
An automatic welding machine, Auto_Weld, can
perform the same task, but it takes 9.3 minutes.
However, if only one Welder is available and the
other Welder is down (e.g., on break), it takes one
Welder 13.0 minutes to weld the brackets to the
frames. Therefore, if one Welder is down, the
frames should route to the automatic welding
machine, Auto_Weld.

Process Table

Entity Location Operation (min)
Frame Buffer IF DOWNQTY(Welder)>0

THEN
 ROUTE 1
ELSE
 ROUTE 2

Frame Auto_Weld ...
Frame Man_Weld ...

Routing Table

Blk Output Destination Rule Move Logic
1 Frame Auto_Weld FIRST 1 MOVE FOR 1
2 Frame Man_Weld FIRST 1 MOVE FOR 1
...
...

See Also

FREECAP, FREEUNITS(), and UNITS().

472 Chapter 14:
DTDelay()
DTDelay()

Downtime-Specific System Function

Syntax samples

DTDELAY(<time unit>)

WAIT Att1 - DTDELAY(Min)

DISPLAY “The downtime delay was”$DTDe-
lay(DAY)$“days.”

Description

Returns the difference between the time when
you scheduled a non-preemptive downtime to
occur and the time it actually occurred. Use
DTDelay to determine if downtimes are being
postponed because of incompleted work. You
can use DTDelay in downtime logic to ensure
that a location comes back up at a specific time.

Also returns the difference between the time
when a downtime is preempted and the time it
resumes.

Valid In

Any downtime logic including off-shift and break
logic. This function returns a real number.

Components

<time unit>

The function will return the downtime delay in any of
the following units: SEC, MIN, HR, DAY, and WK.

Example

The following statement models a situation where
a location is supposed to go down at 12:00 and
always goes back up at 1:00, even if it stays up
past 12:00 to finish processing an entity. If the
downtime was missed entirely (meaning that the
downtime delay was greater than an hour), then
the downtime takes no time at all. If the down-
time was not missed entirely, then it lasts one hour
minus the delay.

IF 60 - DTDelay(min) > 0 THEN WAIT (60 - DTDe-
lay(min))

See Also

DOWNQTY().

 ProModel 473
User Guide
DTLeft()

Shift & Break System Function

Syntax samples

DTLEFT <time units>

Shift_Time = DTLeft()

Description

The DTLEFT function returns the balance of the
off-shift or break time remaining for a location or
resource before it resumes normal activities.
Unless passed as an argument (e.g., DTLeft(hr)),
the return value uses the time units defined in the
General Information Dialog (see “General Infor-
mation” on page 179).

Valid In

This function can only be referenced in off-shift
and break logic (either the pre-start or main
logic).

Components

<time units>

The time units, if different from the default found in
the General Information dialog, in which you want the
return value expressed.

Example

Suppose a technician is frequently working on a
job when the end of the shift rolls around and that
the priority for ending the shift is not high enough
to interrupt the job. To ensure that the technician
gets a minimum of 14 hours off before coming
back to work, even though the shift file specified
16 hours between shifts, you could enter the fol-
lowing off-shift logic:

IF DTLEFT(hr) < 14 THEN

BEGIN

WAIT 14 hr

SKIP

END

Please note

In the above example, the SKIP statement is
important to skip over the defined time in the shift
file.

See Also

DTDELAY()

474 Chapter 14:
DynPlot()
DynPlot()

General Action Statement

Syntax samples

DYNPLOT “<chart name>”
DYNPLOT “my dynamic plot name”
DYNPLOT “Chart 1”
DYNPLOT “”

Description

The DynPlot statement is used to automatically
turn on predefined Dynamic Plot windows. Its
usage is similar to that of the View statement.
Dynamic Plot windows are predefined during
simulation mode. These predefined Chart views
can then be called from any logic statement,
invoking the display of the designated chart dur-
ing simulation.

Valid In

Any Logic.

Components

<Chart name>

The name of the Dynamic Plot chart as defined in the
Dynamic Plots dialog. Enclose the name in quotation
marks.

Example

You are giving a presentation to management.
Two hours into the simulation, you want a chart to
be displayed showing the value of a WIP variable
plotted against average part cost. Four hours into
the simulation, you want this chart to disappear.

To do this, define a Chart view from the Dynamic
Plots dialog, naming your Chart view “WIP vs
Cost.” Define a subroutine and call it in the initial-
ization logic using the ACTIVE statement. Enter the
following logic in the subroutine:

WAIT 2 HR

DYNPLOT “Wip vs Cost”

Wait 2 HR

DYNPLOT ""

Please note

Using the statement with a null value (no name
defined between the quotation marks) will close
all currently open Dynamic Plot windows.

 ProModel 475
User Guide
End

General Control Statement

Syntax samples

END or }

WHILE FREECAP(Loc1) > 5 DO

BEGIN

INC Var2, 5

WAIT 5 sec

END

Description

Defines a statement block along with a corre-
sponding BEGIN statement. BEGIN and END
are almost always used in conjunction with other
control statements such as IF...THEN and
DO...WHILE. Every END must pair with a
BEGIN.

Valid In

Any logic.

Example

Compare the following examples:

The example below includes a BEGIN and END
statement in the form of the “{” and “}” symbols.
In this logic, if the attribute Attr1 equals one, ten
Cases are ordered and the variable, Var1, incre-
ments. ProModel executes the statements within
the BEGIN and END only if Attr1 equals one.

IF Attr1 = 1 THEN

{

ORDER 10 Case

INC Var1

}

Just as in the logic above, if Attr1 in the following
example equals one, ten Cases are ordered.
However, Var1 increments no matter what the
value of Attr1. Without a statement block, the
IF...THEN applies only to the very next statement,
no matter how you format the logic.

IF Attr1 = 1 THEN

ORDER 10 Case

INC Var1

See Also

BEGIN, IF...THEN, DO...WHILE,
WHILE...DO, DO...UNTIL, and END.

476 Chapter 14:
Ent()
Ent()

Type Conversion Function

Syntax samples

ENT(<entity name-index number>)

SEND 10 ENT(Var1) TO Loc1

DISPLAY “Ent A has been combined with” $
ENT(Var1)

Description

Converts a name-index number or integer to an
entity name. Use this function when a statement
or function needs the name of an entity whose
name index number is stored in an attribute, vari-
able, or some other expression. ENT() can also be
used to vary the entity that a statement references
by using an expression for the name-index num-
ber. When used in an expression expecting a
string, such as in the second syntax example
above, ProModel will convert the name-index
number to the actual name of the entity.

Valid In

Any logic where an entity name is normally used.

Components

<entity name-index number>

The name-index number of the entity desired. This
component may be an expression which allows the ref-
erenced entity to change as the simulation progresses.
Real numbers will be treated as integers.

Example

The logic below orders three batches of five
different entity types to a location, Receiving.

Var1 = 1

WHILE Var1 <= 3 DO

BEGIN

ORDER 5 ENT(Var1) TO Receiving

INC Var1

END

See Also

LOC(), RES(), ENTITY(), and LOCATION().

 ProModel 477
User Guide
Entity()

Entity-Specific System Function

Syntax samples

ENTITY({<expression>})

ENTITY()

ENTITY(Var1)

Description

Returns the name-index number of the current
entity or a particular entity in an entity group.
This function is especially useful in macros and
subroutines that vary depending on which entity
calls them. Use ENTITY() to determine what
type of entity is processing when an entity type of
ALL is specified at a location. For example, if a
common area handles several different parts with
essentially the same process, use an IF...THEN
statement in conjunction with an ENTITY() to
have individual statement blocks handle the
details of the operation. This function returns an
integer.

Valid In

Speed fields, traveling time fields, conveyor
speed fields, Resource fields, operation logic,
routing fields, arrival logic, debug user-condition
field.

Components

<expression>

The number of the entity in a group to inspect. For
example, ENTITY(3) returns the name-index number
of the third entity in the group. If this option is omitted,
the name-index number of the calling entity is
returned.

Example

All cars from the motor pool must be washed
after use. All cars except vans require ten minutes
to wash, and vans require an additional ten min-
utes. The logic below models this situation.

Process Table

Entity Location Operation (min)
ALL Wash1 WAIT 10 min

IF ENTITY() = Van THEN
 WAIT 10 min

Routing Table

Blk Output Destination Rule Move Logic
1 ALL Parking FIRST 1 MOVE FOR 30

See Also

ENT() and LOCATION().

478 Chapter 14:
Entries()
Entries()

General System Function

Syntax samples

ENTRIES(<location>)

DISPLAY “LocA has had” $ ENTRIES(LocA) $
“entries.”

Description

Returns the total entries to a location. This func-
tion returns an integer.

Valid In

Any logic and any field except those evaluated
only at translation. For a list of fields evaluated at
translation see the “Appendix A” on page 587.

Components

<location>

The location to examine.

Example

A location, Stores, sends entities, Orders, to a
location, Shipping. A variable, Batch_Time, tracks
the amount of time it takes to process 50 Orders.
After Loc1 processes 50 entities, we want to reset
Batch_Time to zero.

Process Table

Entity Location Operation (min)
Order Stores IF ENTRIES(Loc1) = 50

THEN
 Batch_Time = 0

Routing Table

Blk Output Destination Rule Move Logic
1 Order Shipping FIRST 1 MOVE FOR 30

See Also

IF...THEN...ELSE.

 ProModel 479
User Guide
Exp()

Math Function

Syntax samples

EXP(<expression>)

Real1 = EXP(Real2)

Description

Returns the exponential of an expression. This
function is equivalent to ex.

Valid In

Any expression. This function returns a real num-
ber.

Components

<expression>

EXP() returns the exponential of this expression.

See Also

LN().

480 Chapter 14:
ForLocation()
ForLocation()

Shift & Break System Function

Syntax samples

FORLOCATION()

IF FORLOCATION() THEN Priority 100

IF FORLOCATION() THEN

INC Arr1 [1, 2]

ELSE

INC Arr1 [2, 2]

Description

This function returns TRUE if the object execut-
ing the shift or break logic is a location.

Valid In

Shift or break logic.

Example

We assign three resources (Oper1, Oper2, and
Oper3) and two locations (Mill1 and Mill2) to a
shift. When the locations go off-shift, the example
uses a resource called Maint for 10 minutes to
clean up around the machines. Because we
assigned the same shift to locations and
resources, we need to check if the object exe-
cuting the off-shift logic is a location. We place
the following logic in the off-shift logic:

IF FORLOCATION() THEN USE Maint FOR 10 min

See Also

FORRESOURCE(). Also see “Shift & Break
Logic” on page 305.

 ProModel 481
User Guide
Format()

String Function

Syntax samples

FORMAT(<expression>, <total number of
characters in expression> {,<digits after deci-
mal>})

DISPLAY “The value of Var1 is” $ FOR-
MAT(Var1, 5)

Description

Converts a number to a string in the format speci-
fied. FORMAT() should most often be used with
the concatenation operator (“$”) and another
string, as in the syntax example above. Format is
often used in conjunction with the XWRITE
statement to produce formatted output.

Valid In

Any string expression.

Components

<expression>

This expression will be evaluated and converted to a
string. If the expression results in an integer, it will be
converted to a real.

<total number of characters in expression>

This expression formats the number so that it occupies
a total space equal to the number of digits before +
number of digits after the decimal + one character for
the decimal point. For example if you were to do the
following logic: XWRITE file1 Format (10.0 4 1)
XWRITE file1 Format (1.0 4 1), it will show up in
the file as 10.0 1.0 with a space before the 1.0.

<digits after decimal>

An expression that evaluates to the maximum number
of digits to the right of the decimal. If there are more
digits to the right of the decimal than this number, the
excess digits will be truncated. If there are fewer digits,
ProModel will pad the number with zeros.

Example

The logic below writes formatted output to a file
with XWRITE and FORMAT.

XWRITE File1, “The variable Var1 is” $ FOR-
MAT(Var1,5,2)

In this example, if the value of Var1 is 378.87654,
it would be written to the file as:

The variable Var1 is 378.87

(Two spaces)

See Also

WRITE and WRITELINE.

482 Chapter 14:
ForResource()
ForResource()

Shift & Break System Function

Syntax samples

FORRESOURCE()

IF FORRESOURCE() THEN GET Res1

Description

This function returns TRUE if the object execut-
ing the shift or break logic is a resource.

Valid In

All Shift or Break logic.

Example

A shift called DAYS.SFT has five resources and
eight locations assigned to it. When the resources
go off-shift, it is desired to write the resource
name and simulation time to a file called
RES_TIME. The following logic is placed in the
off-shift logic.

IF FORRESOURCE() THEN

BEGIN

XWRITE res_time, “Shift for” $ RES(Resource()) $
“ended at” $ Clock(hr) $ “.”

END

See Also

FORLOCATION(). Also see “Shift & Break
Logic” on page 305.

 ProModel 483
User Guide
Free

Resource-Related Operation Statement

Syntax samples

FREE {<quantity>} <resource>, {{quantity}
<resource>...}

FREE Res1, 2 Res2, 5 Res3A

FREE ALL

FREE RES(Attr1)

Description

Frees resources which are currently “owned” by
the current entity. These resources must have
been captured through a GET or JOINTLY GET
statement.

Valid In

Location processing logic and downtime logic.

Components

<quantity>

The number of the following resource to free. A value
of zero is ignored and values less than zero result in an
error. This quantity may be any numeric expression
and is evaluated and truncated to an integer every time
the FREE statement is encountered.

 <resource>

The name of the resource to free. The ALL keyword
may be used here to free all resources owned by an
entity. Any resource which is not owned by the entity
will be ignored.

Example

In the following example, EntA arrives at Loc1 for
a multi-step process requiring the use of
resources Res1 and Res2. The first step requires
the simultaneous use of Res1 and Res2 for a nor-
mally distributed amount of time. ProModel then
frees Res1while Res2 performs the second step of
the process according to a Lognormal distribu-
tion.

Process Table

Entity Location Operation (min)
EntA Loc1 JOINTLY GET Res1 AND

Res2
WAIT N(4.5,.2)
FREE Res1
WAIT L(3.4,.23)
FREE Res2

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1 MOVE FOR 5

See Also

GET and JOINTLY GET.

484 Chapter 14:
FreeCap()
FreeCap()

General System Function

Syntax samples

FREECAP(<location>)

SEND FREECAP(Loc1) EntA TO Loc1

Description

Returns the available capacity of a location. This
function returns an integer.

Valid In

Any logic and any field except those fields evalu-
ated only at translation time. For a list of fields
evaluated only at translation time, see the
“Appendix A” on page 587.

Components

<location>

The name of the location to examine. The LOC() func-
tion may also be used here.

Example

Suppose the entities, Plates and Cams, travel
through an assembly line. The location, Assembly
(capacity=1) joins Cams with the Plates. When a
Cam finishes processing at Station2, it should not
enter Station3 unless a Plate is waiting to join with
it further down the assembly line at Assembly. If
there is no Plate at Assembly, another location,
Buffer, sends one. The logic for Cam at Station2 is
as follows:

IF FREECAP(Assembly) = 1 THEN

SEND 1 Plate TO Assembly

See Also

CAP().

 ProModel 485
User Guide
FreeUnits()

General System Function

Syntax samples

FREEUNITS(<location> or <resource>)

USE (FREEUNITS(Res1)) Res1 FOR 5 min

Description

Returns the free units of a location or resource.

Valid In

Any logic and any field except those fields evalu-
ated only at translation time. For a list of fields
evaluated only at translation time, see the
“Appendix A” on page 587.

Components

<location>

The name of the location to examine.

<resource>

The name of the resource to examine.

Example

This example uses FREEUNITS() to assign a team of
Specialists to rework a problem. The size of the
team, stored in the local variable T_Size, is deter-
mined by all the free Specialist units. Team_Time
is a table function that varies the amount of time
it takes to solve a problem (the amount of time in
the USE statement) based on the number of units
on the team.

Process Table

Entity Location Operation (min)
Problem Rework INT T_Size = FREUNITS(Spe-

cialist)
IF T_Size = 0 THEN T_Size = 1
USE T_Size Specialist FOR
Team_Time(T_Size) Hr

Routing Table

Blk Output Destination Rule Move Logic

See Also

UNITS(), RES(), and LOC().

486 Chapter 14:
Get
Get

Resource-Related Operation/Move
Logic Statement

Syntax samples

GET {<quantity>} <resource> {,<priority>}
{AND or OR {quantity} <resource> {,<pri-
ority>}...}

GET Res1

GET 3 Res1, 5

GET 2 Res1OR 3 Res2

GET Res1, 3 AND (Res2 OR Res3)

GET Res(Skill_required)

Description

Captures a specified number of resources as they
become available. If the entity already possesses
one of the requested resources, the entity will still
try to capture an additional unit of that resource.
When capturing multiple resources, each
resource will be captured as soon as it becomes
available until all resources are captured.

A resource captured with the GET statement at
one location and then released with a FREE state-
ment at another location will not be used to move
the entity between locations unless it is also spec-
ified in a MOVE WITH statement in the routing
move logic. Otherwise, it is the entity that is
moving the resource from one location to the next
and the resource will not be visible when moving
with the entity.

Resources captured by a GET statement can only
be preempted when the entity owning the
resource is undergoing a WAIT or USE time
except in move logic. If the resource is pre-
empted during one of those times, the time will

continue where it left off when the resource
becomes available.

Every GET must have a corresponding FREE or
an error occurs when the entity exits the system.
If an entity owns one or more resources and is
subsequently loaded onto or grouped with
another entity, it cannot free the resource(s) until
it is unloaded or ungrouped.

Valid In

Location processing, downtime, move, and shift
logic. A GET statement cannot follow a move
related statement in move logic.

Components

<quantity>

The number of resources to get. A value of zero is
ignored and values less than zero return an error. This
numeric expression is evaluated and truncated every
time the GET statement is encountered.

<resource>

The name of the resource to GET. You can substitute
RES() for the resource name.

<priority>

When multiple entities are waiting for the same
resource to become available, the entity with the high-
est priority will capture the resource first. This expres-
sion should be a number between 0 and 999.

Example

To start a semi-automatic welding process, we
need a static resource named “Operator.” Mid-
way through the process, the Operator tests the
weld with a resource named “Tester,” shared with
other operators. After the test, the operator
restarts the welder. The Operator stays with the
welder until he or she completes the last part of
the operation. After the welding process the

 ProModel 487
User Guide
operator moves the part to the buffing area,
completes the buffing operation and then is
freed.

Process Table

Entity Location Operation (min)
Assy Weld USE Operator FOR 4 min

GET Operator
USE Tester FOR U(2,.5)
WAIT 4 min

Assy Buffer WAIT T(7,10,11)
FREE Operator

Routing Table

Blk Output Destination Rule Move Logic
1 Assy Buffer FIRST 1 MOVE FOR

1.5
1 Assy Checker FIRST 1 MOVE FOR 5

See Also

JOINTLY GET and USE.

488 Chapter 14:
GetCost()
GetCost()

Cost Related Function

Syntax samples

GETCOST()

Description

Returns the cost of the current entity executing
the logic. Use this function to return the entity’s
actual, accumulated dollar amount.

Valid In

Operation logic only.

Example

The following example shows how to use the GET-
COST() function to generate a Time Series plot
that tracks changing entity cost as entities exit the
system. (See table below.)

• Create a variable (e.g., Var1), select it to be of
type real, and select time series statistics.

• For any location where an entity exits the sys-
tem, place the following as the last line in opera-
tion logic:

Var1 = GETCOST()

Process Table

Entity Location Opn (min)
EntA Shipping WAIT N(3,.52)

Var1=GETCOST()

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Exit FIRST 1

See Also

INCENTCOST, INCLOCCOST, and SETRATE.

 ProModel 489
User Guide
GetReplicationNum()

General System Function

Syntax samples

GETREPLICATIONNUM()

Description

Returns the number of the currently running rep-
lication.

Valid In

Any Logic.

Example

Based on the current replication, you may want
to make a decision regarding the exporting of
array data.

In this case, you could use an IF THEN statement
combined with the GETREPLICATIONNUM() func-
tion to decide what data to export based on the
currently running replication.

490 Chapter 14:
GetResRate()
GetResRate()

Cost Related Function

Syntax samples

GETRESRATE({<resource>})

GETRESRATE()

GETRESRATE(Operator1)

Description

Returns the cost rate specified in the Cost dialog
or through the SETRATE() function for a
resource currently owned by the entity making
the function call. When used without the optional
<resource> parameter, this function returns the
cost rate of the entity’s most recently captured,
owned resource.

If an entity owns multiple units of a resource, the
function returns the cost rate of the entity’s most
recently captured resource unit.

Valid In

Operation and move logic.

Components

<resource>

A resource currently owned by the entity making the
function call. When you use GETRESRATE without
this parameter, this function returns the cost rate of the
entity’s most recently captured, owned resource.

Example

A clerk normally works an 8-hour shift. However, if
the clerk does not finish entering all the orders in

his Input_Queue at the end of the day, he must
stay and finish them. Since the clerk is paid time-
and-a-half for any overtime, you must increment
the cost of the resource by an additional half of
the normal rate to get the overtime rate. To do
this, set a variable equal to 1 in the pre-off-shift
logic for the resource, indicating the resource
should go off-shift. If the variable is equal to 1,
increment the cost of a resource by half the orig-
inal rate. (Since each unit of the clerk has a differ-
ent rate, you must obtain the cost rate for the
resource owned by the entity.)

Process Table

Entity Location Opn (min)
Order Order_desk GET Clerk, 399

WAIT N (4.5, .3)
IF Off_Shift_Var=1
THEN INCRESCOST
GETRESRATE() *.50
FREE Clerk

Routing Table

 Blk Output Destination Rule Move Logic
1 Order Shipping FIRST 1 MOVE FOR

1

See Also

GETCOST(), INCENTCOST, INCLOCCOST,
INCRESCOST, and SETRATE.

 ProModel 491
User Guide
Goto

General Control Statement

Syntax samples

GOTO <label ID>

GOTO LabelA

Description

Jumps to the statement identified by the desig-
nated label. A label should follow the normal
rules for names except that it is followed by a
colon in the logic. GOTO statements may be
replaced by IF...THEN...ELSE statements.

Valid In

Any logic.

Components

<label ID>

The name of the label to switch to. Omit the colon on
the label name here.

Example

This example shows how a GOTO statement is
used to skip over the first two increment state-
ments based on the value of an attribute.

Process Table

Entity Location Operation (min)
Box Receive IF Attr1>1 THEN GOTO L1

INC V1
INC V2
L1:
INC V3

Routing Table

Blk Output Destination Rule Move Logic
1 Box Stores FIRST 1 MOVE FOR

5

See Also

IF...THEN...ELSE, BREAK, and BREAKBLK.

492 Chapter 14:
Graphic
Graphic

General Operation Statement

Syntax samples

GRAPHIC <expression>

GRAPHIC 2

GRAPHIC Var1

Description

Changes the entity’s or resource’s current
graphic. Entities and resources are assigned
graphics from the graphics library in the Entity or
Resource editor. Use the GRAPHIC to show the
result of a process. For example, when a cus-
tomer sits down, the graphic could change from a
standing person to a sitting person.

Valid In

When used in node entry, node exit, and
resource-downtime logic, GRAPHIC changes a
resource’s graphic. When used in location pro-
cessing logic, move logic, and arrival logic,
GRAPHIC changes an entity’s graphic.

Components

<expression>

The number of the entity’s or resource’s new graphic.

Example

In the example below, EntA arrives at Loc1 for a
two step operation. Upon arrival, the graphic icon
of the entity changes to Graphic 2. After the first
two minute processing time the icon changes to

Graphic 3. Finally, the icon changes to Graphic 4
after the second two minute processing time.
(The difference between the two graphics may
only be color, but the two could be completely
different.)

Process Table

Entity Location Operation (min)
EntA Loc1 GRAPHIC 2

WAIT 15 min
GRAPHIC 3
WAIT 25 min
GRAPHIC 4

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1 MOVE FOR

5

See Also

“Entities” on page 118 and “Resources” on
page 132.

 ProModel 493
User Guide
Group

Entity-Related Operation Statement

Syntax samples

GROUP <expression> {AS <entity name>}

GROUP (Var1+Var2)

GROUP 10 AS EntX

Description

Accumulates and temporarily consolidates a
specified quantity of entities into a single
GROUP shell entity.

The shell entity retains the same attributes as the
first entity that was grouped into the shell. How-
ever, if the GROUP AS statement is used, the
new shell entity does not retain any attribute val-
ues, even if the same name is used for the
GROUP shell entity as the entities that have been
grouped.

The individual entities comprising the group
retain their identities, attributes, and resources
and are divided from the group when an
UNGROUP statement is encountered. The first
entity processed from the group takes any
resources the group owns. Entities in a group can
be grouped into a larger group at another loca-
tion.

Valid In

The operation column of process edit tables only.
GROUP may not be used in combination with
COMBINE, CREATE, LOAD, UNLOAD,
SPLIT AS, other GROUP statements in the same
processing logic, or with conveyors. An excep-
tion to this rule is that an UNGROUP statement

may follow a GROUP statement in the same pro-
cess.

Components

<expression>

The number of entities to group. If this expression is
zero, the statement is ignored. If it is less than zero, it
generates an error.

This expression is evaluated every time an entity
encounters the GROUP statement, so the amount of
entities to be combined can vary as the simulation
progresses. If it becomes less than or equal to the num-
ber of entities already waiting to be combined, the
entity that encountered the GROUP statement will be
grouped with all the waiting entities.

AS <new entity name>

The optional name of the resulting entity. If left off, the
new entity will have the same name as the last entity to
complete the group.

Explicit Entity Actions

GROUP creates a shell (a temporary entity repre-
senting grouped entities that starts with cost and
time statistics of zero) to which ProModel assigns
all cost and time statistics for the group. Each
grouped entity retains its individual cost and time
statistics and, when you ungroup the entities and
the shell disappears, ProModel divides all statis-
tics and cost (accrued by the shell) between them.

494 Chapter 14:
Group
Example

In this example, Man, Woman, and Child are
grouped together at Floor1 before getting on an
elevator. The group of entity types, called Grp_A,
is then routed to Floor2 where it will be
ungrouped. (See the UNGROUP statement exam-
ple.)

Process Table

Entity Location Operation (min)
Man Floor1 WAIT E(2.0)
Woman Floor1 WAIT U(3,1)
Child Floor1 WAIT N(2.1,.2)
ALL Waiting GROUP 10 AS Grp_A
Grp_A Waiting GET Elevator

Routing Table

Blk Output Destination Rule Move Logic
1 Man Waiting FIRST 1 MOVE FOR

0.5
1 Woman Waiting FIRST 1 MOVE FOR

0.5
1 Child Waiting FIRST 1 MOVE FOR

0.5

1 Grp_A Floor2 FIRST 1 MOVE WITH
Elevator

See Also

COMBINE, ACCUM, GROUPQTY(), and
ENTITY(). Also see “Attributes” on page 225.

 ProModel 495
User Guide
GroupQty()

Entity-Specific System Function

Syntax samples

GROUPQTY({<entity name>})

ORDER GROUPQTY(Part1) Part2 TO Loc1

IF GROUPQTY(Part1) > 5 THEN...

Description
Returns the number of entities of a specified type in a
grouped or loaded entity. If no name is specified, it
returns the entire group quantity. If it is a loaded entity,
it will only return the number of loaded entities, not the
base entity. For example, if four Castings are loaded
onto a Pallet and called Batch, the GroupQty() will
return the number of Castings (i.e., 4), which does not
include the entity Pallet.

In the case of hybrid nested groups with several mixed
and nested levels of groups and loads, GroupQty()
returns the number of entities in the uppermost level
only.

Valid In

Speed fields, traveling-time fields, conveyor-
speed fields, Resource fields, operation logic,
routing fields, arrival logic, and debug user-con-
dition fields. This function returns an integer.

Components

<entity name>

The optional specific type of entity to search for in the
group.

Example

A group of entities called GRPA arrives at Loc1
and process for some amount of time according
to a Normal distribution. If the group contains
three or more entities it routes to Loc2, otherwise it
routes to Loc3. Routing requires 1.2 minutes.

Process Table

Entity Location Operation (min)
GRPA Loc1 WAIT N(3,.1)

IF GROUPQTY() > 2 THEN
 ROUTE 1
ELSE
 ROUTE 2

Routing Table

Blk Output Destination Rule Move Logic
1 GRPA Loc2 FIRST 1 MOVE FOR

1.2
2 GRPA Loc3 FIRST 1 MOVE FOR

1.2

See Also

GROUP, UNGROUP, and ENT().

496 Chapter 14:
If...Then...Else
If...Then...Else

General Control Statement

Syntax samples

IF <Boolean expression> THEN <statement 1>
{ELSE <statement 2>}

IF Var1 = 5 THEN WAIT 2 min

IF (Attr2 = 5) OR (Var5 <> 0) THEN WAIT 2 min
ELSE WAIT 3 min

IF Var1 > Attr2 THEN
BEGIN

Var1 = Attr2
WAIT Attr1

END
ELSE

BEGIN
INC Var1
WAIT Attr2

END

Description

Executes a statement or statement block if the
Boolean expression is true. If an ELSE statement
is included and the Boolean expression is false,
an alternate statement or statement block is exe-
cuted. For an IF...THEN statement to be broken
into more than one line, the first item on the next
line must be THEN, AND, or OR. IF...THEN
statements only apply to the next statement or
statement block in a logic. Any statements out-
side of the BEGIN and END will execute nor-
mally. See BEGIN and END for examples.

Valid In

Any logic.

Components

<Boolean expression>

The condition to be tested.

THEN <statement 1>

The statement or block to be executed if the condition
is true.

ELSE <statement 2>

The statement or block to be executed if the condition
is false.

Example

In the following example an IF...THEN...ELSE test is
made to see if the simulation clock is less than
eight hours. If so, the Client is routed to Office1,
otherwise the Client is routed to Office2.

 ProModel 497
User Guide
Process Table

Entity Location Operation (min)
Client Loc1 IF CLOCK(Hr) < 8 THEN

 ROUTE 1
ELSE
 ROUTE 2

Routing Table

Blk Output Destination Rule Move Logic
1 Client Office1 FIRST 1 MOVE FOR

5
2 Client Office2 FIRST 1 MOVE FOR

5

See Also

BEGIN, END, DO...WHILE, WHILE...DO, and
DO...UNTIL.

498 Chapter 14:
Inc
Inc

General Operation Statement

Syntax samples

INC <name>{, <expression>}

INC Var1

INC Attr2, 5+Var1

Description

Increments a variable, array element, or attribute
by the value of a specified numeric expression.
When counting the number of entities a location
has processed, increment a variable at the end of
the processing logic.

Valid In

Any logic.

Components

<name>

The name of any variable, array element, or attribute.

<expression>

The amount to increment the value. If this expression
is omitted, the value will be incremented by one. This
can be a negative number.

Example

The following example increments two variables
in the exit logic. Num_complete is incremented
by one, and Count is incremented by the expres-
sion Attr1*Attr2.

See Also

DEC.

 ProModel 499
User Guide
IncEntCost

Cost Related Statement

Syntax samples

INCENTCOST <expression>

INCENTCOST 15

INCENTCOST -15

Description

Enables you to increment the cost (positively or
negatively) of the current entity by a given
amount. Use this function to add to the entity’s
actual, accumulated dollar amount.

Please note

When working with new entities created through
a ROUTE statement, use INCENTCOST to assign
an initial cost to entities. Initial entity cost
defined for an entity in the cost module applies to
entities entering the system through a scheduled
arrival, the CREATE statement, or the ORDER
statement.

Valid In

Operation and Move logic.

Components

<expression>

The positive or negative change to the value of cost.

Example

The logic below allows you to add an initial cost
to an entity implicitly created through the ROUTE
statement. In the following example, a Pallet of
entities, PalletA, arrives at Unload_Loc where
workers unload entities called Box every 20 sec-
onds until the pallet is empty. ProModel deter-
mines the number of Boxes unloaded from
PalletA by the value of PalletA’s attribute, Qty_Attr.
In Move Logic, the statement “IncEntCost 10”
adds an initial cost of 10 dollars to each implicitly
created entity, Box.

Process Table

Entity Location Opn (min)
PalletA Unload_Loc int x = 0

WHILE x < Qty_Attr DO
 {INC x
 WAIT 20 sec
 ROUTE 2}
ROUTE 1

Routing Table

 Blk Output Destination Rule Move Logic
1 PalletA Exit FIRST 1
2* Box Conveyor1 FIRST 1 INCENT-

COST 10

See Also

GETCOST, GETRESRATE(), INCLOCCOST,
INCRESCOST, and SETRATE.

500 Chapter 14:
IncLocCost
IncLocCost

Cost Related Statement

Syntax samples

INCLOCCOST <expression>

INCLOCCOST 15

INCLOCCOST -15

Description

Enables you to increment the cost (positively or
negatively) of the current location by a given
amount. Use this function to add to the location’s
actual, accumulated dollar amount.

Valid In

Operation logic.

Components

<expression>

The positive or negative change to the value of cost.

Example

The logic below shows how to add a cost per
entry to a location for an entering entity. Pro-
Model automatically tracks operation cost per
time unit specified in the cost dialog, however,
you may assign a one time cost each time an
entity enters a location.

In the following example, an entity, EntA, arrives
for inspection at location Inspect. We define no
rate of operation cost for Inspect because each
inspection accrues a one time cost regardless of
how long the entity remains at Inspect. At

Inspect, workers inspect EntA. After inspection,
ProModel adds the cost to the location through
the IncLocCost statement and then to the entity
with the IncEntCost statement.

Process Table

Entity Location Opn (min)
EntA Inspect WAIT N(3,.7)

INCLOCCOST 3
INCENTCOST 3

Routing Table

 Blk Output Destination Rule Move Logic
1 EntA Packaging PROBA-

BILITY .93
EntA Rework .07

See Also

GETCOST, GETRESRATE(), INCENTCOST,
INCRESCOST, and SETRATE.

 ProModel 501
User Guide
IncResCost

Cost Related Statement

Syntax samples

INCRESCOST <cost expression> {,<resource>}

INCRESCOST 10

INCRESCOST GETRESRATE(Operator1)*20,
Operator1

Description

Enables you to increment the cost (positively or
negatively) of a resource currently owned by the
entity executing the statement. Use this function
to add to the resource’s actual, accumulated dol-
lar amount. When used without the optional
<resource> parameter, this statement increments
the cost rate of the entity’s most recently cap-
tured, owned resource.

If an entity owns multiple units of a resource, the
cost distributes evenly to each unit.

Valid In

Operation and move logic.

Components

<cost expression>

 The positive or negative change to the value of cost.

<resource>

A resource currently owned by the entity executing the
statement. When used without the parameter, this state-
ment increments the cost rate of the entity’s most
recently captured, owned resource.

Example

A clerk normally works an 8-hour shift. However, if
the clerk does not finish entering all the orders in
his Input_Queue at the end of the day, he must
stay and finish them. Since the clerk is paid time-
and-a-half for any overtime, you must increment
the cost of the resource by an additional half of
the normal rate to get the overtime rate. To do
this, set a variable equal to 1 in the pre-off-shift
logic for the resource, indicating the resource
should go off-shift. If the variable is equal to 1,
increment the cost of a resource by half the orig-
inal rate.

Process Table

Entity Location Opn (min)
Order Order_desk GET Clerk, 399

WAIT N (4.5, .3)
IF Off_Shift_Var=1
THEN INCRESCOST
GETRESRATE() *.50
FREE Clerk

Routing Table

 Blk Output Destination Rule Move Logic
1 Order Shipping FIRST 1 MOVE FOR 1

See Also

GETCOST(), GETRESRATE(), INCENT-
COST, INCLOCCOST, INCRESCOST, and
SETRATE.

502 Chapter 14:
Int
Int

Local Variable Declaration Statement

Syntax samples

INT <name1>{= <expression1>, <name2>=
<expression2>...)

INT Count

INT Count = 1

INT Count = 1, Test = FREECAP(Loc2)

Description

Creates a local variable of type integer. Local
variables work much the same as attributes,
except that they only are available within the
logic that declares them. A new variable will be
created for each entity that encounters an INT
statement. Local variables are not directly avail-
able to subroutines, which have their own local
variables. However, a local variable may be
passed to a subroutine as a parameter. Local vari-
ables are available inside referenced macros.

Use local variables where ever possible for the
test variable in WHILE...DO, DO...WHILE, and
DO...UNTIL loops.

Valid In

Any logic. Variables declared with INT are valid
in any expression within the logic where a normal
integer number is valid.

Components

<names>

An identifier for the local variable. This identifier must
be a valid name.

<expressions>

The variable will initially be assigned this value. This
expression is evaluated every time the INT statement is
encountered.

Example

A plant manufactures pipes of 12 different types,
such as 2" steel, 4" aluminum, etc. All workers
inspect pipes at a common inspection station
after which they move to a dock where other
workers load them into boxes. The boxes are
designed to hold only certain types of pipes.
Therefore a box designed to hold 2" steel pipes
can only hold 2" steel pipes, not 4" aluminum
pipes.

Suppose a Box, enters a multi-capacity location,
Dock. Each Box has a different entity attribute,
b_type, describing the type of pipe it can hold.
Workers load pipes into the Box. Workers must
load the 2" steel pipes into the box designed to
hold the 2" steel pipes. Therefore, the attribute
value of the Pipe, p_type, must match the
attribute value of the Box, b_type. We can use
local variables to accomplish this modeling task.
In the following example, we defined X as a local
variable and set it equal to b_type:

 ProModel 503
User Guide
Process Table

Entity Location Operation (min)
Pipe Inspect WAIT 5
Box Dock INT X= b_type

LOAD 5 IFF
X=p_type

Box Dock WAIT 10

Routing Table

Blk Output Destination Rule Move Logic
1 Pipe Dock LOAD 1 MOVE FOR 2

1 Box Delivery FIRST 1 MOVE FOR 8

See Also

REAL. Also see “Local Variables” on page 233.

504 Chapter 14:
Join
Join

Entity-Related Operation Statement

Syntax samples

JOIN <expression> <entity name> {,<priority>}

JOIN 4 EntA

JOIN Var1 EntA, 1

Description

Joins a specified quantity of a designated entity
type to the current entity. The entities joined to
the current entity lose their identities and any
resources owned by the joining entities are trans-
ferred automatically to the current entity. Use
JOIN to simulate a component being assembled
to a main part, such as when wings are attached
to the fuselage of an airplane.

Entities to be joined must be routed to the current
location with a JOIN rule. The current entity
waits until enough entities to fill its request have
been routed to the current location with a JOIN
rule.

The resulting entity retains the attributes and
name of the current entity. To transfer attributes
from the joining entity to the current entity, in the
exit logic for the joining entity, copy the desired
attribute to a global variable. Then assign the glo-
bal variable to the attribute of the current entity
after the JOIN statement in the processing logic.

All resources owned by the joining entity are
transferred to the base entity.

To JOIN an entity with a specific attribute value
to another entity with the same attribute value,
use the MATCH statement in addition to a JOIN.

Valid In

The operation column of process edit tables only.
More than one JOIN statement may be used in
the same logic.

Components

<expression>

The number of entities to be joined. A zero value is
ignored and a negative value generates an error. This
expression is evaluated when each entity first encoun-
ters it, but is not re-evaluated as the requested entities
are joined.

<entity name>

The entity type to be joined to the processing entity.
Joining entities must come from a JOIN routing and
lose their identity once joined.

<priority>

An entity with a higher priority will have arriving enti-
ties joined to it before one with a lower priority. This
expression should be a number between 0 and 999. For
more information on priorities, see Priorities, at the
beginning of this section.

Explicit Entity Actions

JOIN passes cost on to base but not statistical
information. ProModel counts joined entities as
exits.

 ProModel 505
User Guide
Example

A certain location on an assembly line manufac-
turing cars attaches doors built on another
assembly line. When the Body of the car arrives at
the Assembly location, we attach a left door,
Ldoor, and a right door, Rdoor, with a JOIN state-
ment. The paint station paints the doors and
routes them to Assembly with a JOIN rule. Note
that the Body will wait until we join both doors
before routing to the next location.

Process Table

Entity Location Operation (min)
Rdoor Paint WAIT 30
Ldoor Paint WAIT 30
Body Assembly JOIN 1 Ldoor

JOIN 1 Rdoor

Routing Table

Blk Output Destination Rule Move Logic
1 Rdoor Assembly JOIN 1 MOVE FOR 30
1 Ldoor Assembly JOIN 1 MOVE FOR 30
1 EntB Cleaning FIRST 1 MOVE FOR 5

See Also

LOAD, COMBINE, and GROUP. Also see
“Attributes” on page 225.

506 Chapter 14:
Jointly Get
Jointly Get

Resource-Related Operation Statement

Syntax samples

JOINTLY GET {<quantity>} <resource>
{,<priority>}
{AND or OR {<quantity>} <resource>
{,<priority>}}

JOINTLY GET 3 Res1,5

JOINTLY GET 2 Res1 OR 3 Res2

JOINTLY GET Res1,3 AND (Res2 OR Res3)

JOINTLY GET 2 Res(Attribute1)

Description

Captures a specified number of resources when
that number of resources is available. When cap-
turing multiple resources, none of the resources
will be captured until all are available. If the
entity already possesses one or more of the
requested resources, the entity will still try to
capture additional units of the specified
resources.

Valid In

Location processing, downtime, move, and shift
logic.

Components

<quantity>

The number of resources to get. A value of zero is
ignored and values less than zero return an error. This
numeric expression is evaluated and truncated every
time the JOINTLY GET statement is encountered.

<resource >

The name of the resource to JOINTLY GET. RES()
can be substituted for the resource name.

<priority>

When multiple entities request a resource, the requests
will be filled in order of priority. This expression
should be a number between 0 and 999.

Example

In the following example (which also demon-
strates the FREE statement) EntA arrives at Loc1
for a multi-step process. Because the first step of
the process uses Res1 and Res2 simultaneously,
a JOINTLY GET statement is issued to ensure that
both resources are available before the process
begins. The resources are then freed indepen-
dently.

Process Table

Entity Location Operation (min)
EntA Loc1 JOINTLY GET Res1 AND Res 2

WAIT N(4.5,.2)
FREE Res1
WAIT L(3.4,.23)
FREE Res2

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1 MOVE FOR 1

See Also

GET and USE.

 ProModel 507
User Guide
Last()

Resource-Specific System Function

Syntax samples

LAST()

Var1=LAST()

IF LAST() = 13 THEN Var3 = 0

IF LAST() = PathNet1.N1 THEN INC Var1

Description

Returns the name-index number of the node from
which a resource has just traveled. LAST() can
be useful to choose the appropriate graphic or to
reset a variable. You can also check the name-
index number of the last node by specifying
<path network name>. <name of the node>. For
example, if you wanted to know if the last node
was N5 on the network Net3, you could specify
“IF LAST() = Net3.N5 THEN...” in the node
entry logic.

Valid In

Node entry logic.

Example

This Entry Logic window shows that whenever a
resource enters a particular node a check is
made to see if the name-index number of the
last node equals one. If so, the resource graphic
is changed to Graphic 2, otherwise it is changed
to Graphic 3.

See Also

NEXT() and WAIT...UNTIL.

508 Chapter 14:
Ln()
Ln()

Math Function

Syntax samples

LN(<expression>)

Real1 = LN(Real2)

Description

Returns the natural logarithm of an expression.

Valid In

Any expression. This function returns a real num-
ber.

Components

<expression>

LN() returns the natural logarithm of this expression.

See Also

EXP().

Please note

To get a logarithm to a particular base, use the
following formula:

logbase<expression> = LN<expression>/
LN<base>

 ProModel 509
User Guide
Load

Entity-Related Operation Statement

Syntax samples

LOAD <expression> {IFF <Boolean expres-
sion>}{IN <time>}{,<priority>}

LOAD 5, 99

LOAD 5 IFF Attr3 > 2 IN 5 min

LOAD Pallet_Capacity

Description

Loads a specified quantity of entities onto the
current entity. Loaded entities retain their identity
and may be unloaded with an UNLOAD state-
ment. Loaded entities must be routed to the load-
ing location using the LOAD routing rule.
Additional entities may be added to an entity’s
existing load with additional LOAD statements.
Use LOAD to model parts placed into a container
or pallet when they must be removed later. If a
resource owns the loaded entity when the entities
are unloaded from the base entity, the resource
stays with the base entity.

Valid In

The operation column of Process edit tables only.
A process may contain multiple load statements
and no more than one UNLOAD statement fol-
lowing all LOAD statements. LOAD may not be
used in the same process with SPLIT AS, CRE-
ATE, COMBINE, GROUP, or UNGROUP.

Components

<expression>

The number of entities to load into the current entity.
This expression is evaluated at the time the entity
encounters the LOAD request.

IFF <Boolean expression>

This option allows the LOAD command to be condi-
tional. Any attributes, entity functions, or location
functions apply to the entity to be loaded, not to the
current entity. This technique allows only entities with
certain properties to be loaded onto the current entity.
To use attributes, entity functions, and location func-
tions that apply to the current entity, assign the desired
value to a local variable and use the local variable in
the Boolean expression.

IN <time>

The entity will load entities up to the specified limit for
this amount of time and then go on. Entities loaded
with this option may have a load smaller than the spec-
ified amount.

<priority>

Waiting entities will load arriving entities by priority.
This expression should be a number between 0 and
999.

Explicit Entity Actions

LOAD does not transfer cost or statistics of the
loaded entity.

Example

In this example, boxes are loaded onto a semi-
truck. The quantity is determined by the value of
the Truck’s attribute, Attr1. The resulting entity
retains the name Truck and is sent on to its final
destination, New York, Chicago, or Boston.

510 Chapter 14:
Load
Process Table

Entity Location Operation (min)
Box Shipping WAIT 2 min

Truck MfgSite

Truck Dock LOAD Attr1 IN 2 hr

Routing Table

Blk Output Destination Rule Move Logic
1 Box Dock LOAD 1 MOVE FOR 45

sec
1 Truck Dock FIRST 1MOVE FOR 10

min
1 Truck NewYork FIRST 1MOVE FOR 24

hr
Truck Chicago FIRST MOVE FOR 12

hr
Truck Boston FIRST MOVE FOR 28

hr

See Also

LOAD, GROUP, UNLOAD, ACCUM, COM-
BINE, JOIN, GROUPQTY(), and ENTITY().
Also see “Attributes” on page 225.

 ProModel 511
User Guide
Loc()

Name-Index-Number Conversion Func-
tion

Syntax samples

LOC(<location name-index number>)

ORDER 10 EntA TO LOC(5)

DISPLAY “EntA arrived at” $ LOC(5)

Description

Converts a name-index number or integer to a
location name. Use this function when a state-
ment or function needs the name of a location but
whose name-index number is stored in an
attribute, variable, or some other expression. It
can also be used to vary a selected location based
on the name-index number stored in the expres-
sion. When used in a string expression, as in the
second syntax example above, ProModel will
convert the name-index number to the actual
name of the location. If the expression points to a
unit of a multi-unit location, then the LOC()
function will return the name of the parent loca-
tion.

Valid In

Any statement where a location name is normally
used, including the Destination field of the Rout-
ing edit table. Also used in string expressions.

Components

<location name-index number>

The name-index number of the desired location. This
component may be an expression, allowing the loca-
tion to vary as the simulation progresses. Real numbers
will be truncated to integers.

Example

Suppose there are five locations which appear
one after the other in the Location edit table as
follows: Dock1, Dock2, Dock3, Dock4, Dock5.
Shipments could be ordered to each of the five
locations in rotation with the following logic. Note
that Dist() is a user-defined distribution that returns
an integer value for the number of Shipments to
order.

INT Var1 = 1

WHILE Var1 <= 5 DO

BEGIN

ORDER Dist() Shipments TO LOC(Var1)

INC Var1

END

See Also

ENT(), RES(), and LOCATION().

512 Chapter 14:
LocState()
LocState()

General System Function

Syntax samples

LOCSTATE (<locationname>)

Description

Returns a value indicating the current state of the
specified location. Return values will range from
1-7, which translate to the following:

1 = idle/empty
2 = setup
3 = operating
4 = blocked
5 = waiting
6 = up (multi-capacity location)
7 = down

Valid In

Any Logic.

Components

<locationname>

The name of the location.

 ProModel 513
User Guide
Location()

Location-Specific System Function

Syntax samples

LOCATION()

Attr1 = LOCATION()

IF LOCATION() = 2 THEN WAIT 4 MIN

Description

Returns the current location’s name-index num-
ber. This function is especially useful in macros
and subroutines that vary depending on which
location’s logic calls them. By using a LOCA-
TION() function with an IF...THEN statement,
the macro or subroutine can act differently
depending on the location that called it. Also, the
same technique can be used to determine which
location is carrying out a process when ALL is
used as the process location.

Valid In

Any logic.

Example

The individual ovens at a pizza parlor have differ-
ent capacities but are otherwise exactly the
same. While each oven could be modeled as
an individual location, it would be easier to
model this situation with a multi-unit location. This
example uses CAP() and LOCATION() in the pro-
cessing logic of the parent location to accumu-
late enough Orders to fill each oven.The
individual ovens of a ceramics plant have differ-
ent capacities, but are otherwise exactly the
same. While each oven could be modeled as
an individual location, it would be easier to
model this situation as a multi-unit location. This

example uses CAP() and LOCATION() in the pro-
cessing logic of the parent location to accumu-
late enough Sinks to fill each oven.

Process Table

Entity Location Operation (min)
Sink Oven ACCUM CAP(LOCATION())

Routing Table

Blk Output Destination Rule Move Logic
1 Sink Cool FIRST 1 MOVE FOR

5

See Also

LOC() and ENTITY().

514 Chapter 14:
Log
Log

General Action Statement

Syntax samples

LOG <string>, <expression>

LOG “Activity Time”, Attr1

Description

ProModel assumes that the time stored in the
expression is in the model’s default time units set
in the General Information dialog box. Use the
LOG statement to record the time from one state-
ment to another statement by storing the time of
the first statement in an attribute, variable, or
array element with CLOCK() and using the same
attribute, variable, or array element as the expres-
sion in the LOG statement. Use the LOG state-
ment to determine throughput time or throughput
in a particular section of the facility.

Valid In

Downtime logic, location processing logic, node
entry and exit logic, and routing exit logic.

Components

<string>

This string will be stored in the file before the result of
the log expression and may not be a string expression.
Use this string to identify the number that follows.

<expression>

The result of this expression subtracted from the
model’s current time will be stored in the file <model
name>.LAP, after the string above.

Example

The example below shows a LOG statement used
to capture each Client’s total throughput time as
they travel through the system. Time starts when
the Client arrives at Receptionist and stops when
the Client exits through the door. The first process
sets attribute CT equal to the current clock time.
Next, Clients are sent randomly to one of three
offices. Finally, when a Client leaves the system
at location OutDoor, the LOG statement records
the cycle time by subtracting the time stored in
attribute CT from the current simulation time.

Throughput Time

Reception

Auditor

Loan
Service

1 2 3 54

OutDoor

 ProModel 515
User Guide
Process Table

Entity Location Operation (min)
Client Reception CT=CLOCK()
Client Auditor WAIT T(5,6,8)
Client Loan WAIT T(4.5,5,7)
Client Service WAIT N(6.2,1.1)
Client OutDoor LOG “Cycle Time”, CT

Routing Table

Blk Output Destination Rule Move Logic
1 Client Auditor

Loan
Service

RANDOM
1
RANDOM
RANDOM

MOVE FOR
1.5

1 Client OutDoor FIRST 1 MOVE FOR
0.5

1 Client OutDoor FIRST 1 MOVE FOR
0.5

1 Client OutDoor FIRST 1 MOVE FOR
1.2

1 Client EXIT

See Also

WRITE, WRITELINE, and READ. Also see
“External Files” on page 262.

516 Chapter 14:
MapArr
MapArr

General Action Statement

Syntax samples

MAPARR <array name>{TO <variable name>}

MAPARR Array1 TO Var10

MAPARR Array5

Description

Starting with the variable you specify, the MAP-
ARR statement maps each individual cell of an
array to a unique variable (i.e., if you define 12
cells for the array, the array will map to 12 vari-
ables). To display the cell value of a mapped
array, create a variable graphic for the variable to
which you mapped the array cell. ProModel col-
lects statistics for an array cell through the vari-
able to which you mapped the cell. (Choose
“Basic” or “Time Series” statistics for a mapped
variable, then view the variable in the Statistics
Output program.)

If you do not specify the optional variable name
in the statement, ProModel will unmap the array
from the variables to which you originally
mapped it. You can remap arrays by using the
MAPARR statement again.

Valid In

Any logic.

Components

<array name>

Map, unmap, or remap this array. The brackets, [], are
unnecessary after the array name in the statement.

TO <variable name>

The optional name of the variable to which you map
the first cell in the array. If you do not specify a name,
ProModel will unmap the array from the variables.

Example

Suppose you want to dynamically view an array,
Storage_Array, during simulation. The array has a
dimension of 2x3x2 (a three-dimensional array
with 2 cells in the first dimension, 3 cells in the
second, and 2 cells in the third) and contains a
total of 12 cells (multiply all the dimensions
together).

Since you already used the first 8 of the 30 vari-
ables defined in the model, Var1 through Var30,
you will start mapping the array with Var9 and
end with Var20 (the 12th variable from Var9 listed
in the Variables module). In the initialization logic,
use the following statement:

MAPARR Storage_Array TO Var9

The cells in Storage_Array will map to variables
Var9 to Var20 in the following order:

[1,1,1] ... Var9
[1,1,2] ... Var10
[1,2,1] ... Var11
[1,2,2] ... Var12
[1,3,1] ... Var13
[1,3,2] ... Var14
[2,1,1] ... Var15
[2,1,2] ... Var16
[2,2,1] ... Var17
[2,2,2] ... Var18
[2,3,1] ... Var19
[2,3,2] ... Var20

In the Variables module, create graphics for vari-
ables Var9 through Var20 and place them on the
layout. This will allow you to view them during the
simulation.

 ProModel 517
User Guide
Please note

Changing the cell value of a mapped array will
change the value stored in the array cell AND the
value of the variable to which you mapped the
specific cell. Changing the value of a variable
(e.g., INC Var12), however, will change ONLY
the variable value and NOT the cell value of the
mapped array cell. Also, when you use a mapped
array in an expression, the array returns the
value of the variable mapped to it.

518 Chapter 14:
Match
Match

Entity-Related Operation Statement

Syntax samples

MATCH <attribute>

MATCH Attr1

Description

Causes the current entity to wait until the value of
the specified attribute matches the value of
another entity’s same attribute. Both entities must
have a corresponding MATCH statement speci-
fied for the same attribute name. The two entities
may be at any location in the model, including
the same location and two completely unrelated
locations. Therefore, the value of the attribute to
MATCH should almost always be assigned to the
value of a global variable incremented for each
entity that will be matched, as in the following
example.

Locations using the MATCH statement usually
should be multi-capacity because otherwise they
would not be able to process any other entities
until the MATCH was made. Additionally, loca-
tions using MATCH usually should be non-queu-
ing to allow the entities to move out of sequence
when the MATCH is fulfilled.

Use the MATCH statement to pair two specific
parts before assembling them, or to match a work
order to a completed job.

Valid In

The operation column of process edit tables only.

Components

<attribute>

Any attribute associated with the processing entity.

Example

You can use a MATCH to recombine the parts of
an entity which has been split using multiple rout-
ing blocks. In the example below, every time an
EntAB arrives at the location, the variable Count
increments. ProModel assigns Attr1 for EntAB the
value of count, which ensures that each EntAB will
have a unique value for Attr1. Additionally, when
each EntAB is split into EntA and EntB, both of the
resulting entities, (EntA and EntB) will have the
same value for Attr1. EntA and EntB then travel
independently through their respective process-
ing steps, denoted by the ellipses. Finally, EntA
and EntB arrive at Loc10A and Loc10B respec-
tively, where each piece must wait for its match-
ing half to arrive before consolidating the entities
with the JOIN construct.

 ProModel 519
User Guide
Process Table

Entity Location Operation (min)
EntAB Loc1 INC Count

Attr1= Count
EntA Loc2 ...
EntA Loc10A MATCH Attr1
EntB Loc3 ...
EntB Loc10B MATCH Attr1

JOIN 1 EntA

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1MOVE FOR 5
2 EntB Loc3 FIRST 1MOVE FOR 5
...
1 EntA Loc10B JOIN 1 MOVE FOR 30

sec
...
1 EntAB Loc11 FIRST 1MOVE FOR 5

See Also

WAIT...UNTIL and LOAD.

520 Chapter 14:
Move
Move

Entity-Related Operation Statement

Syntax samples

MOVE {FOR <time expression>}

MOVE FOR .25 min

MOVE FOR 3.2

MOVE

Description

Moves the entity to the end of a queue or con-
veyor location. Use the MOVE statement to
explicitly control the movement of an entity
through a queue or conveyor.

Please note

If there is no MOVE statement, when an entity
enters a queue or conveyor, it executes all the
processing logic defined for the entity at that
location and then moves to the end of the queue
or conveyor. For queues, its movement time is
based on the entity’s speed and the queue’s
length. For conveyors, its movement time is
based on the conveyor speed and length.

If an entity processing at a queue or conveyor
encounters a MOVE statement, the entity stops
executing the processing logic, moves to the end
of the queue or conveyor in the appropriate

amount of time, and then resumes the processing
logic. The move-time for an entity on a conveyor
is calculated using the following formula:

Time = (Conveyor Length - Entity Length or
Width)/Conveyor Speed

For queues only, a MOVE may optionally be fol-
lowed by a FOR statement and then a move-time.
If a move-time is specified, the entity moves
through the queue in the specified amount of time
regardless of the entity’s speed and the queue’s
length. Entities with shorter move times will
catch up to, but will not pass, entities with longer
move times.

If a queue is not empty when an entity enters the
queue, then the move-time will continue to elapse
even though the arriving entity’s graphic may
have stopped moving. When an entity’s move-
time has elapsed, an entity will begin executing
any logic following the MOVE statement and
then will be available for routing, even if graphi-
cally the entity does not appear to be at the end of
the queue.

For a conveyor, if additional logic follows a
MOVE statement, the entity must advance to the
last position on the conveyor before the remain-
ing logic is executed.

Valid In

The operation column of process edit tables only,
and only if the location is a queue or a conveyor.
MOVE may only be used once per logic.

Components

<time expression>

The amount of time needed for the entity to travel
through the queue. This expression is ignored for con-
veyors. It is evaluated every time the statement is
encountered and should be on the same line as the
MOVE command.

 ProModel 521
User Guide
Example

The example below shows the processing steps
necessary to mimic the behavior of a queue sys-
tem using MOVE statements. Locations Queue1,
Queue2 and Queue3 should each be repre-
sented graphically with a queue symbol. The
time value in the MOVE statement represents the
time required to traverse each queue section
from beginning to end when the queue is empty.

Process Table

Entity Location Operation (min)
ALL Queue1 MOVE FOR 2.5
ALL Queue2 MOVE FOR 3.5
ALL Queue3 ...

Routing Table

Blk Output Destination Rule Move Logic
1 ALL Queue2 FIRST 1
1 ALL Queue3 FIRST 1
...

See Also

“Locations” on page 96. Also see WAIT.

522 Chapter 14:
Move For
Move For

Entity-Related Move Logic Statement

Syntax samples

MOVE FOR <time>

MOVE FOR 0

MOVE FOR 2.5 + CleanupTime

MOVE FOR N(8, .5) + 3 sec

Description

Used to specify the amount of time required to
move the entity. A move-time of zero may be
entered to cause events for other entities occur-
ring at the same simulation time to be processed
before any additional logic is processed for the
current entity. If no move related statement
(MOVE FOR, MOVE ON, MOVE WITH) is
specified, the entity instantly enters the next loca-
tion and immediately begins executing the opera-
tion logic for that location.

Valid In

This statement is valid in Move Logic. MOVE
FOR may be encountered only once by an entity
in the same logic.

Components

<time>

The length of time the system takes to execute the
move. This expression is evaluated whenever the
statement is encountered. If no time unit is specified,
the default time unit specified in the General Informa-
tion dialog is applied.

Example

It takes 4 minutes for the entity, Cutter, to move
from one location, Grinder, to the next location,
Profiler.

Process Table

Entity Location Operation (min)
Cutter Grinder GET Operator WAIT 1
Cutter Profiler WAIT Attr1

Routing Table

Blk Output Destination Rule Move Logic
1 Cutter Profiler FIRST 1 MOVE FOR 4
1 Cutter Exit

See Also

MOVE ON and MOVE WITH. Also see “Rout-
ing Move Logic” on page 302.

 ProModel 523
User Guide
Move On

Entity-Related Move Logic Statement

Syntax samples

MOVE ON <path network>

MOVE ON StatPath2

Description

Use this statement to move an entity along a path
network.

Valid In

This statement is valid only in Move Logic.
MOVE ON may only be encountered once by an
entity in the same move logic.

Components

<path network>

Any valid path network name.

Example

An entity, EntA, moves from StationA to StationB
along a network called Net1.

Process Table

Entity Location Operation (min)
EntA StationA WAIT 2
EntA StationB ...

Routing Table

Blk Output Destination Rule Move Logic
1 EntA StationB FIRST 1 MOVE ON

Net1
...

See Also

MOVE FOR and MOVE WITH. Also see “Rout-
ing Move Logic” on page 302.

524 Chapter 14:
Move With
Move With

Entity-Related Move Logic Statement

Syntax samples

MOVE WITH <res1> {,p1}
 OR <res2> {,p1}
 {FOR <time >} {THEN FREE}

MOVE WITH Technician, 100

MOVE WITH Operator1, 399 FOR 3 min

MOVE WITH Truck1, 99 THEN FREE

MOVE WITH Operator1 OR Operator2

Description

This statement is used to move an entity using a
designated resource such as a person or forklift.
With the OR operator, you can designate alterna-
tive resources for making the move. In this case,
the statement captures the first available resource
designated in its expression and makes the move.
As soon as the destination becomes available, the
entity implicitly gets the resource. However, if
one of the resources is already owned by the
entity, it will use that resource.

It also allows you to set the priority (p1) for
accessing the designated resource. If the
resource is already owned by the entity, this pri-
ority is ignored.

If the resource is static, you may specify a time
(FOR <time expression>) for the move. If a
resource is dynamic, a time (FOR <time expres-
sion>) is not valid. If you use “FOR <time>” with
a dynamic resource, ProModel ignores the time.
The resource will travel based on either the time
or speed/distance defined in the path networks
module.

The resource used to make the move is freed only
if the THEN FREE option is used.

Valid In

This statement is valid only in Move Logic.
MOVE WITH may only be encountered once by
an entity in the same move logic.

Components

<res1>

Resource to be captured and used to transport the
entity.

<res2>

Alternate resource to be captured and used to transport
the entity.

<priority>

The priority for accessing the resource. If the resource
is already owned by the entity, this priority is ignored.

<time>

The length of time the system takes to execute the
move. Used only if the resource is static. This expres-
sion is evaluated whenever the statement is encoun-
tered. If no time unit is specified, the default time unit
specified in the General Information dialog is applied.

 ProModel 525
User Guide
Example

An entity moving from Station A to Station B may
use either Tech1 or Tech2 to move the entity
depending on which one is available first. The
resource is freed after the move.

MOVE WITH Tech1 OR Tech2 THEN FREE

The same thing could be accomplished in longer
form:

GET Tech1 OR Tech2

MOVE WITH OwnedResource()

FREE OwnedResource()

See Also

MOVE FOR and MOVE ON. Also see “Routing
Move Logic” on page 302.

526 Chapter 14:
Next()
Next()

Resource-Specific System Function

Syntax samples

NEXT()

Var1=NEXT()

IF NEXT() = PathNet5.N11 THEN Var5=3

Description

Returns the name-index number of the resource’s
destination node. Use NEXT() to determine the
direction an entity is headed and choose the
appropriate graphic. This function can be used to
control interference between multiple transport-
ers on the same path network. You can also check
the name-index number of the next node by spec-
ifying <path network name>. <name of the
node>. For example, if you wanted to know if the
next node is N5 on the network Net3, you could
specify “IF NEXT() = Net3.N5 THEN...” in the
node exit logic.

Valid In

Node exit logic. This function returns a name-
index number.

Example

This Exit Logic window shows that whenever the
resource leaves a node a check is made to see
if the name-index number of the next node
equals 1. If so, the resource graphic is changed
to Graphic 3. (Otherwise it is changed to Graphic
2.)

See Also

LAST() and WAIT...UNTIL.

 ProModel 527
User Guide
Order

General Action Statement

Syntax samples

ORDER <expression> <entity> {TO <location>}

ORDER 10 EntA TO Loc2

ORDER Order_Qty_Attr ENT(Entity_Attr) TO
LOC(Loc_Attr)

Description

Causes the specified number of entities to be cre-
ated and placed into the system at the designated
location. If the location does not have enough
capacity for all the new entities, the excess enti-
ties will be destroyed. Attributes from the creat-
ing entity will be copied to the resulting entities.
Use ORDER to replenish inventories when a par-
ticular condition occurs. Such as when an inven-
tory reaches the minimum level.

Valid In

Any logic.

Components

<expression>

The number of new entities to be ordered. This field is
evaluated every time the ORDER statement is encoun-
tered, allowing the number ordered to vary as the simu-
lation progresses.

<entity>

The name of the new entities. ENT() may be used for
an entity name.

<location>

The destination of the new entities. LOC() may be sub-
stituted for the names of locations. If no location is
specified, the entities will be ordered to the location of
the ORDER statement.

Example

In this example, EntA arrives at LocA1 and trig-
gers an order for 100 EntB’s to LocB1.

Process Table

Entity Location Operation (min)
EntA LocA1 ORDER 100 EntB TO LocB1
EntB LocB1 ...

Routing Table

Blk Output Destination Rule Move Logic
1 EntA LocA FIRST 1 MOVE WITH

Forklift

See Also

SEND, CREATE, and SPLIT AS.

528 Chapter 14:
OwnedResource()
OwnedResource()

Resource-Specific System Function

Syntax samples

OWNEDRESOURCE ({<expression >})

OWNEDRESOURCE (2)

OWNEDRESOURCE (ResQty())

OWNEDRESOURCE ()

Description

Returns the name-index number of the nth
resource currently owned by the entity or down-
time making the function call. The function
parameter indicates the position of the resource in
the chronological list of owned resources. For
example, OwnedResource(1) returns the longest
owned resource in the list and so on.

When used without a parameter, this function
returns the most recent resource that the entity
captured and still owns. If the parameter value is
not within the range of the resource list, or if the
entity or downtime currently does not own a
resource, the function will return a 0 (zero) with-
out a warning or error message.

A preempted resource is NOT removed from the
list but marked temporarily to indicate that the
preemptee does not own the resource. After the
resource resumes the original process after being
preempted, it retains its original rank in the list.

Valid In

Entity speed fields, traveling-time fields,
resource fields, resource downtime logic, loca-
tion processing logic, location downtime logic,
routing fields, arrival logic, debug user-condition
fields, and move logic.

Components

<expression>

The nth resource currently owned by the entity or
downtime making the function call. When this param-
eter is not used, the function returns the last resource
captured that is still owned by the entity.

Example

Suppose an entity owns two resources. The first
resource was captured using the statement GET
Worker. The second resource was captured using
the statement GET Oper1 OR Oper2. We know
the entity owns the resource Worker, but we do
not know if the entity owns Oper1 or Oper2. It is
time to release the second resource so we use
the following logic:

FREE OWNEDRESOURCE()

See Also

RES(), GET, JOINTLY GET, USE, and FREE.
Also see “Resources” on page 132.

 ProModel 529
User Guide
Pause

General Action Statement

Syntax samples

PAUSE {<string expression>}

PAUSE

PAUSE “Var1 =” $ Var1

PAUSE “Reached the midpoint of the simula-
tion.”

Description

Pauses the simulation and optionally displays a
message at some point of interest. This pause
allows the user to examine the system in detail.
An information dialog box will appear on the ani-
mation screen when the pause occurs. The simu-
lation will continue only when the user selects
Resume Simulation from the Simulation menu.

Valid In

Any logic.

Components

<string expression>

The optional message to display.

Example

The simple example below pauses the simulation
after the 100th EntA has been processed at Loc1.
The purpose for doing this might be to view the
current state of the system at this particular point
in time.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT N(3.2,.1)

INC Total
IF Total >= 100 THEN
PAUSE

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1

See Also

STOP, DISPLAY, and PROMPT.

530 Chapter 14:
PercentOp()
PercentOp()

General System Function

Syntax samples

PERCENTOP (<locationname>)

Description

Returns the cumulative operation time percentage
for the specified, single-capacity location. The
value returned by this function represents the
cumulative percentage of time the location was
actually processing an entity up to the point
where the function was called.

If PercentOp() is called for a multiple-capacity
location, the value returned will always be zero,
since operation time percentage is not calculated
for multiple-capacity location

Note: The method used to calculate operation
percentage for this function is the same method
used in the output statistics.

Valid In

Any Logic.

Components

<locationname>

The name of the location.

 ProModel 531
User Guide
PercentUtil()

General System Function

Syntax samples

PERCENTUTIL (<locationname>)

Description

Returns the cumulative utilization percentage for
the specified location. The value returned by this
function represents the cumulative percentage of
capacity occupied at the location, on average, at
the time the function was called.

Cumulative Occupancy Time x 100
 Capacity x Scheduled Time

Cumulative Occupancy Time in the above equa-
tion refers to the sum of the clock time each
entity spends at a location for processing.

PercentUtil() may be called to return percent uti-
lized for both multi- and single-capacity loca-
tions.

Note: The method used to calculate utilization
percentage for this function is the same method
used in the output statistics.

Valid In

Any Logic.

Components

<locationname>

The name of the location.

532 Chapter 14:
Preemptor()
Preemptor()

Preemption Logic System Function

Syntax samples

PREEMPTOR()

Var1=PREEMPTOR()

Description

Identifies whether a downtime or entity is making
the preemptive request. The function returns the
name index number of the preempting entity;
however, it returns a 0 if the preemptor is a
downtime.

Valid In

Operation logic defined as a preemptive process.

Example

Workers may process an entity, bracket, at one of
two locations, Punch_1 or Punch_2. You may pre-
empt the bracket at Punch_1 by either an entity
with a preemptive priority or a location shift down-
time with a preemptive priority. If an entity pre-
empts the bracket, workers send the bracket to
Punch_2 to finish processing. Punch_1 and
Punch_2 are on the same shift, and are sched-
uled to go off-shift at the same time. Therefore, if
a shift downtime preempts the bracket at
Punch_1, the bracket would not be able to go to
Punch_2. In this case, the bracket is sent to a
location called Punch_Wait where it waits for
Punch_1 to come back on-shift. The PREEMPTOR()
function determines whether an entity or shift
downtime preempts the bracket.

Process Table

Entity Location Operation (min)
Bracket Punch_1 WAIT 3 min
Bracket* Punch_1 IF PREEMPTOR()>0 THEN

 ROUTE 1
ELSE
 ROUTE 2

* Preemptive Process Record

Routing Table

Blk Output Destination Rule Move Logic
1 Bracket Inspect FIRST 1
1 Bracket Punch_2 FIRST 1

2 Bracket Punch_Wait FIRST 1

See Also

“Preemption Process Logic” on page 300.

 ProModel 533
User Guide
Priority

Shift & Break Logic Statement

Syntax samples

PRIORITY <expression>

PRIORITY 199

Description

This statement is used to change the priority of
the off-line state of the location or resource. If the
priority is less than the value set previously, the
system will check if the location or resource can
be preempted.

Valid In

Shift and break main logic only. This statement
is not valid in pre-off shift or pre-break logic.

Components

<expression>

Any expression that yields a value between 0 and 999.
Standard ProModel priority levels apply.

Example

Suppose you want to insure that the resource is
non-preemptable for the first four hours it is off-
shift. Simply enter a high (e.g., 999) off-shift priority
value in the priority dialog in the Shift Assignments
module. Enter the following off-shift logic to lower
the priority (to 99) four hours into the off-shift
period:

WAIT 4 hr
PRIORITY 99
WAIT 4 hr
SKIP

See Also

“Shift & Break Logic” on page 305.

534 Chapter 14:
Prompt
Prompt

General Operation Statement

Syntax samples

PROMPT <string expression>, <name>{,
<choice1>:<expression1>,
<choice2>:<expression2>,
<choice3:<expression3>...}

PROMPT “Enter the number of entities to pro-
cess:”, Var2

PROMPT “Enter the size of batches to accu-
mulate:”,Var1, “Large”: 20, “Medium”:
15, “Small”: 10

Description

Pauses the simulation and displays either a mes-
sage and input field or a menu for selecting a
choice. The value entered or selected is then
assigned to the designated variable, array ele-
ment, or attribute. To have PROMPT present a
menu, specify one or more choices as in the sec-
ond syntax example above. The value already in
the variable, array element, or attribute is used as
the default value in the dialog box. One use of
PROMPT is to give the user the option to change
the operation time represented by a variable dur-
ing a simulation.

Valid In

Any logic.

Components

<string expression>

The message to display. This expression should tell the
user what value to enter or choose.

<name>

The name of the variable, array element, or attribute to
give the value. The value already in this item will be
used as the default value.

<choices>

A string expression identifying the choice. Any num-
ber of choices may be specified, and all must have cor-
responding expressions.

<expressions>

The value to assign the variable, array element or
attribute if the user selects the corresponding choice
from the menu.

Example

The logic below uses PROMPT to let the user
select any size of a batch. Attr1 represents the
batch size for EntA. If the batch size has not been
set (if Attr1=0), then the user is prompted to enter
the batch size. The SPLIT AS statement then splits
the single entity into the number of entities speci-
fied in the prompt dialog box. The PROMPT state-
ment in this example displays the following dialog
box.

IF Attr1=0 THEN

PROMPT “Enter the Batch Size”, Attr1

SPLIT Attr1 AS EntA

 ProModel 535
User Guide
Example

This logic works similarly to the logic in example
one, except that it uses PROMPT to let the user
select from one of three different sized batches.
The PROMPT statement in this example displays
the dialog box below.

IF Attr1=0 THEN
PROMPT “Enter the Batch Size”, Attr1, “Small”:10,
“Medium”:15, “Large”:20
SPLIT Attr1 AS EntA

See Also

PAUSE; DISPLAY. Also see “Run-Time Inter-
face” on page 242.

536 Chapter 14:
Rand()
Rand()

Math Function

Syntax samples

RAND(<expression>)

RAND(10) min

ORDER RAND(10) EntA TO Loc1

IF RAND(100) > 45 THEN ROUTE 1

Description

Returns a random value n between 0 and X (0 <=
n < X) where X is the result of the expression.

To generate random numbers between the
expression and a number other than zero use the
expression as the range between the maximum
and minimum values. Then add the minimum to
the random number. For example, the statement
Attr1 = 2+RAND(3) generates a random number
from two up to, but not including, five. An alter-
nate method is to use a uniform distribution. Note
that the RAND() function works very similar to a
uniform distribution. For more information on
Distributions, see “Distribution Functions” on
page 437.

This function returns a real number, although the
real value may be converted to an integer. To
have the RAND() function generate random inte-
ger values between zero and some upper bound,
use the formula, Integer_Value = RAND(X+1),
where X is the greatest integer that should be
returned by the function. For example, to gener-
ate a random integer value between zero and six,
use the formula, Integer_Value = RAND(7). The
RAND(7) part of this formula will actually gen-
erate a real value between 0 and 6.999, but will
be truncated to a whole number between 0 and 6

when assigned to an integer value. Therefore,
when generating integer values, make sure that
the result of the RAND() function is assigned to
an integer value, or is used in an expression
where it will be truncated to an integer.

Valid In

Any expression.

Components

<expression>

The upper limit of the random value to return. This
value will never be returned.

Example

Two resources, Oper_1 and Oper_2, perform the
same task at a location, Press. Oper_1 works at
several other locations. As a result, Press only uses
him 30% of the time. The other 70% of the time,
Oper_2 performs the task.

Process Table

Entity Location Operation (min)
Axle Press IF RAND(100) < 30 THEN

 USE Oper_1
ELSE USE Oper_2

Routing Table

Blk Output Destination Rule Move Logic
1 Axle Lather FIRST 1 MOVE FOR

3

See Also

“Streams” on page 266.

 ProModel 537
User Guide
Read

General Action Statement

Syntax samples

READ <file ID>, <name>

READ File1, Var1

Description

Reads the next numeric value from a general read
file and assigns that value to a name. General
read files are defined in the External Files Editor.
When reading from a file, ProModel skips all
non-numeric data, such as text, and reads the next
numeric value. Thus comments and notes may be
included in a read file. Multiple replications of a
model will continue reading from a file where the
previous replication left off unless reset with the
RESET statement.

Please note

ProModel reads a period (.) in a General read
file as a zero. To avoid this, you should use the
comment symbol (#) in front of notes and com-
ments that contain a period.

READ can read ASCII files. Most spreadsheet
programs can convert spreadsheets to ASCII files
(.TXT) and comma-delimited files (.CSV).

If a read statement is not assigning the right val-
ues to the proper name, there may be numeric
information in the read-file’s header information
(notes and comments). Additionally, if the values
are being read into an array, the array indices
may not be incremented properly between reads.

If a read file should be read more than once in a
model, it may need to be reset. One way to tell
when a file needs to be reset is with an end of file
marker such as 9999 and the following two lines
of logic.

Read File1,Value

IF Value= 9999 then RESET File1

Valid In

Any logic.

Components

<file ID>

The file identifier as defined in the External Files Edi-
tor.

<name>

The variable, array element, or attribute to be assigned
the value.

Example

The example below shows an outside file being
read in the Arrival logic for entity type Box. In this
case three values representing the length, width
and depth of each Box are listed on each line of
a file called “Size.Dat.” The File ID for this file is sim-

538 Chapter 14:
Read
ply Size. Length, Width, and Depth are all entity
attributes.

See Also

“External Files” on page 262. Also see RESET
and CLOSE.

 ProModel 539
User Guide
Real

Local Variable Declaration Statement

Syntax samples

REAL <name1>{= <expression1>, <name2>=
<expression2>...)

REAL Var1

REAL Counter = 0

REAL Var1 = CLOCK(SEC), Random_Num =
RAND(10)

Description

Creates a local variable of type real. Local vari-
ables work much the same as attributes, except
that they only are available within the logic that
declares them. A local variable will be created for
each entity that encounters a REAL statement.
Local variables are not directly available to sub-
routines, which have their own local variables.
However, a local variable may be passed to a
subroutine as a parameter. Local variables are
available to macros.

Valid In

Any logic. Variables declared with REAL are
valid in any expression within the logic where a
real number is valid.

Components

<names>

An identifier for the first local variable. This identifier
must be a valid name.

<expressions>

The variable will initially be assigned this value. This
expression is evaluated every time the REAL statement
is encountered.

Example

The example below uses a local real variable to
track the total time an entity waits for another
entity to be joined to it. A shipping area has an
operation where invoices are joined to boxes to
produce packages. The user wants to know
exactly how long an invoice must wait before a
box arrives to be joined. By setting the value of a
local variable, Start, to the clock time just before
the JOIN statement and using a LOG statement
immediately after the JOIN, we can determine
how long each invoice had to wait before a box
arrived. A local variable is a better choice here
than an entity attribute because the only place
the information is needed is inside this logic.

Process Table

Entity Location Operation (min)
Box Packing WAIT N(10,3)
Invoice Shipping REAL Start = CLOCK()

JOIN 1 Box
LOG "Delay:", Start

Routing Table

Blk Output Destination Rule Move Logic
1 Box Shipping JOIN 1 MOVE FOR 1
1 Pack-

age
Dock FIRST 1 MOVE FOR 3

See Also

INT. See “Variables” on page 231.

540 Chapter 14:
Real()
Real()

Type Conversion Function

Syntax sample

REAL(<expression>)

Var2 = Var1 + REAL(Var3)

Attr3 = 1.05 * REAL(Var5)

Description

Converts an integer to a real number. ProModel
automatically converts integers to real when
needed.

Valid In

Any expression.

Components

<expression>

REAL() converts this expression to a real number.

See Also

ROUND() and TRUNC().

 ProModel 541
User Guide
Rename

Entity-Related Operation Statement

Syntax samples

RENAME {AS} <new entity name>

RENAME EntB

RENAME AS EntB

RENAME AS ENT(Var2)

Description

Renames the processing entity to the new entity
name. After a RENAME statement is encoun-
tered, the entity then searches forward in the pro-
cess list and again from the beginning until a
process is found at the current location that has
been defined for the new entity type. No further
logic will be executed for the entity under its
original name. Use RENAME to start collecting
statistics for an entity under a new name. Usually,
the easiest and most efficient way to rename an
entity is simply by using the new name as the out-
put entity in the routing.

Valid In

The operation column of process edit tables only.

Components

<new entity name>

The new name of the processing entity. ENT() may be
substituted for the entity name.

Explicit Entity Actions

With RENAME, statistics and cost continue on
with the entity.

Implicit Entity Actions

ProModel allows you to define the RENAME
action implicitly as part of the routing definition.
To do this, define a route block with a different
input and output name and the New Entity option
unchecked.

Example

The following example shows how two entities,
EntA and EntB, join together at Loc2. Once the
join is complete, ProModel renames the resulting
entity EntC and processes it according to a nor-
mal distribution N(9.4,.3). RENAME is the last state-
ment in the process because as soon as you
rename an entity, ProModel searches the pro-
cessing logic for a process for the entity with the
new name.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT 1.5 min
EntB Loc2 JOIN 1 EntA

RENAME AS EntC
EntC Loc2 WAIT N(9.4,.3)

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 JOIN 1
1 EntC Loc3 FIRST 1

See Also

COMBINE, SPLIT AS, and GROUP.

542 Chapter 14:
Report
Report

General Action Statement

Syntax samples

REPORT {WITH RESET} {AS <string expression>}

REPORT

REPORT WITH RESET

IF thruput = 50 THEN REPORT AS “RepOvr50”

Description

Calculates and reports the current statistics to the
output database. This is useful to get a snapshot
of the model while it is running.

The REPORT statement may be followed by the
WITH RESET option to reset the statistics after
the report is made to the database When you use
the WITH RESET option, you generally want to
provide some looping or event creation that will
call the report function at the appropriate time.

Used with the AS option, REPORT creates a
report with the name specified in the expression
that can be accessed in the Output Program when
creating a General Stats report.

Valid In

Any logic.

Components

<string expression>

A unique name given to the report so it can be
easily identified in the General Stats dialog in the
Output Program. If any reports have the same
name, a number is tacked on the end of the name
to make it unique.

Example

To get a snapshot report every 40 hours, enter the
following:

WHILE Clock(hr) < 10000 DO

BEGIN

WAIT 40 hr

REPORT AS “40HOUR”

END

This results in reports named, 40HOUR, 40HOUR2,
40HOUR3....

Please note

If you use the REPORT statement even once, a
final overall report will NOT be created since the
report generated with your use of the statement
may be the final report desired. In this case, you
must use the REPORT statement at the end of ter-
mination logic in order to create a final report if
desired. If a REPORT statement is never used, a
final overall report is created automatically.

See Also

RESET STATS and WARMUP.

 ProModel 543
User Guide
Res()

Name-Index-Number Conversion Func-
tion

Syntax samples

RES(<resource name-index number>)

USE 10 RES(Var1) for 1.5 min

FREE RES(Var1)

DISPLAY “Now using” $ RES(Var1)

Description

Converts a name-index number or integer to a
resource name. Use this function when a state-
ment or function needs the name of a resource
whose name index number is stored in an
attribute, variable, or some other expression.
When used in a string expression expecting, such
as in the third syntax example above, ProModel
will output the actual name of the resource.

Use RES() to assign a properly skilled operator
according to the attribute of the part or to change
the duties of resources as the simulation
progresses.

Valid In

Any statement where a resource name is nor-
mally used, except in the Move Logic field in the
Routing edit table. Also used in string expres-
sions.

Components

<resource name-index number>

The name-index number of the resource desired. This
component may be an expression. Real numbers will
be truncated to integers.

Example

The logic below uses five different resource types
for ten minutes in rotation.

INT Var1 = 1

WHILE Var1 <= 5 DO

BEGIN

USE RES(Var1) FOR 10 min

INC Var1

END

See Also

ENT(), LOC(), and GRAPHIC.

544 Chapter 14:
Reset
Reset

General Action Statement

Syntax samples

RESET <file ID>

RESET Times

RESET (Times)

Description

Starts a general read file over from the beginning.
RESET is used primarily in the Initialization or
Termination logic to reset a general read or write
file at the beginning or end of multiple replica-
tions and single, independent runs. RESET can
also be used to re-read cyclic data in the same
simulation run. The parentheses are optional and
are included only to insure compatibility with
older models.

Valid In

Initialization and termination logic, node entry
and exit logic, down-time logic, location process-
ing logic, routing exit, and arrival logic.

Components

<file ID>

The file identifier as defined in the External Files Edi-
tor.

Example

The example below shows how a general read
file, Times, is reset in the Initialization logic. Each
time a simulation begins, whether a single repli-
cation or one of several multiple replications, the
Times file is reset so that calls to the Times file start
at the beginning of the file.

See Also

“External Files” on page 262. Also see READ,
WRITE, XWRITE, and RESET.

 ProModel 545
User Guide
Reset Stats

General Action Statement

Syntax samples

RESET STATS

IF Total = 20 THEN RESET STATS

Description

Resets the simulation statistics. Useful in con-
nection with the REPORT statement to manually
control statistics for reporting purposes in case
specific or event logic.

Valid In

Any logic.

Example

Suppose you want to generate a new output
report for each 20-hour period of the simulation.
Enter the following logic in an independent sub-
routine which is activated at the beginning of the
simulation:

WHILE Clock(hr) < 10000 DO

BEGIN

WAIT 20 hr

REPORT

RESET STATS

END

See Also

REPORT and WARMUP.

546 Chapter 14:
Resource()
Resource()

Shift & Break System Function

Syntax samples

RESOURCE ()

Description

Returns the name-index number of the resource
currently processing the off-shift or break logic.

Valid In

Off-shift and break logic.

Example

Suppose you have locations and resources as
members in a shift file assignment and you want
to wait until variable Parts_To_Process is equal to
zero before allowing a particular resource called
Operator to go off shift. You would enter the fol-
lowing pre-off shift logic:

IF FORRESOURCE() THEN

BEGIN

IF RESOURCE() = Operator THEN

BEGIN

WAIT UNTIL Parts_To_Process = 0

END

END

See Also

LOCATION(), FORLOCATION(), and FORRE-
SOURCE().

 ProModel 547
User Guide
ResourceUnit()

Shift & Break System Function

Syntax samples

RESOURCEUNIT()

Description

Returns the unit number of the resource being
used.

Valid In

Off-shift and break logic.

Example

When a multi-unit resource goes on shift, it is
sometimes helpful to know which unit of the
resource is going off shift. Depending on the
resource unit you may want to skip the shift or
update a variable that is used elsewhere in your
model.

548 Chapter 14:
ResQty()
ResQty()

Entity-Specific System Function

Syntax samples

RESQTY({<resource name>})

IF RESQTY(Res1) > 5 THEN FREE 5 Res1

Description

Returns the number of units of the specified
resource that the current entity owns. RESQTY()
can be used to determine the amount of time nec-
essary to process an entity based on the number
of resources an entity owns.

Valid In

Entity speed fields, traveling-time fields,
resource fields, location processing logic, routing
fields, arrival logic, debug user-condition fields,
and exit logic. This function returns an integer.

Components

<resource name>

The name of the resource to check for. If no resource
name is specified, the total number of units of all
resource types owned by the entity is returned. RES()
may be substituted for a resource name.

Example

The example below demonstrates the use of
RESQTY() to adjust the processing time for an
entity based on the number of resources avail-
able to process it. Before EntA’s arrive at Loc1,
they capture a certain number of resources
named Res1. Processing logic at Loc1 deter-
mines how many Res1’s each EntA captured and
processes it accordingly. The more resources an
entity captures, the more workers available to
work on the project, and the less time it takes.
ProModel then routes EntA’s on to Loc2. The logic
at Loc2 makes sure that no EntA owns more than
one Res1.

Process Table

Entitiy Location Operation (min)
EntA Loc1 WAIT 120/RESQTY(Res1)
EntA Loc2 IF RESQTY(Res1)>1 THEN

 FREE (RESQTY(Res1)-1)
 Res1

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1
1 EntA Loc3 FIRST 1

See Also

FREECAP(), FREEUNITS(), and
GROUPQTY().

 ProModel 549
User Guide
Return

General Action Statement

Syntax samples

RETURN {<expression>}

RETURN

RETURN Attr1**Sqrt(Attr2)

Description

Sends a value from a subroutine to the logic that
called the subroutine. In the same way that
parameters send information from the calling
logic to the subroutine, RETURN sends informa-
tion from the subroutine to the calling logic.
After the RETURN is executed, no more logic in
the subroutine is executed. When subroutines
return values, the RETURN statement must be
followed by an expression.

When used in logic that is not a subroutine,
RETURN functions like a very powerful BREAK
or BREAKBLK statement. Whereas BREAK and
BREAKBLK exit only the innermost loop or
statement block, RETURN exits the logic com-
pletely, no matter how deeply nested inside loops
and statement blocks.

Valid In

Any logic, but used most often in user-defined
subroutines.

Components

<expression>

The value to return. This expression must be on the
same line as the RETURN. If a subroutine was acti-
vated, then the return value is ignored.

Example

The following example uses a subroutine to
check the supply of items in a storage location. If
the free capacity of the location is greater than
10, the user is prompted for an order quantity;
otherwise no new items will be ordered. If an
order is made, the order time is returned; other-
wise the variable OrdTm remains unchanged.
The logic for Sub1() appears in the logic window.

Process Table

Entity Location Operation (min)
Item99 Stores
Item99 Shipping WAIT N(3.2,.2)

OrdTm = Sub1()

Routing Table

Blk Output Destination Rule Move Logic
1 Item99 Shipping SEND 1 MOVE FOR 15
1 Item99 EXIT FIRST 1

550 Chapter 14:
Return
See Also

“Subroutines” on page 246. Also see BREAK
and BREAKBLK.

 ProModel 551
User Guide
Round()

Math Function

Syntax samples

ROUND(<expression>)

Integer1 = ROUND(3.5)

Description

Rounds the expression to the nearest whole num-
ber. Use this function to override ProModel’s
default, truncation.

Valid In

Any expression. This function returns an integer.

Components

<expression>

The expression to be rounded.

See Also

TRUNC() and REAL().

552 Chapter 14:
Route
Route

Entity-Related Operation Statement

Syntax samples

ROUTE <expression>

ROUTE 2

ROUTE Attr1

ROUTE Dist1()

Description

Executes a routing block for the processing
entity. The process does not continue until all of
the entities being routed for the particular block
have begun executing their move logic. The pro-
cessing logic may contain several ROUTE state-
ments. These statements may be selected
individually using IF...THEN statements, or they
may be processed sequentially, with or without
other process statements in between. If any
ROUTE statement appears in a process logic,
then ProModel assumes all routing for that pro-
cess will be activated by the user and therefore
does no automatic routing. If no ROUTE state-
ment appears in the processing logic, then all
routing blocks will be executed automatically
once processing logic has been completed.

The ROUTE Statement is most often used with
IF...THEN statements to make routing decisions
based on complex logic that is not available
through other ProModel features (such as system
functions or the User Condition routing rule).
ROUTE, if used with IF...THEN properly, will
insure that only one of the routing blocks is acti-
vated.

This statement can be used to route one or more
entities and leave behind a “ghost” entity that will

process the remaining logic after the route state-
ment. The “ghost” entity is also referred to as the
parent entity. The child entity takes the route
specified by the ROUTE statement. If the child
entity cannot go to the next location and is
blocked, the parent entity is also blocked and will
not continue logic execution until the child entity
is no longer blocked. For more information, see
“Entities” on page 118.

Valid In

The operation column of process edit tables only.

Components

<expression>

The integer result of this expression determines the
routing block that the entity will take. The expression
is evaluated every time it is encountered, allowing the
chosen block to vary during the simulation.

Example

This example illustrates a “nested” probability rout-
ing. The initial entity, EntAB, enters Loc1 and Pro-
Model makes a decision based on the user-
defined distribution Dist1() whether to route the
resulting entities according to Route 1, Route 2,
or Route 3. If ProModel chooses Route 1, it sends
an EntA 60% of the time, or an EntB 40% of the
time, to Loc2. If ProModel chooses Route 2, it
sends an EntA 20% of the time, or an EntB 80% of
the time, to Loc3. If ProModel chooses Route 3, it
sends an EntA 30% of the time, or an EntB 70% of
the time, to Loc4.

 ProModel 553
User Guide
Process Table

Entity Location Operation (min)
ENTAB Loc1 Route Dist1()

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 .600 1 MOVE FOR 2

EntB Loc2 .400 MOVE FOR 2
2 EntA Loc3 .200 1 MOVE FOR 2

EntB Loc3 .800 MOVE FOR 2
3 EntA Loc4 .300 1 MOVE FOR 2

EntB Loc4 .700 MOVE FOR 2

See Also

“Routing Rules” on page 415.

554 Chapter 14:
Send
Send

General Action Statement

Syntax samples

SEND <expression> <entity name> TO <desti-
nation>{,<priority>}

SEND 2 EntA TO Loc2

SEND 1 Grp_A TO Grp_A_Processing, 10

Description

Sends the specified number of a particular entity
type to the destination. The entities to be sent
must be waiting with a SEND routing rule. The
entity that issued the SEND command continues
processing whether or not entities of the type
requested are waiting to be sent. If no entities are
waiting to be sent, a SEND notice is automati-
cally posted so that entities will be sent when
they become available.

The SEND statement can model a system based
on demand, rather than on entity arrival, (called a
pull system). Customer orders cause a SEND to
be issued for a main assembly. Main assembly
issues SEND commands for sub-assemblies. The
example model SEND has an excellent example
of this technique.

The SEND statement can also be used as a con-
trol device to limit the amount of work-in-
progress (WIP) in certain critical areas. Quanti-
ties are only sent to the production area when the
WIP level falls below a certain point.

Valid In

Any logic.

Components

<expression>

The number of entities to send to the destination. Neg-
ative values will generate an error message.

<entity name>

The type of entity to send to the destination. You may
substitute ENT() for an entity name.

<destination>

The name of the location to which the entities will be
sent. You may substitute LOC() for the location name.

<priority>

Multiple SEND requests for the same entity type are
filled according to the longest waiting request having
the highest priority. This expression should be a num-
ber between 0 and 999. For more information on prior-
ities, see Priorities, at the beginning of this section.

Example

In this example, EntA’s arrive at LocA1 and trigger
the sending of EntB’s to LocB2. The value of EntA’s
Attr2 determines the number of EntB’s sent to
LocB2.

 ProModel 555
User Guide
Process Table

Entity Location Operation (min)
EntA LocA1 WAIT U(3,.5)

SEND Attr2 EntB TO LocB2
EntB LocB1 Wait 5 min

Routing Table

Blk Output Destination Rule Move Logic
1 EntA LocA2 FIRST 1
1 EntB

EntB
EntB

LocB2
LocB3
LocB4

SEND 1
SEND
SEND

See Also

SEND, ORDER, JOIN, ROUTE,
WAIT...UNTIL, and LOAD.

556 Chapter 14:
SetRate
SetRate

General Operation Statement

Syntax samples

SETRATE <resource name>, <expression>,
<unit #>

SETRATE Operator, 25, 3

Description

Allows you to define the regular rate of cost for
resources contained in a model. If you have
already defined the regular rate in the Cost mod-
ule, this statement will override that rate. You can
use SetRate to set different rates for each unit of a
resource.

Valid In

Initialization logic.

Components

<resource name>

The name of the resource whose rate you wish to set.

<expression>

The rate assigned to the resource.

<unit #>

The unit number of the resource. Where multiple
instances of a resource exist, you must specify which
instance of the resource to use (e.g., Tech1, Tech2,
Tech3, etc.). The keyword ALL may be used to indicate
all instances of a resource.

Please note

SETRATE uses the time units defined for the
model. (By default, SETRATE uses hours.)

Example

The logic below displays how you can uniquely
assign the regular rate for each unit of a
resource, Operator. Operator has three units,
meaning that each unit can perform the same
task. However, each of the three Operators has a
different hourly rate. We set these rates in the Ini-
tialization logic using the following:

See Also

GETCOST, GETRESRATE(), INCENTCOST,
INCLOCCOST, and INCRESCOST.

 ProModel 557
User Guide
Skip

Shift & Break Logic Statement

Syntax samples

SKIP

Description

In pre-off-shift or pre-break logic, a SKIP state-
ment causes any off-shift or break main logic to
be skipped as well as the off-shift or break time
defined in the shift file so that the affected loca-
tion or resource stays on line.

In off-shift or break logic, a SKIP statement
causes the off-shift or break time defined in the
shift file to be ignored. This is useful if you want
to define your own off-shift or break time as part
of the logic rather than use the time defined in the
shift file.

Valid In

Shift logic only.

Example

Suppose a Worker is scheduled to go on break at
10:15 for fifteen minutes. However, if there are
more than two parts in queue, the Worker will skip
his or her break to stay on schedule. The following
logic is entered in the pre-break logic for the
resource, Worker.

IF Contents(Worker_Que) > 2 THEN SKIP

See Also

“Shift & Break Logic” on page 305. Also see
FORLOCATION() and FORRESOURCE().

558 Chapter 14:
Sound
Sound

General Action Statement

Syntax samples

SOUND <string expression>

SOUND “Chimes.wav”

SOUND “Tada.wav”

Description

Plays a wavefile. Wavefiles, which have the
extension .WAV, may be purchased commer-
cially or created with a sound card. A few sounds,
such as the examples here, come with Windows
and are found in the Windows directory. Use
SOUND to alert a model’s user that some event
has taken place.

Valid In

Any logic.

Components

<string expression>

The DOS name of the wavefile to be played. This
expression must evaluate to a valid DOS file. It may
include a path.

Example

The example below shows an entity’s operation
logic. A variable called Total is used to keep track
of the number of entities passing through the
location. Every 100th entity to pass through the
location will cause the sound “Tada” to sound,
thus notifying the user of the 100th entity. In addi-
tion, ProModel resets the counter.

See Also

PAUSE, DISPLAY, and PROMPT.

 ProModel 559
User Guide
Split As

Entity-Related Operation Statement

Syntax samples

SPLIT <expression> AS <new entity name>

SPLIT 10 AS Entx

Description

Splits an entity into the number of entities you
specify, changes the entity names, and divides all
cost and time statistics accrued by the base entity
between the new entities. ProModel counts the
old entity as an exit and the resulting entities
share the same attribute values as the original
entity.

Any entity you wish to split must release all
owned resources using the FREE statement. Use
SPLIT AS to divide pieces of raw material into
components. The entities formed by the SPLIT
AS statement at a location will not appear in the
statistics for this location.

Valid In

The operation column of process edit tables only.
ProModel does not allow SPLIT AS on convey-
ors, and not at the end of a queue. You also may
not use SPLIT AS after a ROUTE statement. Do
not use SPLIT AS in combination with COM-
BINE, CREATE, GROUP, UNGROUP, LOAD,
UNLOAD, or other split statements in the same
process logic.

Components

<expression>

Split the entity into this number of entities. ProModel
evaluates this expression every time it encounters the
statement.

<new entity name>

The name of the resulting entities. Each split entity
searches forward in the process list, and then from the
beginning of the list, until it finds a process for the new
entity type at the current location.

Explicit Entity Actions

When you use the SPLIT AS statement, Pro-
Model divides the accrued cost between the new
entities and counts the old entity as an exit. Each
new entity begins with new statistical informa-
tion.

Implicit Entity Actions

ProModel allows you to use the SPLIT AS state-
ment implicitly as part of the routing definition.
To do this, define a route block with a Quantity
field output value greater than 1 and the New
Entity option unchecked.

Example

In the following example, a batch of entities,
Batch A, arrives at Loc1 for a 2 hour processing
time. Once the processing completes, BatchA
splits into individual entities called EntA. ProModel
determines the number of EntA’s resulting from
the SPLIT AS statement by the value of BatchA’s
attribute, Attr3.

560 Chapter 14:
Split As
Process Table

Entity Location Operation (min)
BatchA Loc1 WAIT 2 Hr

SPLIT Attr3 AS EntA
EntA Loc1 USE Res1 FOR U(2,.3)

Routing Table

Blk Output Destination Rule Move Logic

1 EntA Loc2 FIRST 1

See Also

JOIN, GROUP, UNGROUP, and CREATE.

 ProModel 561
User Guide
Sqrt()

Math Function

Syntax samples

SQRT(<expression>)

Real1 = SQRT(Real2)

Description

Returns the square root of an expression.

Valid In

Any expression. This function returns a real num-
ber.

Components

<expression>

SQRT() returns the square root of this expression.

See Also

ROUND().

Please note

To get a root other than the square root, use the
exponentiation operator as shown in the follow-
ing formula:

X**(1/Y)

For example, where Y is the desired root, the for-
mula 9**(1/3) returns the cube root of 9.

562 Chapter 14:
Stop
Stop

General Operation Statement

Syntax samples

STOP {<string expression>}

STOP

STOP “Normal termination”

Description

Terminates the current replication and optionally
displays a message. The simulation will then con-
tinue with the next replication. Use STOP to end
a replication when the simulation has run long
enough to provide sufficient statistical data.

Valid In

Any logic.

Components

<string expression>

An optional message to display when the replication
stops.

Example

In the example below, a STOP statement is used
in Operation Logic to end the simulation when-
ever the variable Total_Complete reaches 100.

See Also

BREAK, BREAKBLK, RETURN, and PAUSE.

 ProModel 563
User Guide
ThreadNum()

General System Function

Syntax samples

THREADNUM()

IF THREADNUM()=215 THEN DEBUG

Description

Every time any logic is executed, it is executed
by a thread which is assigned a unique number.
THREADNUM returns the number of the thread
that called the function. This function is most
useful in conjunction with the IF...THEN and
DEBUG statements to bring up the debugger at a
certain process. See below for a detailed exam-
ple. Note that if the model does not change
between simulation runs, every thread will have
the same number from run to run, but not from
replication to replication. Also, most changes in a
model will cause threads to have different num-
bers on subsequent runs.

Valid In

Any logic

Example

For example, suppose that when the 50th entity
of a certain type arrives at a certain location, the
model always crashes. A DEBUG statement at the
beginning of the processing logic would be cum-
bersome because the debugger would come
up forty-nine times before it was needed. How-
ever, when the error occurs, the debugger dis-

plays the process and logic that caused the
error, as shown below.

By adding the statement, “IF THREADNUM() = 210
THEN DEBUG” before the statement that causes
the error, the simulation will run until the proper
process and then bring up the debugger. The
debugger can then be used to step through the
process to find the particular statement causing
the error.

See Also

DEBUG.

564 Chapter 14:
TimeLeft()
TimeLeft()

Preemption Logic System Function

Syntax samples

TIMELEFT()

Attr1=TIMELEFT()

Description

Returns the time remaining if the preemption
occurred during a WAIT statement. The value
returned is in default time units and must be
checked before any processing delay occurs since
the value is updated whenever a preemption takes
place. If the value is referred to later, it should be
assigned to the entity’s attribute or to a local vari-
able.

If several entities were preempted at a location,
the value returned by the function to each entity
will be taken from whichever entity has the larg-
est time remaining in the WAIT statement.

When no units are specified in the parentheses in
this function, it returns the default time unit spec-
ified in the General Information dialog.

Valid In

Operation logic defined as a preemptive process.

Example

You may preempt an entity called Gear while it
processes at a location called Lathe1. When you
preempt the Gear, it should go to a location
called Wait_Area where it waits to return to
Lathe1. When it returns to Lathe1, the lathe
should continue processing the Gear from where
it left off when you preempted the Gear. For

example, if Lathe1 must process the Gear for a
total of 10 minutes, but it only processes for 8
minutes before you preempt the Gear, Lathe1
should process it for only 2 additional minutes
when it returns to Lathe1. To do this, we assign
the remaining process time using TIMELEFT() to an
attribute, Att1. We also check Att1 at Lathe1 to
determine if it is greater than 0 to know whether
the Gear was executing the process for the first
time or as a preempted entity. Processing should
be as follows:

Process Table

Entity Location Operation (min)
Gear Lathe1 IF Att1=0 THEN WAIT 10

ELSE WAIT Att1
Gear * Lathe1 Att1=TIMELEFT()
Gear Wait_Area

* Preemptive Process Record

Routing Table

Blk Output Destination Rule Move Logic
1 Gear Lathe2 FIRST 1
1 Gear Wait_Area FIRST 1
1 Gear Lathe1, 99 FIRST 1

See Also

“Preemption Process Logic” on page 300.

 ProModel 565
User Guide
TimesUsed()

General System Function

Syntax samples

TIMESUSED(<resource>)

IF TIMESUSED(Res1) > 5 then USE Res2 for 10

Description

Returns the number of times a resource has been
used.

Valid In

Any logic and any field evaluated after transla-
tion. For a list of fields evaluated after transla-
tion, see the “Appendix A” on page 587.

Components

<resource>

The name of the resource to examine. RES() may be
used here.

Example

In the example below, when an EntA arrives at
Loc1, it will only use the resource Res1 if the
resource has been used five or fewer times. If the
resource has been used more than five times,
EntA will use Res2 instead.

Process Table

Entity Location Operation (min)
EntA Loc1 IF TIMESUSED (Res1)> 5

THEN USE Res2 FOR 10
ELSE USE Res1 FOR 10

Routing Table

Blk Output Destination Rule Move Logic

See Also

UNITS().

566 Chapter 14:
Trace
Trace

General Action Statement

Syntax samples

TRACE {<message>}{STEP or CONT or OFF or
CLOSE}

TRACE “Begin Test for Resource A”

TRACE CONT

TRACE CLOSE

Description

Turns tracing on and off. Trace listings will
appear in a separate window on the screen. Use
trace to follow the logical flow of a model.

Valid In

Any logic.

Components

<message>

The message to appear in the trace listing when the
TRACE statement is encountered. The message can be
any string expression.

STEP

Makes ProModel wait for the user to click the left
mouse button to execute the next statement or trace
continuously while the right mouse button is held
down. TRACE statements default to step.

CONT

Steps continuously without user intervention. Clicking
the right mouse button will step through the logic.

OFF

Turns tracing off but does not close the trace listing.

CLOSE

Turns tracing off and closes the trace listing.

Example

In this example, a message will appear in the
trace listing whenever Agent1 and Agent2 have
been captured and the downtime for Gate1
begins. Another message will appear in the trace
listing at the end of the downtime.

See Also

DEBUG.

 ProModel 567
User Guide
Trunc()

Type Conversion Function

Syntax samples

TRUNC(<expression>)

Integer1=TRUNC(3.9)

Description

Returns a real expression truncated to an integer.
Any digits to the right of the decimal place will
be removed. When necessary, ProModel auto-
matically converts real values to integers by trun-
cating them. For more information about
ProModel automatically converting between
reals and integers, see “Converting Between
Numeric Types” on page 407.

Valid In

Any expression. This function returns an integer.

Components

<expression>

The expression to be truncated.

See Also

ROUND().

568 Chapter 14:
Ungroup
Ungroup

Entity-Related Operation Statement

Syntax samples

UNGROUP {LIFO}

UNGROUP

UNGROUP LIFO

Description

Separates entities that were grouped with the
GROUP statement. Each of the resulting entities
searches ahead in the process list and then from
the beginning of the list until a process is found
that has been defined for that entity type at the
current location. The first entity processed from
the group takes any resources the group owns. If
a grouped entity has members that are also
grouped entities, only the top level group is
ungrouped with an UNGROUP statement. An
additional UNGROUP will ungroup any member
groups.

Valid In

The operation column of process edit tables only.
You may not use UNGROUP on conveyors nor
at the end of a queue. UNGROUP may not be
used in combination with COMBINE, CREATE,
UNGROUP, LOAD, UNLOAD, SPLIT AS or
other UNGROUP statements in a processing
logic. It may follow a GROUP statement no more
than once in the same processing logic to allow
batch processing.

Please note

If you are trying to ungroup an entity that has
never been grouped, ProModel ignores the
UNGROUP statement.

Components

LIFO

Last In, First Out. Starts the ungrouped entities pro-
cessing from last to first, rather than from first to last.
If this option is not specified, the ungrouped entities
will be processed FIFO, or First In, First Out.

Explicit Entity Actions

With an UNGROUP, ProModel dissolves the
temporary shell and divides costs among the
ungrouped entities (ungrouped entities may
include smaller clusters of grouped entities).

Example

The example below is the continuation of the
GROUP statement example where EntA, EntB and
EntC were grouped to form Grp_A. Now the enti-
ties are ungrouped with all of their original proper-
ties. (See the GROUP statement example.)

 ProModel 569
User Guide
Process Table

Entity Location Operation (min)
Grp_A Loc3 UNGROUP
EntA Loc3 USE Res1 FOR 2 min
EntB Loc3 USE Res1 FOR 2 min
EntC Loc3 USE Res1 FOR 2 min

Routing Table

Blk Output Destination Rule Move Logic

1 EntA Loc4 FIRST 1 MOVE FOR 2
1 EntB Loc5 FIRST 1 MOVE FOR 2
1 EntC Loc6 FIRST 1 MOVE FOR 2

See Also

GROUP, LOAD, JOIN, COMBINE, and SPLIT
AS. See “Attributes” on page 225 for more infor-
mation.

570 Chapter 14:
Units()
Units()

General System Function

Syntax samples

UNITS(<location> or <resource>)

PAUSE “There are” $ UNITS(Res1) $ “Res1's in
the system.”

Description

Returns the total units of a location or resource.

Valid In

Any logic and any field except those evaluated
before translation. For a list of fields evaluated
before translation, see “Appendix A” on
page 587.

Components

<location>

The name of the location to examine. You may substi-
tute LOC() for the name of a location.

<resource>

The name of the resource to examine. You may substi-
tute RES() for the name of a resource.

See Also

FREEUNITS() and RESQTY().

 ProModel 571
User Guide
Unload

Entity-Related Operation Statement

Syntax samples

UNLOAD <expression> {IFF <Boolean expres-
sion>}

UNLOAD 5

UNLOAD 5 IFF Entity() = EntA

Description

Unloads a certain quantity of entities, or a certain
quantity of those entities depending on a condi-
tion. Use UNLOAD to unload entities from a car-
rier entity that was previously loaded with
LOAD. The unloaded entities are processed
ahead of the entity which unloaded them. Each
unloaded entity searches ahead in the process list,
and then from the beginning of the list, until a
process is found for that entity type at that loca-
tion.

Valid In

The operation column of process edit tables only.
UNLOAD is not valid at conveyors, after routing,
or at the end of a queue. You may not use
UNLOAD in combination with COMBINE,
CREATE, GROUP, UNGROUP, and SPLIT AS
or other UNLOAD in the same process logic. If
the process contains LOAD statements,
UNLOAD can only appear once after all of them.

Components

<expression>

The number of entities to unload. A value of zero is
ignored and a negative value produces an error. If the

quantity specified for unloading is greater than the
number of entities that have been loaded, the extra
quantity is ignored. This expression is evaluated every
time the statement is encountered.

IFF <Boolean expression>

This option allows the UNLOAD command to be con-
ditional. Any attributes, entity functions, and location
functions apply to the entity to be unloaded, not to the
current entity. This technique allows only entities with
certain properties to be unloaded from the current
entity. To use attributes, entity functions, and location
functions that apply to the current entity, assign the
desired value to a local variable and use the local vari-
able in the Boolean expression.

Explicit Entity Actions

UNLOAD divides up costs and copies statistical
information for duration of loading to each entity.

Example

The following example is a continuation of the
LOAD statement example and shows how the
loaded entity (Truck) is unloaded, resulting in the
original Truck and the boxes that were loaded
onto it. Boxes continue to the next location while
Truck is returned to its starting location, Factory.
(See the Load statement example.)

572 Chapter 14:
Unload
Process Table

Entity Location Operation (min)
Box Shipping WAIT 2 min
Truck MfgSite
Truck Dock LOAD Attr1 IN 2 Hr
Truck NewYork WAIT T(20,30,60)

UNLOAD 5
Box NewYork
Truck Chicago WAIT T(20,30,60)

UNLOAD 5
Box Chicago
Truck Boston WAIT T(20,30,60)

UNLOAD 5
Box Boston

Routing Table

Blk Output Destination Rule Move Logic
1 Box Dock LOAD 1 MOVE FOR 45

sec
1 Truck Dock FIRST 1 MOVE FOR 10

min
1 Truck NewYork FIRST 1 MOVE FOR 24

Hr
Truck Chicago FIRST MOVE FOR 12

Hr
Truck Boston FIRST MOVE FOR 28

Hr
1 Truck MfgSite FIRST 1 MOVE FOR 24

Hr
1 Box NY_Recv FIRST 1 MOVE FOR 5

min
1 Truck MfgSite FIRST 1 MOVE FOR 12

Hr
1 Box Chi_Recv FIRST 1 MOVE FOR 5

min
1 Truck MfgSite FIRST 1 MOVE FOR 28

Hr
1 Box Bos_Recv FIRST 1 MOVE FOR 5

min

See Also

LOAD, COMBINE, JOIN, GROUP, and
UNGROUP. Also see “Attributes” on page 225
for more information.

 ProModel 573
User Guide
Use

Resource-Related Operation Statement

Syntax samples

USE {<quantity>} <resource> {,<priority>}
FOR <time> {AND or OR {<quantity>}
<resource> {,<priority>} FOR <time>... }

USE 2 Res2, 5 FOR 4:23:03

USE 2 Res1 FOR 2.0 min OR 3 Res2 FOR 1.5 min

USE Res1, 3 FOR 1 hr AND (Res2 FOR 5 OR Res3
FOR 5)

USE Oper_Attr RES(Type_Attr) FOR Time_Var1
Hr.

Description

Captures a resource or combination of resources
as each resource becomes available. Once the
resource has been captured it is used for the spec-
ified amount of time, and then freed when the
specified duration is over. If the entity already
possesses one of the specified resources from a
previous GET, JOINTLY GET, or MOVE WITH
statement, the entity will still try to capture an
additional unit of that resource.

Please note

If an entity uses a USE statement to capture a
resource, the resource must complete its opera-
tion before you can preempt the entity. However,
if the entity uses a GET, WAIT, FREE sequence,
you may preempt the entity during the WAIT por-
tion of the logic.

Valid In

Location processing logic, downtime logic, and
move logic.

Components

<quantity>

The number of resources to get. ProModel ignores a
value of zero and values less than zero return an error.
ProModel evaluates and truncates this numeric expres-
sion every time it encounters the USE statement.

<resource>

The name of the resource to USE. You can substitute
RES() for the resource name.

<priority>

When multiple entities request a resource, ProModel
fills the requests in order of priority. This expression
should be a number between 0 and 999.

<time>

The length of time the entity will tie up the resource.
ProModel evaluates this expression whenever it
encounters the statement. If you specify no time unit,
ProModel applies the default time unit specified in the
General Information dialog.

Example

This simple example shows how Clients arriving at
location Reception must USE the Secretary for
some amount of time according to the user-
defined distribution, Dist1. Clients are then sent to
a waiting area until the desired next location
becomes available.

574 Chapter 14:
Use
Process Table

Entity Location Operation (min)
Client Reception USE Secretary

FOR Dist1()
Client Waiting

Routing Table

Blk Output Destination Rule Move Logic
1 Client Waiting FIRST 1MOVE FOR 30

sec
1 Client Loan .400 1 MOVE FOR 1

Client Auditor .350 1 MOVE FOR 1
Client Service .250 1 MOVE FOR 1

See Also

GET, JOINTLY GET, and MOVE WITH.

 ProModel 575
User Guide
Variable()

General System Function

Syntax samples

VARIABLE(<numeric expression>)

VARIABLE(Attr) = 124

VARIABLE(x) = VARIABLE(y)

N=VARIABLE(x) + VARIABLE(y) - 1

Description

Converts a name-index number or integer to a
variable name. Use this function when a numeric
expression uses a variable whose name-index
number is stored in an attribute, array, or vari-
able.

Valid In

Any logic.

Please note

You cannot use VARIABLE() in a PROMPT, INC,
DEC, or READ statement.

Components

<numeric expression>

The name index number for a variable. You can deter-
mine the name-index number associated with a particu-
lar variable by the position of the variable record in the
Variables module.

Example

.In the example below, parts of different types
arrive at location In_Queue. Each entity type has
a unique value for Attr1 that corresponds to the
name-index number of a variable in the Vari-
ables module. Once parts arrive at In_Queue,
they increment the variable specific to that entity
type before routing to the location Process_Loc.

Process Table

Entity Location Operation (min)
All In_Queue VARIABLE(Attr1) =

VARIABLE(Attr1) + 1

Routing Table

Blk Output Destination Rule Move Logic
1 All Process_Loc FIRST1 MOVE 1

See Also

LOC(), ENT(), and RES().

576 Chapter 14:
View
View

General Action Statement

Syntax samples

VIEW “view name”

VIEW “Cell5”

VIEW “View10”

Description

Use this statement to change the view in the Lay-
out window from within your logic. Once the
view has been defined from the View menu in
main menu, you can use it in the logic.

Valid In

All logic.

Components

<view name>

The name of the view defined in the Views dialog.
Enclose the name in quotation marks.

Example

You are giving a presentation on the use of simu-
lation for airport design. Two hours into the model
run, you want to zoom in on the baggage area
to show the activity there. Three hours into the
simulation, you want to zoom out to show the
entire airport..You are giving a presentation to
management on the factory floor using simula-
tion. Two hours into the simulation, you want to
zoom in on a particular cell in the factory to show
the activity there. Three hours into the simulation,
you want to zoom out to show the entire factory.

To do this, define two views called Cell1 and Fac-
tory using the Views editor on the View menu.
Define an independent subroutine and call it in
the initialization logic using the ACTIVATE state-
ment. Enter the following logic in the subroutine:

INT X=1
WHILE X=1 DO
BEGIN
IF CLOCK(hr) = 2 THEN VIEW “Cell1”
IF CLOCK(hr) = 3 THEN VIEW “Factory”
WAIT 1 hr

END

See Also

“Commands” on page 90.

 ProModel 577
User Guide
Wait

Entity-Related Operation Statement

Syntax samples

WAIT <time expression>

WAIT 3 min

WAIT 0

WAIT 2.5 + CleanupTime

WAIT N(8,.5) + 3 sec

Description

Simulates the time it takes to process an entity.
WAIT delays further processing of the entity
until the specified time has elapsed. The rest of
the model continues to process while an entity
waits. If the expression evaluates to zero, the cur-
rent entity will not finish processing until all
other processes scheduled for that moment in the
simulation have finished.

Please note

You may use the “^” symbol in place of a
“WAIT” statement.

Valid In

Location processing, downtime, and move logic.
Independent subroutines may also use WAIT
statements which function as timers. (For more
information about Independent subroutines, see
“Subroutines” on page 246.)

Components

<time expression>

The length of the WAIT. This expression is evaluated
whenever the statement is encountered. If no time unit
is specified, the default time unit specified in the Gen-
eral Information Dialog is applied.

Example

In the following example, customers arrive at a
fast-food restaurant and place their orders at
location Counter. How long customers wait
depends on the type of meal ordered. If they
order meal one, two, or three, they wait only 2
minutes. Otherwise they wait 5 minutes.The
example below shows WAIT statements used in
an IF...THEN...ELSE expression. If the value of
EntA’s attribute, Attr1, is greater than zero, the
time delay is 5.0 minutes. Otherwise the delay is
2.5 minutes.

Process Table

Entity Location Operation (min)
EntA Loc1 IF Attr1>0 THEN

 WAIT 5 min
ELSE
 WAIT 2.5 min

Routing Table

Blk Output Destination Rule Move Logic
1 EntA Loc2 FIRST 1 MOVE FOR 10

See Also

WAIT UNTIL can stop additional processing
until a condition is true.

578 Chapter 14:
Wait Until
Wait Until

Entity And Resource-Related Operation
Statement

Syntax samples

WAIT UNTIL <Boolean expression>

WAIT UNTIL Var1 > 3

WAIT UNTIL Var1 < Attr3 AND Var2 >= 5

Description

Delays processing of the current logic until the
Boolean expression is true. The rest of the model
continues to process during the delay. Note that
if the expression is initially evaluated to be false,
it is only reevaluated when a location attribute,
variable, or array element in the expression
changes. Multiple entities waiting on the same
condition are released one at a time. This allows
a released entity to change a variable value that
will prevent the other waiting entities from being
released.

Valid In

Node entry and node exit logic delays processing
for resources, and location processing logic
delays processing for entities. Independent Sub-
routines. (See “Subroutines” on page 246.)

Components

<Boolean expression>

The condition that must be satisfied to continue pro-
cessing the entity or resource. Elements of this expres-
sion are limited to location attributes, variables, and
array elements.

Example

The example below uses the WAIT UNTIL state-
ment to group a variable quantity of entities. As
each EntA arrives at Loc1, a variable (Total) is
incremented to keep track of the total entities
waiting at the location. The WAIT UNTIL statement
causes processing of all EntA’s to halt at this point
until the variable, Var1, reaches or exceeds 500.
Then all of the waiting EntA’s are GROUPed
together as a BatchA.

Process Table

Entity Location Operation (min)
EntA Loc1 INC Total

WAIT UNTIL Total >= 5
GROUP Total AS Batch

Routing Table

Blk Output Destination Rule Move Logic

See Also

DO...WHILE, WHILE...DO, and DO...UNTIL.

 ProModel 579
User Guide
Warmup

General Action Statement

Syntax samples

WARMUP

WARMUP

IF thruput = 50 THEN WARMUP

Description

Instructs the simulation to end the warmup period
by resetting all the statistics and erasing relevant
time series files. Only one WARMUP statement
may be used in the simulation.

Please note

If multiple WARMUP statements are encountered
or a WARMUP statement is used in addition to
the warmup time specified in the Run Options
dialog, ProModel will generate a warning to
inform you that this has occurred. Only the first
warmup encountered (the statement or the Run
Options setting) will actually be executed. While
the statement will be encountered within the
logic, the Run Options setting will be executed at
the specific time indicated in the dialog.

Valid In

Any logic.

Example

Suppose you want to base the warmup period on
2,000 entities being processed rather than on a
lapse of time. You could increment a variable
(e.g., Total_Processed) whenever an entity exited
the system. Enter the following logic in an inde-
pendent subroutine activated from the initializa-
tion logic:

WAIT UNTIL Total_Processed = 2000

WARMUP

See Also

See “Simulation Options” on page 348 for more
information on warm-up periods.

580 Chapter 14:
While...Do
While...Do

General Control Statement

Syntax samples

WHILE <Boolean expression> DO <statement
block>

WHILE Array1[n] <> 10 DO INC n

WHILE FREECAP(Loc1) > 5 DO
BEGIN

INC Var2, 5
WAIT 5 sec

END

Description

Repeats a statement or statement block continu-
ously while a condition remains true.
WHILE...DO is an entry-condition loop, meaning
that the loop will not be executed once unless the
Boolean expression is true.

Valid In

Any logic.

Components

<Boolean expression>

As long as this expression is TRUE, the loop will con-
tinue. This expression is evaluated for each iteration of
the loop.

<statement block>

The statement or block of statements to execute.

Example

The example below shows the arrival logic win-
dow for an entity that arrives every 40 hours to
reset the values of Array1 elements 1 through 100
to 0.

See Also

BEGIN, END, DO...WHILE, and DO...UNTIL.

 ProModel 581
User Guide
Write

General Operation Statement

Syntax samples

WRITE <file ID>, <string or numeric expression>
{,<maximum digits before decimal>,
<digits after decimal>}

Description

Writes information to a general write file. The
next item written to the file will appear immedi-
ately after this item. WRITE always appends to
the file unless the file is RESET. This holds true
for multiple replications as well as single, inde-
pendent runs. Any file that is written to with
WRITE automatically becomes a text file and
will have an end of file marker attached automat-
ically to the end when it is closed. For more flex-
ible WRITE capability, use XWRITE.

WRITE and WRITELINE automatically separate
values by commas

Valid In

Any logic.

Components

<file ID>

The name of the file as previously defined in the Exter-
nal Files Editor.

<string or numeric expression>

The string or numeric expression to be written to the
file. In the output file, quotes will automatically be
added to string expressions so that most spreadsheet
programs can easily read the file.

<maximum digits before decimal>

The maximum number of digits before the decimal.
This value is used to line up any numeric values into
columns on the decimal point. This value may be any
numeric expression.

<digits after decimal>

The number of spaces to save after the decimal point.
Use this option to line up any labels appearing after
numbers.

Example

The following example uses both WRITE and
WRITELINE to record the time when EntA com-
pletes processing at Loc1 in a general write file
called Rpt.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT N(7.3,.4)

WRITE Rpt,”EntA Complete at:”
WRITELINE, Rpt CLOCK(min),3,2

Routing Table

Blk Output Destination Rule Move Logic

See Also

XWRITE, WRITELINE, RESET, READ, and
FORMAT(). Also see “External Files” on
page 262.

Please note

The sum of the maximum digits before and after
the decimal must be less than 20.

582 Chapter 14:
WriteLine
WriteLine

General Operation Statement

Syntax samples

WRITELINE <file ID>, <string or numeric expres-
sion>{,<maximum digits before decimal>,
<digits after decimal>}

Description

Writes information to a general write file and
starts a new line. WRITELINE always appends
to the file unless the file is RESET. Any file that
is written to with WRITELINE automatically
becomes a text file and will have an end of file
marker attached to the end when it is closed.

WRITE and WRITELINE automatically separate
values by commas

Valid In

Any logic.

Components

<file ID>

The name of the file as previously defined in the Exter-
nal Files Editor.

<string or numeric expression>

 The string or numeric expression to be written to the
file. In the output file, quotes will automatically be
added to string expressions so that most spreadsheet
programs can easily read the file.

<maximum digits before decimal>

When writing real numbers, the maximum number of
digits before the decimal. Use this value to line num-
bers on different lines up on the decimal.

<digits after decimal>

When writing real numbers, the maximum number of
digits after the decimal.

Example

The following example uses both WRITE and
WRITELINE to record the time when EntA com-
pletes processing at Loc1 in a general write file
called Rpt.

Process Table

Entity Location Operation (min)
EntA Loc1 WAIT N(7.3,.4)

WRITE Rpt, "EntA Complete at:"
WRITELINE Rpt, CLOCK(min),3,2

Routing Table

Blk Output Destination Rule Move Logic

See Also

WRITE, RESET, XWRITE, READ, and FOR-
MAT(). Also see “External Files” on page 262.

Please note

The sum of the maximum digits before and after
the decimal must be less than 20.

 ProModel 583
User Guide
Xsub()

External Subroutine Call

Syntax samples

XSUB(<file ID>, <ordinal function number> or
<function name> {, <parameter1>,
<parameter2>...})

XSUB(Interface,1, 5)

XSUB(LogDLL, “_Log_B_of_X”,10,5)

Description

Calls an external subroutine inside a DLL file.
XSUB() is perhaps the most powerful statement
in ProModel, because by using it the user can
access the entire functionality of any 32-bit Win-
dows programming language such as C, C++,
Delphi, or Visual Basic. XSUB() can be used for
sophisticated file IO and to make simulations
interactive. In fact, subroutines called with
XSUB() can do anything that the language they
were written in allows. Because of its power,
however, XSUB() should be used with caution.
When called, the simulation is suspended until
the external subroutine finishes execution.

The subroutine inside the DLL must have been
compiled as exportable by a Windows 32-bit
compiler and have a return type of IEEE format
double real. XSUB() will copy the parameters
following the function name to a block of mem-
ory, then pass the function a pointer to that block
of memory.

The function can take only one parameter: a
pointer to void. But the function may access any
number of parameters through structure overlay-
ing. The function should define a structure to
match the type and order of the parameters, and
assign the pointer just passed to a pointer to that

type of structure. The parameters can then be
used through structure overlaying. Integers are
passed as four byte values and reals are passed as
eight byte IEEE values.

Please note

For Windows Programmers Only The handle to
the run-time simulation frame window will be the
last parameter passed. Most subroutines can
completely ignore this parameter, but it will be
needed if the subroutine displays a window.

Valid In

Any expression or logic.

Components

<file ID>

The file ID assigned to an external DLL file as defined
in the External Files editor. This file should be a 32-bit
Windows DLL file.

<ordinal function number>

The ordinal number of the function inside the DLL.
This function must be exportable. When DLL’s are
compiled, every exported function inside them is num-
bered. The individual functions can then be accessed
by calling the program by number. This field may be
an expression that evaluates to an ordinal function
number that is valid inside the DLL. Use an ordinal
function number or the function name.

<function name>

The name of the function inside the DLL. This func-
tion must be exportable. Note that when most compil-
ers compile DLL’s, they adjust the name of the
functions inside them. The function name inside the
XSUB statement must be the adjusted name, not the
original name.

Most C compilers add an underscore to the function
name; so a function called “Test1” would be compiled

584 Chapter 14:
Xsub()
as “_Test1.” For most C++ compilers, valid ProModel
external function names will be mangled to “@<func-
tion name>$pv.” Different compilers will vary, how-
ever, so the user should be aware of the particular
compiler’s quirks.

<parameters>

The parameters to pass to the function. These may be
any variable, number, or expression. They are only
limited by the type of field or logic that uses the XSUB
function. Each parameter should be separated by a
comma. See above for how the external subroutine will
access these parameters.

Example

An external function written to the ProModel spec-
ification, called Log_B_of_X and written in C,
returns the log of a value to a variable base. The
function, reproduced below, has been compiled
into the DLL, “XSUB.DLL.” The function itself is repro-
duced on the left below, and the source code
can be found in the file “XSUB.CPP.”

The ProModel logic statements assign the base
five logarithm of the real variable R1 to the real
variable R2. Each statement assumes that the file
XSUB.DLL has been assigned the identifier “Log” in
the External Files Editor. The first statement
accesses the function as if the DLL had been
compiled in C++ by using the mangled function
name. The second statement accesses the func-
tion as if it had been compiled in C by using the
C adjusted function name. The third statement
accesses the function using the ordinal function
number.

ProModel Logic

R2 = XSUB(Log, “@Log_B_X$pv”,5.0,R1)
R2 = XSUB(Log, ”_Log_B_X”,5.0,R1)
R2 = XSUB(Log, 2, 5.0, R1)

XSUB.CPP

struct TEST_SUB_PARAMS

{
double base;
double x;

HWND hWndFrame;
};

extern “C” //This makes this a C function rather
than a C++ function
{
/* On compile, Borland and Microsoft add a
leading underscore to a 'C' name! */
double _export Log_B_of_X(void *p)
{

//Parameters come in a structure pointed to by p;
TEST_SUB_PARAMS * params;
params = (TEST_SUB_PARAMS*) p;
MessageBox (GetTopWindow (params->hWnd-
Frame),
“Executing Log_B_of_X function.”, “XSUB”,
MB_OK);
return log (params->x) / log (params->base);
}
}

See Also

“Subroutines” on page 246 (normal subroutines
are less powerful, but much easier to create and
use).

 ProModel 585
User Guide
Xwrite

General Operation Statement

Syntax samples

XWRITE <file ID>, <string or numeric expres-
sion>

Description

Writes information to a general write file in any
format the user chooses. XWRITE is for writing
user-formatted files, while WRITE and WRITE-
LINE are for writing special formatted text files.
XWRITE always appends to a file unless the file
is RESET. Note that any time a WRITE or
WRITELINE writes to a file, the file will auto-
matically be a text file. No end of file marker is
appended to files written only with XWRITE. In
subsequent replications, additional items are
appended to the end of the file unless the file is
RESET. ProModel does not format the string
expression, although you can use the FORMAT
statement to manually format data. To add an end
of file marker to a user-formatted file, use
XWRITE CHAR(26).

Valid In

Any logic.

Components

<file ID>

The name of the file as previously defined in the Exter-
nal Files Editor.

<string or numeric expression>

The string expression to be written to the file.

Example

The following example uses XWRITE to record the
time each Box completes processing at location
Ship.

Process Table

Entity Location Operation (min)
Box Ship WAIT N(7.3,.4)

XWRITE Rpt, “Box Shipped at:”
$ FORMAT(CLOCK(min),3,2)

Routing Table

Blk Output Destination Rule Move Logic
1 Dock Doc FIRST 1 MOVE FOR

5

See Also

WRITE, WRITELINE, and RESET. Also see
“External Files” on page 262.

586 Chapter 14:
Xwrite

 ProModel 587
User Guide
Appendix A

ProModel evaluates various fields and logic at
different times during a simulation run. Some
evaluate only once when the model prepares to
run a simulation, called the translation time. Pro-
Model evaluates others as necessary throughout
the simulation. Below is a list of all expressions
and statements by category, and a table telling
which fields evaluate at translation and which
fields ProModel evaluates continuously during a
simulation. The table also tells where you may
use an expression or statement.

Expression and Statement Groups

1. General Expression

Numbers, Variables, Math Functions, Functions
Table, Distribution Functions, XSUB(), and
Name Functions (i.e., RES(), ENT(), LOC()).

2. Arrays

Arrays of any dimension.

3. Location Attributes

Referencing a location attribute in any expression
or assigning to a location attribute.

4. Entity-Specific System Functions and
Attributes

Entity(), GroupQty(), ResQty().

5. General System Functions

Cap(), CalDay(), CalDom(), CalHour(),
CalMin(),CalMonth(), CalYear(), Clock(), Con-
tents(), DownQty(), Entries(), FreeCap(), Free-
Units(), OwnedResource(), TimesUsed(),
Units(), and Variable().

6. Location-Specific System Function

Location().

7. Resource-Specific System Function

Resource().

8. Node Logic-Specific System Functions

Last(), Next(). (The Last function is valid only in
Node Entry Logic and the Next function is valid
only in Node Exit Logic.)

9. Downtime-Specific System Function

DTDelay().

10. Shift-Specific System Functions

ForLocation(), ForResource().

11. Preemption Logic-Specific System
Functions

Preemptor(), TimeLeft().

588
12. Off-Shift & Break Logic-Specific Sys-
tem Functions & Statements

DTLeft(), Priority, and Skip.

13. Cost Functions & Statements

GetCost(), GetResRate(), IncEntCost, IncLoc-
Cost, and IncResCost.

14. General Statements: (Run-Time Only)

Activate, Animate, Assignment, Begin End,
Break, BreakBLK, Close, Comment(#,
//, /*...*/), Debug, Dec, Display, Do...Until,
Do...While, Goto, If...Then/If...Then...Else, Inc,
Int, Local Variable, Log, MapArr, Order, Pause,
Prompt, Read, Real, Reset, Reset Stats, Return,
Report, Send, SetRate, Stop, String Expressions,
Sound, Trace, View, WarmUp, While...Do, and
Write/Writeline/XWrite. (You may not use the
Log statement in Initialization or Termination
Logic.)

15. Operation Statements (Group 1)

Accum, Combine, Create, Group, Join, Load,
Match, Move, Rename, Route, Split As,
Ungroup, and Unload.

16. Operation Statements (Group 2)

Free, Get, Jointly Get, and Use.

17. Operation Statements (Group 3)

Wait.

18. Move Logic-Specific Statements

Move For, Move On, and Move With.

19. External Spreadsheet File

Entity Location Expression File.

20. Graphic Statement

Graphic.

21. Wait Until Statement

Wait until.

 Macros and Subroutines
A macro may be used in any expression field, but
the macro may only contain expressions which
return a value (e.g., Entries(LOC1), U(5,1)).
When a macro is used in a logic field, the macro
may include any logic element that is valid in that
logic field. A subroutine may also be used in an
expression field provided that the Return state-
ment is used to return a value to the expression
field. When a subroutine is used in a logic field,
the subroutine may include any logic element that
is valid in that logic field.

 ProModel 589
User Guide
Valid Expression and Statement
Groups by Field
When running a simulation, expressions and
statements are either evaluated 1) once at transla-
tion (before initialization logic and before any
events are created) or 2) continuously during the
simulation run. The following chart categorizes

the edit fields in this manner and shows the
expression and statement groups that can be used
in each field. Fields are classified as either
expression fields or logic fields. Fields not listed
on this chart are either menu fields or expression
fields that accept only numbers.

Fields Evaluated Only at Translation

Field Name
(evaluated at translation) Field Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Variables

Initial Value Exp •

Function Table

Dependent Value Exp •

Independent Value Exp •

Simulation Options

Warm-up Hours Exp •

Run Hours Exp •

Replications Exp •

Interval Length Exp •

Path Networks

Node Capacity Exp •

Segment Distance Exp •

Speed Factor Exp •

Resources

Resource Units Exp •

Locations

Location Capacity Exp •

Conveyor

Length Exp •

Speed Exp •

Queue

Queue Length Exp •

590
Cycle Tables

Time (Hours) Exp •

% Exp •

Qty Exp •

Shifts

Shift Start Time Exp •

Entities

Entity Length Exp •

Entity Width Exp •

Field Name
(evaluated at translation) Field Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 ProModel 591
User Guide
Fields Evaluated During Simulation

Field Names
(during simulation) Field Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Logic

Initialization Logic Logic • • • •

Termination Logic Logic • • • •

Entities

Speed Exp • • • • • • •

Path Networks

Traveling Time per
Path Segment Exp • • • •

Resources

Acceleration Exp • • • •

Deceleration Exp • • • •

Empty Load Speed Exp • • •

Full Load Speed Exp • • • •

Pickup Time Exp • • • • • • •

Deposit Time Exp • • • • • • •

Node Entry Logic Logic • • • • • • • •

Node Exit Logic Logic • • • • • • • •

Location Clock DT

First Occurrence Exp • • •

Frequency Exp • • •

Priority Exp • • •

Clock DT Logic Logic • • • • • • • • •

Location Entry DT

First Occurrence Exp • • •

Frequency Exp • • •

Entry DT Logic Logic • • • • • • • • •

Location Usage DT

First Occurrence Exp • • •

Frequency Exp • • •

Priority Exp • • •

Usage DT Logic Logic • • • • • • • • •

592
Location Setup DT

Setup DT Logic Logic • • • • • • • • • • •

Resource Clock DT

First Occurrence Exp • • •

Frequency Exp • • •

Priority Exp • • •

Clock DT Logic Logic • • • • • • • • •

Resource Usage DT

First Occurrence Exp • • •

Frequency Exp • • •

Priority Exp • • •

Usage DT Logic Logic • • • • • • • • •

Operation

Operation Logic Logic • • • • • • • • • • • • • •

Preemption

Preemption Logic Logic • • • • • • • • • • • • • •

Routing

Priority for Destination Exp • • • • • • •

Destination Exp • • • • • • •

Entity Output Quantity Exp • • • • • • •

User Condition Rule Exp • • • • • • •

Move Logic Logic • • • • • • • • • • • • • •

Arrivals

First Occurrence Exp • • •

Frequency Exp • • •

Occurrences Exp • • •

Qty of Each Arrival Exp • • •

Arrival Logic Logic • • • • • • • • •

Shift Assignments

Priorities Exp • •

Pre-Off Shift Logic Logic • • • • • • • •

Off Shift Logic Logic • • • • • • • • • •

Field Names
(during simulation) Field Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 ProModel 593
User Guide
Pre-Break Logic Logic • • • • • • • •

Break Logic Logic • • • • • • • • • •

Subroutines

Interactive Subroutines Logic • • • • • •

Debugger

Debug Condition Exp • • • • • •

Field Names
(during simulation) Field Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

594
Program Defaults
This section discusses and lists the default set-
tings when you first run ProModel.

As in most software packages, ProModel makes
certain assumptions regarding the most useful
settings for the program. While your models may
require different settings, an effort has been made
to select the most common and helpful default
settings.

Since ProModel can be used for a wide variety of
applications, you may require different settings.
As your models differ, so will the need to change
these settings from their default. However, when
ProModel is first launched and no INI file exists
for it, the defaults in the following table apply.
Some defaults involve edit field values, some are
check box settings, etc.

Many defaults can be changed by selecting one of
the Model Default options under the Tools menu.
Other defaults can only be changed in the Build
modules. Still others can only be changed by
directly editing the .INI file.

After ProModel is first launched, the pro-
mod.ini(initialization) file is created in the Win-
dows directory. To change the .INI file defaults,
you must edit the it using an ASCII text editor
(e.g., Windows Notepad). DO NOT attempt to
edit the .INI file unless you are fully comfortable
doing so and only after you make a backup copy
of the original .INI file.

Default Values

Build Menu
Graphic library promod.glb

Locations

Conveyor/queue style roller

Conveyor/queue width
(feet)

3

Conveyor speed (fpm) 60

Conveyor accumulating accum

Conveyor entity orientation lengthwise

Location statistics time series

Entities

Entity speed 150 fpm (50 mpm)

Entity statistics time series

Path Networks

Time/speed Speed

Path color blue/yellow

Resources

Speed 150 fpm (50 mpm)

Entity search Longest Waiting

Resource search Closest resource

Resource statistics By unit

Processing

Snap to border off

Variable statistics time series

 ProModel 595
User Guide
Tools Menu
Long build menu on

Confirm record delete on

Recalculate path lengths
when adjusted

on

View Menu
Snap to grid off

Show grid off

Grid size (VGA full layout) 90 grid units

Scale - distance 1 ft/grid unit

Scale - time .01 min/grid unit

Background color lt. gray

Edit table font Arial 8 Regular

Edit table color Gray

Directories
Models c:\ProModel\models

Glib c:\ProModel\glib

Output c:\ProModel\output

INI Defaults

Graphic Editor

Text alignment center

Text frame type transparent

Text frame shape rectangle

Text font Arial 8 Bold

Text color black

Text frame border color black

Text frame fill color white

Variables

Digit font Arial 8 Bold

Digit color yellow

Digit frame type recessed

Digit frame shape rectangle

Digit frame border color black

Digit frame fill color royal blue

Conveyors/Queues

Queue border color black

Queue fill color dark gray

Gauges/Tanks

Gauge/tank fill color maroon

Gauge/tank border color black

Gauge/tank empty color white

Gauge/tank - no border checked

Gauge/tank - show scale checked

Other

Autosave (in minutes) 10

Print layout - print options
dialog - bkgrnd color

unchecked

596
ActiveX Objects
ProModel’s ActiveX Automation capability
allows you to externally create, view, and edit
model elements such as locations, entities, and
variables. Using Visual Basic (or any other
ActiveX-enabled language), you can add capabil-
ities to ProModel including:

•Customized user interface with table inputs
•Custom-designed parameter screens
•Automatic model creation from external data

sources (e.g., Excel spreadsheets, data-
bases, or ASCII text files)

•Software execution from another application

You can also use ProModel’s ActiveX capability
to access any of the following actions and tables
(any table not mentioned in the following list is
not currently ActiveX enabled).

More information on ActiveX Automation can be
found in the ActiveX User Guide, which is
located in the documentation folder within the
ProModel directory.

Program Operations
•Start program
•Quit program
•Pause simulation model
•Query status of model

(e.g., running, paused, etc.)
•Enter Run-time Interface parameters from

external data source
•Access any data field provided in output

database

Location Table
•Name
•Capacity
•Units
•Stats
•Incoming selection rule
•Incoming rule, max attribute
•Incoming rule, min attribute
•Queuing for Output rule
•Queuing rule, max attribute
•Queuing rule, min attribute
•Multi-unit selection rule
•Notes
•Operation rate (cost)
•Time units (cost)

Clock Downtime Subtable

•Frequency
•First time
•Priority
•Scheduled
•Logic
•Disable

Entry Downtime Subtable

•Frequency
•First time
•Logic
•Disable

 ProModel 597
User Guide
Usage Downtime Subtable

•Frequency
•First time
•Priority
•Logic
•Disable

Setup Downtime Subtable

•Entity
•Prior entity
•Logic
•Disable

Entity Table
•Name
•Speed
•Stats
•Notes
•Initial cost

Resource Table
•Name
•Units
•Stats
•Resource search rule
•Entity search rule
•Entity search, min attribute
•Entity search, max attribute
•Speed empty
•Speed full
•Acceleration
•Deceleration
•Pickup time
•Drop-off time
•Return home flag
•Notes
•Network
•Home node
•Shift node
•Break node

•Operation rate (cost)
•Time units (cost)
•Cost per use

Clock Downtime Subtable

•Frequency
•First time
•Priority
•Scheduled
•List
•Node
•Logic
•Disable

Usage Downtime Subtable

•Frequency
•First time
•Priority
•List
•Node
•Logic
•Disable

Processing & Routing Tables
•Entity name
•Preemption process flag
•Location name
•Operation logic
•Routing block number
•Output entity name
•Destination name
•Destination priority
•Begin new block flag
•New entity check box
•Output quantity
•Output rule
•Output probability
•Output user condition
•Move logic

598
Path Networks Table
•Color
•Visible
•Name
•Type
•Basis (time or speed)

Path Segments Subtable

•From
•To
•Bi-directional
•Time

Interfaces Subtable

•Node
•Location

Mappings Subtable

•From node
•To node
•Destinations

Nodes Subtable

•Coordinates
•Name
•Capacity

Arrivals Table
•Entity name
•Location name
•Quantity of each arrival
•Qty each (cycle table name)
•First time
•Number of occurrences
•Frequency of arrivals
•Arrival logic
•Disable flag

Shift Assignments
•Locations
•Resources
•Units

•Shift files
•Start time
•Priorities
•Logic
•Disable

Scenarios
•Name
•Enabled

Model Parameters
Parameter Subtable

•Value

Attribute Table
•Attribute name
•Type
•Classification (entity or location)
•Notes

Variables Table
•Variable name
•Type
•Initial value
•Stats
•Stats basis
•Notes

Arrays Table
•Array ID
•Dimensions
•Type
•Import File
•Export File
•Notes

Macro Table
•Identification (name)
•Text
•Resource grouping

 ProModel 599
User Guide
Subroutine Table
•Subroutine name
•Operation logic

User Distributions
•Distribution name
•Type
•Cumulative
•Percentage
•Value

External Files Table
•Filename
•File type
•Path
•Prompt
•Notes

General Information Dialog
•Model title
•Default time units
•Default distance units
•Graphics library file name
•Initialization logic
•Termination logic
•Model notes

Simulation Options Dialog
•Output path
•Run length type
•Warm-up period flag

Time Only

•Warm-up hours (time only)
•Run hours

Weekly

•Warm-up start (day, hr, min)
•Simulation begin (day, hr, min)
•Simulation end (day, hr, min)

Calendar Date

•Warm-up start (month, day, year, hour,
minute)

•Simulation begin (month, day, year, hour,
minute)

•Simulation end (month, day, year, hour,
minute)

•Output report method
•Output report interval length
•Number of replications
•Clock precision
•Clock units
•Disable time series flag
•Disable animation flag
•Disable costing flag
•Pause at start flag
•Display notes flag

More on ActiveX

For detailed information regarding ActiveX
objects and methods, contact:

ProModel Sales and Support Team

Phone (888) PRO-MODEL

Fax (801) 226-6046

600
Suggested readings
To expand your knowledge and understanding of
simulation, its practices, and its applications,
consider the following texts.

Harrell, Charles; Ghosh, Biman; Bowden, Royce.
2003. Simulation Using ProModel. 2nd Edi-
tion; McGraw-Hill, Inc.

Law, A.M. and David W. Kelton. 1991. Simula-
tion Modeling and Analysis. 2nd Edition,
Chapter 4; McGraw-Hill, Inc.

Lewis, P. and E. Orav. 1989. Simulation Method-
ology for Statisticians, Operations Analysts,
and Engineers. Volume I; Wadsworth &
Brooks.

Harrell, Charles R. and Kerim Tumay. 1995. Sim-
ulation Made Easy. Industrial Engineering
Press.

Banks, Jerry and John S. Carson, II. 1984. Dis-
crete Event System Simulation. Prentice-Hall
Inc.

Heizer, Jay and Barry Render. 1988. Production
and Operations Management. Allyn and
Bacon.

Carrie, Allan. 1988. Simulation of Manufacturing
Systems. John Wiley & Sons.

Industrial Engineering & Management Press.
1987. Simulation: Modeling Manufacturing
& Service Systems. Institute of Industrial
Engineers.

Harrell, Charles R., Robert E. Bateman, Thomas
J. Gogg, Jack R.A. Mott. 1993. System
Improvement Using Simulation. JMI Con-
sulting Group and PROMODEL Corpora-
tion.

 ProModel 601
User Guide
Glossary

Cost Statistics
Statistics collected on a cost basis (e.g., total cost
and average, non-use cost). You have control of
how ProModel collects these statistics. You may
collect information through statements, base
them on the system clock, or use a combination
of both.

Counter
A counter is a location or variable graphic used to
display the contents of a location or the current
value of a variable during animation. A counter
consists of a frame, a specification of the digit
color, and the font. If the number being dis-
played requires more digits than the maximum
specified, the counter simply expands to the left.
ProModel displays real values showing only 2
decimal places. For example, a variable equal to
4.8936 would display 4.89 on the screen.

Dialog Box
A dialog box is a pop-up window used to enter
information or select options. Movement from
field to field in a dialog box is accomplished by
clicking in the field with the left mouse button or
by using the Tab key. To accept input made to a
dialog box press Enter or click on the OK button.
To cancel any changes made to the dialog press
Esc or click on the Cancel button. For help on the
dialog, press F1 or click on the Help button. If no

Help button is shown, you may select Help from
the main menu.

Edit Tables
An edit table is a powerful editing window used
to add, delete and edit modeling and language
elements such as entities or locations. It is simi-
lar to a spread sheet editor in that it provides
maximum visibility of element lists while still
allowing each field of a particular element to be
directly edited.

File Name
A file name is any name used to identify a file.
File names may include a path (e.g.,
C:\REPORTS\DATA) as well as a terminating
period with up to three additional characters as an
extension (e.g., DATA.TXT). File names are
case insensitive.

 Font
A font is a collection of characters sharing the
same attributes such as height, width, and type-
face. A font determines the appearance of text.
Select fonts using the font dialog which shows
how the font will appear.

Frame
A frame is a graphical border or background for
placing text or displaying values. Frames have a

602
type (raised, recessed, transparent), shape, color
and size. Frames are optional and you may use
them only to enhance the appearance of the
graphic layout. If you do not desire a frame,
select Transparent as the type.

Gauge
A gauge is a graphic bar that extends and retracts
to represent the current contents of a location.
You define a gauge by the fill color, the empty
color, and the gauge border color. You also spec-
ify the fill direction (up, down, left or right).

Integer Number
An integer number is a whole number ranging
from -2,147,483,648 to 2,147,483,647. Integer
values may not include commas, so enter the
number 5,380 as 5380.

Library Graphic
A library graphic is a graphic defined and edited
using the Library Graphics Editor. Use library
graphics to represent locations, resources or enti-
ties, or as part of the layout background with no
association to any model entity.

When used to represent a processing location,
library graphics may have entity spots defined for
them so entities that enter the location will appear
graphically on the entity spot.

You may reference a Library graphic multiple
times and each reference may have a unique size,
horizontal or vertical inversion, rotation, and
color.

Main Entity
The original or input entity used in routing logic.
You may create new entities from the main entity
using the CREATE statement or through multiple
routing blocks.

Main Menus
The main menus are listed along the main menu
bar at the top of the application window and pro-
vide access to all of the dialogs and commands
necessary to build, run, and analyze simulation
models.

Name Index
During simulation run time, ProModel converts
the name of each location, entity, and resource to
a list index number for efficient access and flexi-
bility in assigning names to variables, attributes,
etc. The index number corresponds to the order in
which the elements appear in the edit table list. If
five locations were defined, they will be identi-
fied by the index numbers 1 through 5 at run
time. A name index may be assigned to a variable
or attribute by referencing the name itself (e.g.,
Attr1 = EntityA). You may also test for a name
index by referencing the name (e.g., if Var5 =
Loc3).

Note
A note is any comment or other information
typed by the user that is for information only and
disregarded by ProModel.

Numeric Type
A numeric type specifies whether a numeric
expression is of type real or integer. If, for exam-
ple, a variable is of type “real,” then the variable
can only represent some real number.

Numeric Value
A numeric value is any real or integer number
such as 3.68 or 52.

 ProModel 603
User Guide
Parameter
Parameters are variables used in a subroutine
which are local to or have scope only within the
subroutine. Arguments or numeric expressions
passed to a subroutine are assigned to the param-
eters for use inside the subroutine.

Park Search
A park search defines the sequence where a
resource looks for nodes at which to park after
completing a task assuming no other tasks are
waiting.

Paths
Paths define the course of travel for entities and
resources between locations. You may define a
path for a specific entity and routing, or a net-
work of paths shared by several resources and
entities. Define movement along a path in units
of time, or speed and distance.

Path networks consist of nodes connected by path
segments. Any node may have multiple input
and output segments.

Positioning Spot
An entity spot is simply a graphic position rela-
tive to a location or resource and displays any
entities occupying the location or resource.

For any given location you may place one or
more entity spots on the graphics layout. Entities
to enter a location appear on the first available
entity spot in the order they are placed. If an
entity enters a location and all the entity spots are
filled, the entity will appear on the last entity
spot.

For resources, place the entity spot where it
appears when a resource carries the entity.

Preemption
Preemption is the act of bumping or replacing an
activity currently using a location with an activity
of a higher preemptive priority. ProModel han-
dles preempted activities differently depending
on the location preempted.

For locations, ProModel puts the preempted
activity (any current entity or downtime) in a pre-
emption list for that particular location until it can
resume its activity at that specific location unit.

Real Number
A real number is a number ranging from 1.7 X
10 -308 to 1.7 X 10 +308. Real values may not
include commas, so enter the number 5,380.5 as
5380.5.

Examples: -2.87563, 844.2, 65.0

Reference
A reference is a name entry in an edit field that
references a defined model element. If you
change the name of the model element, all refer-
ences to the element automatically change to
reflect the change in name.

Region
A region is a rectangular area on the graphic lay-
out that represents a location. Defining a region
is useful when you import a layout from a CAD
drawing and you want to designate a portion of
the layout to represent a particular processing
location. A region should have one or more
entity spots associated with it in order to be
meaningful.

Resource
A resource is a person or item used to perform an
operation or activity. Common resources include
human operators, inspectors, forklifts, and other

604
vehicles. Use resources used to perform opera-
tions on entities at a location, transport entities
between locations, or perform activities on a
location during a downtime.

Resource Point
A resource point is a screen position where a
resource will appear when it arrives to park or
perform a task at a particular node. When a
resource arrives at a node, it will appear on that
node unless you define a resource point for that
resource at that node. Resource points provide a
way to have several resources positioned at the
same node without all appearing on top of each
other.

Routing Priority
A routing priority is the priority given to a rout-
ing for accessing a destination when capacity
becomes available. ProModel defines the routing
priority as part of the Destination field in the
Routing Edit Table. A routing priority applies
where two or more entities wait at a location for a
routing destination to become available. The
routing priority breaks a tie when deciding which
entity has access to the destination location first
when it becomes available. (See Selecting
Incoming Entities in the Location Rules Dialog.)

Scroll Arrow
You can use the scroll arrows on either end of a
scroll bar to move the contents of a window or
list box. Clicking once on a scroll arrow moves
the contents one line. Holding down a scroll
arrow scrolls continuously.

Scroll Bar
A scroll bar is a Windows control for scrolling
the contents of a window. Scroll bars operate in
three different ways:

1. Click on the scroll arrows at either end of the
scroll bar for incremental scrolling.

2. Click on either side of the scroll box for
scrolling one window at a time.

3. Drag the scroll box with the mouse to scroll
to a specific position.

Scroll Box
A scroll box is a small box in a scroll bar that
shows the position of what is currently in the
window or list box relative to the contents of the
entire window.

Shell
The temporary entity (representing grouped enti-
ties) to which ProModel assigns all costs and sta-
tistics until you ungroup the entities. Once
ungrouped, ProModel divides all costs among the
entities.

Status Lights
A status light is a circle that lights up with differ-
ent colors depending on the status of the location.
You can place a status light anywhere relative to
a location for showing the status or current state
of the location. At run time, you can display a
window showing what status each color repre-
sents.

String
A string is a series of characters enclosed in dou-
ble quotes (e.g., “Station A”). You may use
strings to write text to a file or to display a mes-
sage on the screen.

System Menu
The system menu appears as a dash mark at the
upper left corner of most windows. The main
function of the system menu is to close the win-

 ProModel 605
User Guide
dow. To do this, by either double-click on the
menu button or click on the button once and
select Close from the menu options that appear.
ALT + <space bar> also pulls up the system
menu.

Text
Text refers to words that you wish to display on
the graphic layout. Each specification of text has
an associated font, color, frame, and orientation
(up, down, left or right). You can rotate only
true-type fonts.

Time Statistics
Statistics collected on a time basis (e.g., time in
system, average minutes per entry, and average
contents). You cannot control how ProModel
collects these statistics since ProModel bases
them solely on the system clock.

Work Search
A work search defines the sequence in which a
resource looks for work at locations where work
may wait to be performed.

606
Bibliography

Carson, J. S. “Convincing Users of Model's
Validity is Challenging Aspect of Modeler's
Job,” Industrial Engineering, June 1986, p.
77.

Conway, Richard, William L. Maxwell, and
Steven L. Worona, User's guide to XCELL
Factory Modeling System, The Scientific
Press, 1986, pp 65-66.

Gordon, Geoffrey, System Simulation, 2nd ed.,
Prentice-Hall, 1978.

Harrell, Charles; Ghosh, Biman; Bowden, Royce.
2003. Simulation Using ProModel. 2nd Edi-
tion; McGraw-Hill, Inc.

Harrell, Charles R. and Kerim Tumay, Simula-
tion Made Easy, Industrial Engineering
Press, 1995.

Hoover, Stewart V. and Ronald F. Perry, Simula-
tion: A Problem Solving Approach, Addi-
son-Wesley, Reading Massachusetts, 1990.

Knepell, Peter L. and Deborah C. Arangno, Sim-
ulation Validation, IEEE Computer Society
Press, 1993.

Law, Averill M. and David W. Kelton, Simula-
tion Modeling and Analysis, McGraw-Hill,
1991.

Law, Averill M. “Designing and Analyzing Sim-
ulation Experiments,” Industrial Engineer-
ing, March 1991, pp. 20-23

Neelamkavil, Francis Computer Simulation and
Modeling, John Wiley & Sons, 1987.

Pritsker, Alan B. and Claude Dennis Pegden,
Introduction to Simulation and SLAM, John
Wiley & Sons, 1979.

Schlesinger, S. “Terminology for Model Credi-
bility,” Simulation, 32(3), 1979, pp.103-104.

Shannon, Robert E., Systems Simulation: The
Art and Science, Prentice-Hall, 1975.

Thesen, Arne and Laurel E. Travis, Simulation
For Decision Making, West Publishing
Company, 1992.

Tumay, Kerim, Business Process Reengineering
Using Simulation, Autofact Workshop,
1993.

 ProModel 607
User Guide
Index

Symbols

- 408, 409, 413
461
$ 408, 412, 413
() 408, 413
* 158, 408, 409, 413
** 408, 409, 413
+ 408, 409, 413
/ 408, 409, 413
/*...*/ 461
// 461
< 408, 410, 413
<= 408, 410, 413
<> 408, 410, 413
= 408, 410, 413
> 408, 410, 413
>= 408, 410, 413
@ 351
@ or Mod 408, 409, 413

A

Acceleration rate 144, 273
ACCUM 104, 115, 288, 291, 385, 439, 588
Accumulate

see accum
Accumulating

conveyor 105
Accumulating conveyor 104
Accumulating conveyors 278
Accuracy, degree of 35
ACTIVATE 189, 246, 247, 441, 576, 588
Active operation zone 276
ActiveX objects 596
Activity

grouping 41

time and condition dependent 37
Add

joint 125
mode 100
resource points 148
resources & variability 55, 58
routing mode 160
view 85

Addition 408, 409, 413
Additional operations 55, 61
AGV 123
AGVS

see automated, guided vehicle systems
Alignment

graphics 222
text 102

ALL 152, 156, 159, 301, 440, 463, 477, 483, 513, 556
entity type 153

ALTERNATE 416, 417, 422, 427, 432
Alternative systems 48
Analysis

capability 33
capacity 33
constraint 33
decision/response 33
graphical 12
output 51
performance 33
sensitivity 33

AND 408, 411, 413, 496
ANIMATE 369, 442, 588
Animation

charts 52
conveyor 105
disable 363
off 64
on/off during run time 356
options 363
panning during run time 369
screen 63

608
user pause 363
views 363
zoom 363

Append
appending a record to a table 77
record to a table 76

Arc
draw 325

Arrange icons 91
Arrays 95, 235, 409, 516, 587

accessing 235
assigning cell values 235
definition 235
dimensions 236
disable 236
displaying information during run time 93, 364
edit table 236
examples 235
export file 236
import file 236
initializing 237
notes 240
persist 236
referencing 235
statistics 240
type (real or integer) 236
usage 240

Arrivals 54, 163
accessing 163
cycles 252

accessing 252
assigning arrivals 253
cumulative 252, 254
cycle tables 254
defining 252
edit table 252
examples 252
percent 252
quantity 252, 254
table 252

define 56, 164
graphically 164
manually 165

definition 163
destroyed 164
disable 164
edit table 163
editor 163
entity field 163
external arrival file 164
files 264

example 264

first time 164
frequency 164
independent 165
location field 163
logic 164
new 61
occurrences 164
quantity each field 163
rates 95

AS 542
AS/RS

see automated storage/retrieval systems
ASCII 456

characters 407, 456
files 537
text editor 594

Assemblies
making 291

Assembly lines 7
Assignment 445, 588
Attributes 54, 95, 225

accessing 225
cloning 226

example 227
combine statement with attributes 230
define 61, 225
edit table 227
entity attributes 225
example 227
group statement with attributes 228
join statement with attributes 228
load statement with attributes 229
location 587
location attributes 226
memory allocation

for attributes 226
see entity attributes
types 225
ungroup statement with attributes 228
unload statement with attributes 229

Automated guided vehicle systems 281
Automated guided vehicles

modeling 281
on-board vehicle sensing 281
simulation benefits 282
zone blocking 281

Automated storage/retrieval systems 283
modeling 283
simulation benefits 283
vertical bridge crane 283

AutoSave
directory 335

 ProModel 609
User Guide
files 335
time between saves 334, 335

AUTOSAVE.MOD file 355
Axis shift 437

B

Background color 94
edit table 90
layout window 88

Background graphics 80, 218, 285
accessing 218
alignment 222
behind grid 222

mode 218
bmp 285
cad 285
copy

object 80
to clipboard 80

create 218
deleting an object 80
edit 80, 94, 218

menu 220
editor 219

modes 218
exporting a graphic 80, 221
fill

color 223
patterns 222

flip
horizontal 222
vertical 222

front of grid 222
mode 218

graphics menu 222
group 222
importing 55, 80, 221
layout window 219
library graphics window 219
line

color 222
styles 222

lock 222
move

behind grid 223
imported background graphic 221
in front of grid 223

paste
bmp 80

object 80
wmf 80

removing an object 80
rotate 222
selecting all graphics 80
sizing an imported background graphic 221
tools

button bar 219
ungroup 222
unlock 222
wmf 285

BACKUP 416, 417, 427, 432
Backup file 70
Basic 364
Basic model elements 54
Batch means technique 48
Batching 286
Batching, interval 48
BEGIN 242, 446, 475, 588
Behind grid 285
Behind grid mode 218
Beta distribution 437
Binomial distribution 437
Block

number
* 158

routing block 155
Blocked time 277
BMP

importing a background graphic 221
Boolean

expressions 409, 410
operators 409

Border
change line or border style 317
tank 188

Bottleneck 282
Bottlenecks, identifying 51
BREAK 447, 549, 588
Break logic-specific system functions & statements
588

dtleft() 588
priority 588
skip 588

BREAKBLK 448, 549, 588
Breaks 144

colors
customize 170

draw block 169
logic 174
see shift & break logic
see shift definition & shift assignment

610
Bridge
and hoist trajectory 275
following 273
leading 273
motion after queue-up 274
multiple bridges 274
separation 269
separation distance 271
speed 269

Budget for simulation project 36
Build

expression button
logic builder 295

menu 95
description 67

models 9, 41, 53
Bump-away 276
BY TURN 157

C

CALDAY() 449, 450, 587
CALDOM() 587
CALHOUR() 451, 587
CALMIN() 452, 453, 454, 587
CALMONTH() 587
CALYEAR() 587
CAP() 455, 513, 587
Capability analysis 33
Capacity

analysis 33
location 97, 106
maximum location capacity 97

Capacity, load rate 278
Cascade 91
Category Chart 391
Cause-and-effect relationships

identify 36
CHAR() 407, 412, 456, 585
Character strings 403, 407, 412
Characters

ascii 407, 456
Charts 389
Chord

circular 327
draw 327

Circle
draw 327

Claim
attempt rejection 271

priority 270
zone 271

Clearing text in a notes window 78
Clock

clock-based downtime 138
display during run time 369
selection 63

Clock precision 280
CLOCK() 413, 457, 514, 587
CLOSE 458, 588
Collisions 282
Colon notation 412
Color

background 87, 88, 94
create custom 89
custom 88
edit table 90
fill 318, 331
grid lines 87
line 318, 331
routing path 87, 89, 94
shift & break

customize 170
text 102

COMBINE 104, 115, 185, 286, 291, 385, 459, 493, 509, 559,
568, 571, 588
Commands 83, 90
Comments 461, 588
Common mode 81
Communication effectiveness 33
Comparison

study 33
with similar operations 39

Comparison operators
and, or, not 408

Compiling within a logic window 79
Concatenation operators 408, 412, 413
Conducting experiments 43
Confidence intervals (CI) 44
Confirm record deletion 334
Constraints

analysis 33
identify 32, 33

CONT, see CONTINUE
CONTENTS() 462, 587
Context 91
CONTINUE 157, 416, 418, 420

dynamic priority changing 418
continuous modeling 188
Continuous trace 64
Control statements 436
Convert

 ProModel 611
User Guide
data to useful form 40
Convert between numeric types 407
Conveyors 100, 103, 104, 277

accumulating 104, 105
animation 105
capacity 104
conveyor networks 279
conveyors in promodel 280
creating bends graphically 105
define

color 103
graphically 105

definition 104
display graphics 105
draw to scale 280
entity orientation 106
examples 280, 281
intermittent 279
length 104, 106
load delivery time 278
load overlap 280
load rate capacity 278
load spacing 280
modeling conveyor systems 279
networks 279
non--accumulating 104
operational limitations 104
options 105
queuing 278
run-time visibility 103
set

style 103
width 103

simulation benefits 278
single section 279
speed 106, 278
types 278

accumulating 278
non-accumulating 278

Copy 330
graphic editor 316
information

between records 78
from another record 78

record in a table 77
text in a notes window 78

Cost 183
building a model with costing 184
combine/group 185
cost dialog box 183

cost per use 184
initial cost 184

object type 183
operation rate 183
per 184
regular rate 184

disable costing 187
enable costing 187
entities 184, 187

initial cost 184
join/load 185
locations 183, 186

operation rate 183
per 184

output 186
preemption/downtime 185
resources 184, 186

cost per use 184
per 184
regular rate 184

special cost handling 186
statistics 186, 601

Cost-related functions & statements 588
getcost() 488
getresrate() 490
incentcost 499
incloccost 500
increscost 501

Counter 100, 101
see glossary 601

Cranes 269
bridge and hoist speeds 269
bridge separation 269
crane envelope 269
crane move priorities 269

claim priority 270
effective claim priority 270
task move priority 269

crane operations 270
envelope 269
horizontal speed 283
idle 274, 275, 276
immovable 275
modeling multiple cranes 269
move priority 269
multi-crane envelopes

claim attempt rejection 271
extended movement zone 271
queue-up situations 273
zone claims 271

node searches 276
operation rules 275
operations notes 276
other rules 275

612
park searches 276
queue-up situations

bridge motion after queue-up 274
no queue-up 273

reclaim trigger events 275
resource request

priorities 269
response 274

resource statistics 277
blocked time 277
gross move time 277
in use 277
special case, blocked time 277
travel to use 277

searches 276
vertical bridge 283
vertical speed 283
work searches 276
zone claims

examples 271
speed and mobility 273

CREATE 103, 104, 186, 226, 459, 463, 493, 499, 509, 559,
568, 571, 588
Create

model package 74
run-time models 11

Creating Charts 389
Creating Reports 382
CSV files 265
Cumulative distribution function 260
Custom

colors 88
reporting 352
zoom 86

Customize 307, 336
Customizing graphics

background graphics 285
Cut 330

cutting text in a notes window 78
Cycle period 50

D

Data
approving 41
converting to a useful form 40
documenting 41
gathering 38
protection

model data 75

model packaging 74
read 262
requirements

determine 38
sources 39
write 262

DAY 411, 413, 457, 472
Deadlocks 282
DEBUG 358, 360, 361, 465, 563, 588

example 360
Debug 356

check condition 359
debug button 359
debug dialog 359

advanced 360
context 359
end simulation 359
error display box 359
into subroutine 360
logic display box 359
next statement 359
next thread 360
options 360
run 359

disable debugger 358
examples 357, 360
global change 358

example 361
logic 357

disable 360
enable 360
exclusive 360
new 360
next 360

options dialog 358
process

disable 360
exclusive 360
new 360
next 360

process thread 357
statement 357
user condition 358

example 361
DEC 466, 588
Deceleration

infinite 273
rate 273

Deceleration rate 144
Decision

response analysis 33
rules

 ProModel 613
User Guide
for locations 115
Default graphics library 334
Defaults

default values table 594
program 594

Define
arrivals 56
attributes 61
distribution 61
entities 56, 119
location downtimes 61
locations 56
multiple entity graphics 120
objectives 32
path networks 58
processing 56
resources 58
system 36

Degree of accuracy 34, 35
Delete

block 170
deleting a record from a table 76
joint 125
location 99

graphic 99
process 160
routing record 160

DEPENDENT 416, 420
Deposit time 144
Design of experiments (DOE) 49
Destination, choosing 288
Detail of a simulation project 34
Developing a budget and schedule 32
Dialog box 10

see glossary 601
Dimensions

entity graphic 119
graphic 318

Directories 334
Disable costing 187
DISPLAY 179, 407, 413, 467, 588
Display statistics on screen

see statistics
Distance 126

per grid unit 88
change 320

units 179
Distribution functions 409, 437

axis shift, optional 437
beta 437
binomial 437
erlang 437

exponential 437
gamma 437
general components 437
geometric 437
inverse gaussian 437
lognormal 437
normal 437
pearson5 437
pearson6 437
poisson 437
stream, optional 437
triangular 437
uniform 437
user-defined 437
weibull 437

Distributions
continuous 261
define 61
discrete

cumulative distribution function 260
probability mass function 260

empirical 40
fitting 40
frequency

example 40
user-defined 40

Division 408, 409, 413
DO...UNTIL 447, 468, 502, 588
DO...WHILE 446, 447, 469, 475, 502, 588
Documentation symbols

#, //, /*...*/ 461
DOWN 470
DOWNQTY() 471, 587
Downtimes 95, 97, 282, 289

clock 138
define location downtimes 61
define resource downtimes 138
downtime-specific system functions 435, 470, 472, 587
location 107

called 111
clock 108
entry 109
setup 110
special notes 115
usage 110

overlapping shift downtimes 177
preemption 185
resource 138

clock 138
usage 138, 139

Draw
arc 325

614
chord 327
circle 327
circular chord 327
ellipse 327
lines 325
polygon 328
rectangle 326
square 326
triangle 326

DTDELAY() 175, 306, 472, 587
DTLEFT() 175, 305, 473, 588
DTLENGTH() 174
Dynamic Plots 364, 368
Dynamic priority changing 418
Dynamic resources 136, 276

E

Edit
arrivals 163
background graphics 80, 94
editing preferences

confirm record deletion 334
long build menu 334
recalculating adjusted paths 334

existing graphic 101
graphics 81
logic windows 78
menu 76

background graphics 220
description 67

notes windows 78
preferences 90
process 59
table 9, 76, 90

color 90
edit table font 90
see glossary 601
table font 90

tank or gauge 188
Edit Tables 10
Ellipse

draw 327
ELSE 298
Empirical distribution 40
EMPTY 421
Enable costing 187
END 446, 447, 448, 475, 588
Engineers 39
ENT() 118, 406, 407, 412, 467, 476, 527, 541, 554, 587

Entity 54, 118
accessing 118
actions

implicit 463, 541, 559
activity

general statistics report 383
all as type 153
attributes 409

assigning values 285
entity characteristics 285
operation time 284
processing time 284
user condition routing 284
using 284

batching 286
accum 288
combine 286
group/ungroup 286
load/unload 287

characteristics 285
cost 184, 187

general statistics report 383
defining 56, 119

graphically 119
multiple entity graphics 120

entities editor 118
entity-related move logic statements

move for 522
move on 523
move with 524

entity-related operation statements 436
accum 439
combine 459
create 463
graphic 492
group 493
join 504
load 509
match 518
move 520
rename 541
route 552
split as 559
ungroup 568
unload 571
wait 577
wait...until 578

entity-specific attributes 587
entity-specific system functions 435

entity() 477
groupqty() 495
resqty() 548

 ProModel 615
User Guide
graphics 329
dimensions 119

icon 119
location file 263
name 119
new 61
new entity check box 158
notes 119
orientation

on conveyor 106
preemptive 121

example 121
processing

define 150
select

by turn 117
fewest entries 117
first available 116
highest attribute value 116
last selected location 116
least available capacity 116
longest empty 117
lowest attribute value 116
most available capacity 117
oldest by priority 116
random 116, 117

show
current 162

speed 119
spot 100
states

by percentage 384
stats 119
types 95
unbatching 286

ENTITY() 477, 587
ENTRIES() 478, 587
Envelope

crane 269
multi-bridge 276
multi-crane 271, 273

Equal to 408, 410
Equalities 408
Equipment manufacturers 39
Erlang distribution 437
Errors, run-time

already routed 158
no routing defined 158

Exclude graphic library 74
Exclusive work search 276
EXIT 383
EXP() 479

Expansion, incremental 42
Experiments

conducting 43
types 35
types of 35

Exponential distribution 437
Exponentiation 408, 409, 413
Exporting

background graphics 221
graphic editor 315

Expression search 307, 308
definition 308
find 308, 309
important notes 310
performing 308
replace 308, 309
search next 308

Expressions
boolean 409, 410
expression and statement groups 587
numeric 409
string 407, 409, 412

char() 412
ent() 412
format() 412
loc() 412
numeric 412
res() 412

time 409, 411
colon notation 412

types of 408
Extended movement zone 271
External files 262

accessing 262
define 262
editor 262
open files 265
types 262

arrivals file 264
dll file 265
entity-location file 263
excel file 265
general read file 262
general write file 263
other 265
shift file 264

usage 262
External spreadsheet file 588
External subroutine calls

xsub() 583

616
F

Face validity 43
Facility 39

layouts 39
walk-throughs 39

Factorial design 49
fractional-factorial 49
full-factorial 49
two-level 49

Factors 49
impact 36

Failed arrivals
general statistics report 384

FIFO 568
see locations, rules

Figures
add to gauge or tank 189

File
exclude graphic library file 74
extensions 265
external 262

define 262
editor 262
open 265
other 265
types 262

graphic library 181
management 68, 69
menu 68

description 67
during run time 355
during run-time 355

name
see glossary 601

open external 265
types

arrivals file 264
entity-location 263
general read 262
general write 263
shift file 264

Files
ascii 537
external spreadsheet 588

Fill
color 318

background graphics 223
define 331
tank 188

pattern

background graphics 222
change 318

Find and replace, local 311
Find process mode 161
Finite move priority 275
FIRST AVAILABLE 422
First in, first out
Flexible manufacturing systems 7
Flip object 330

horizontal 316
vertical 316

Flow
charts 39
rate of flow 190
time step

tanks 190
Focus of simulation 37
Following bridge 273
Font 102

edit table 90
see glossary 601

FOR 520, 524
FORLOCATION() 174, 175, 305, 480, 587
Form of results 34, 36
FORMAT() 412, 481, 585
FORRESOURCE() 174, 175, 305, 482, 587
Fractional factorial design 49
Frame

see glossary 601
text 102

FREE 275, 483, 486, 506, 588
FREECAP() 484, 587
FREEUNITS() 485, 587
Frequency distributions

example 40
Front of grid 285
Front of grid mode 218
FULL 431
Full-factorial design 49
Functions 435

cost-related 488, 490
general 435

math 435
system 587
type conversion 435

name 406
nested 297
new 367
system 435

downtime-specific 435
entity-specific 435
general 435

 ProModel 617
User Guide
resource-specific 435
shift & break 435

G

Gamma distribution 437
Gauge 100, 101

add labels and figures 189
change to tank 189
edit 188
see glossary 602

GBM files 265
General action statements 436

activate 441
animate 442
debug 465
display 467
log 514
maparr 516
order 527
pause 529
read 537
report 542
reset 544
reset stats 545
return 549
send 554
sound 558
trace 566
view 576
warmup 579

General control statements
begin 446
break 447
breakblk 448
do...until 468
do...while 469
end 475
goto 491
if...then...else 496
while...do 580

General expressions 587
General functions 435

math 435
type conversion 435

General information 179
accessing 179
dialog 55
dialog box 179
distance units 179

graphic file library 179, 181
selection 181

initialization logic 179, 180
logic execution time 180
model notes 179
termination logic 180
time units 179
title 179
usage 179, 218

General operation statements 588
close 458
dec 466
graphic 492
inc 498
prompt 534
setrate 556
stop 562
write 581
writeline 582
xwrite 585

General read file 262
General statistics report

entity activity 383
entity costing 383
entity states by percentage 384
location setup 385
location states by percentage

multiple capacity 385
single capacity 385

locations costing 384
logs 386
node entries 384
resource states by percentage 387
resources 387

costing 386
grouped 387

General system functions 435, 587
calday() 449, 450, 587
caldom() 587
calhour() 451, 587
calmin() 452, 453, 454, 587
calmonth() 587
calyear() 587
cap() 455, 587
clock() 457, 587
contents() 462, 587
downqty() 471, 587
entries() 478, 587
freecap() 484, 587
freeunits() 485, 587
ownedresource() 587
percentop() 530

618
percentutil() 531
threadnum() 563
timesused() 565, 587
units() 570, 587
variable() 575, 587

General write file 263
Geometric distribution 437
GET 121, 140, 159, 269, 270, 277, 303, 304, 486, 588
GETCOST() 488, 588
GETRESRATE() 490, 588
GIF

importing a background graphic 221
GLB files 265
GOTO 491, 588
GRAPHIC 120, 134, 136, 137, 146, 492, 588
Graphic

new 322
Graphic editor 307, 312, 313

accessing 312
arc tool 325
background color 319, 320
changing a graphic’s size 321
changing the order of the graphics in the library 322
chord tool 327
circle tool 327
clear button 321
closing a graphics library 314
combining two graphics 322
copy

button 330
graphic 316

cut button 330
delete button 321
dimensions 317, 318
edit

button 321
library graphic 331
menu 312, 314

ellipse tool 327
exporting a graphic 315
file menu 312, 313
fill

color 316
color button 331
patterns 316, 318

flip
buttons 330
horizontal 316
vertical 316

graphic tools button bar 323
graphics menu 312, 316
grid

show 319, 320
size & scale 319, 320
snap to grid 319, 320

grouping graphics 316, 317
importing graphics 315
library edit buttons 321
line

color 316
button 331

styles 316, 317
tool 325

manipulating graphics 321
move

to back 316
to front 316

naming a graphic 322
opening a graphics library 313
options menu 313, 319
order of graphics in the library

change 322
overview 312
paste

button 330
graphics 315

pie tool 327
polygon tool 328
positioning spot 328
print

graphic 313, 314
graphics library 313, 314

rectangle tool 326
rotate

button 330
graphic 316

save
button 321
graphic 313
graphics library 314

selector 324
size

change 321
square tool 326
status light 329
step back & front buttons 331
text tool 324
triangle tool 325
ungrouping graphics 316, 317
usage 312
window menu 313, 321
zoom 319, 320

Graphic library
create new 322

 ProModel 619
User Guide
Graphical analysis 12
Graphics

background 285
alignment 222
behind grid 222
delete an object 80
edit 94
export 80, 221
fill

color 223
patterns 222

flip
horizontal 222
vertical 222

front of grid 222
group 222
import 55, 80, 221
line

color 222
styles 222

lock 222
move

behind grid 223
imported graphic 221
in front of grid 223

paste
bmp 80
wmf 80

removing an object 80
right-click editing 80
rotate 222
size an imported graphic 221
ungroup 222
unlock 222

customizing 285
behind grid 285
front of grid 285
importing 285

define multiple entity 120
dimensions 318
editing & moving 81
entity 329

graphic dimensions 119
library 101

file 179, 181
exclude 74
selection 181

graphic 102
location 100, 329

graphics window 98
edit button 98
erase button 98

view button 98
move 81
multiple

assign to resource 136
resource 329

multiple 136, 137
Graphs

utilization 13
Greater than 408, 410

or equal to 408, 410
Grid

lines
change color 87
change resolution 87

scale 88
settings 94

grid scale 88
show 83, 92, 320
size 87
snap to 83
unit

default time 88
distance per unit 88

change 320
GROUP 104, 115, 185, 286, 291, 385, 459, 463, 493, 509,
559, 568, 571, 588
Group

activity 41
graphics 222, 317
objects 317
resource 241

GROUPQTY() 495, 587

H

Hardware requirements 15
Help

index 91
menu 91

description 68
on-line 11

accessing 79
Hidden networks

show 94
Hide

conveyors and queues 103
networks 83, 92

Histogram 394
Hoist

and bridge trajectory 275

620
lower 276
speed 269

Home
return if idle 143

Horizontal speed 283
Hours 411, 412, 457, 472
HR 411, 457, 472
Hypothesis testing 48

I

Icon
add to location 100
locations 97

Idle
return home if 143

Idle cranes 275, 276
moving 274

IF EMPTY 157
IF...THEN 242, 297, 299, 360, 446, 447, 462, 475, 477, 496,
513, 552, 563, 588
IF...THEN...ELSE 57, 297, 491, 496, 588
Immovable cranes 275
Impact factors 36
Import

background graphics 55, 221
graphic editor 315
tank submodel 188

Importing
background graphics 285

INC 498, 588
INCENTCOST 499, 588
INCLOCCOST 500, 588
Incremental expansion 42
INCRESCOST 501, 588
Independent arrivals 165
Industrial vehicles 282

deployment strategies 282
modeling 282
multiple load transporters 282
simulation benefits 283

Inequalities 408
INF 97
INFINITE 97, 164
Infinite deceleration 273
Information menu 64

during run time 363
Initial

cost
create 184

incentcost 184
order 184
route 184

state 44
warm-up period 47

Initial value 289
Initialization logic 179, 180

execution time 180
Input variables 37
Insert

record in a table 76, 77
Install model package 74, 75
Installation

see setup and installation 15
INT 231, 233, 502, 588
Integer number

see glossary 602
Integers 406
Interact menu 368
Interactive subroutines 249, 368
Interfaces

edit table 127
location-node 128

Intermittent conveyor 279
Interval batching 48
Inverse Gaussian distribution 437

J

JIT systems 7
Job shops 7
JOIN 61, 115, 118, 228, 290, 291, 385, 423, 504, 539, 588
Join 185
Joint

add 125
delete 125

JOINTLY GET 121, 140, 269, 277, 304, 506, 588

K

KANBAN systems 7
KEEP 275
Keyboard 3
Keywords 403, 405

 ProModel 621
User Guide
L

Labels 82
add to gauge or tank 189
text 100

Language elements
character strings 403, 407
keywords 403, 405
names 403, 404

conventions 404
numbers 403, 406

converting between numeric types 407
integers 406
name-index 406
real numbers 406

operators 403, 408
comparison 408
mathematical 408
precedence 408
relational 408

types of 403
Last in, first out
LAST() 507, 587
Layout

printing a layout 73
settings 86, 94

background color 87, 88
grid settings 87, 88
routing path color 87, 89

window 56
Leading bridge 273
Length

conveyor 106
Less than 408, 410

or equal to 408, 410
Level

of detail 34
tank 189

Library
new 322

Library graphic 101
see glossary 602

License key
moving 26
terminating 27
transfering 26

License server
definition 18

LIFO 568
see locations, rules

Line

change line or border style 317
color 318

background graphics 222
define 331

draw 325
styles 317

background graphics 222
LN() 508
LOAD 115, 185, 229, 234, 287, 291, 385, 406, 424, 459, 463,
493, 509, 559, 568, 571, 588
Load

delivery time 278
jumping 280
overlap 280
rate capacity 278
spacing 280

LOC() 96, 157, 406, 407, 412, 467, 471, 484, 511, 527, 554,
570, 587
Local find and replace 311
Local variable 588

declaration statements
int 502
real 539

Local variables 233
Location

attributes 587
location-specific system functions 587

location() 513
LOCATION() 304, 306, 455, 513, 587
Locations 54, 96

accessing 96
add mode 100
adding symbol to existing location 100
attributes 226
capacity 97, 106

maximum 97
conveyor/queue 100
cost 183, 186
costing

general statistics report 384
counter 100, 101
create 96
define 56, 96

multiple locations 98
multi-unit locations 107
new location graphically 98

delete
location 99
location graphic 99

destination
processing 157

display

622
information during run time 93, 364
location name 101

downtimes 97, 107
called 111
clock 108
define 61
definition 107
entry 109
setup 110
special notes 115
specifying 108
usage 110

edit 96
edit table 56, 97
editing an existing graphic 101
editor 96
entity spot 100
gauge 100, 101
graphics 100, 329

window 98
edit button 98
erase button 98
view button 98

icon 97
identifying location name during run-time 370
information window 12
label 100
library graphic 101, 102
loc() 96
move 81

graphic 99
multiple graphics 99

multi-capacity vs. multi-unit 106
multiple graphics for a location 101
naming 97
new 61

mode 98
node interface 128
notes field 98
preemption 111, 113
priorities 111, 112
queue 100
region 100
rules 97, 115

example 117
queuing for output 116
selecting a unit 116
selecting incoming entity 116

setup statistics report 385
states by percentage

multiple capacity
general statistics report 385

single capacity
general statistics report 385

statistics 97
status

light 100
tank 100, 101
text 100, 102
units 97, 106
view 99

Lock
graphics 222

LocState() 512
LOG 386, 457, 514, 539, 588
Logarithm 508
Logic 3

arrivals 167
break 174
builder 10

accessing 79, 192, 293
build expression button 295
building statements or expressions 294
cancel button 295
clear button 295
components 294
editing statement parameters 296
expressions, creating 298
keypad button 295
logic

buttons 295
elements 295

nested functions & statements 297
parameter

buttons 294
entry field 294

paste
button 295
logic/model elements only 298

return button 295
select

logic elements 296
statements 295, 296

using 293
off-shift 174
operation 299
pre-break logic 174
preemption process 300

example 301
functions 301
possible effects of delayed preemption 301

pre-off-shift 174
process 59, 62, 95
routing 59, 62

 ProModel 623
User Guide
routing move 302
get, jointly get, use 304
move-related statements 303
statement processing 304

shift & break 174, 305
break logic 305
functions & statements 305
off-shift logic 305
pre-break logic 305
pre-off shift logic 305
sequence of events 174, 305

subroutines 249
windows

edit 78
Logic elements

distribution functions 437
axis shift, optional 437
general components 437
stream, optional 437

functions 435
downtime-specific 435
entity-specific 435
general 435
resource-specific 435
shift & break 435
system 435

general functions 435
math 435
type conversion 435

priorities 438
resource request logic 276
statement blocks 436
statements 436

control 436
entity-related operation 436
general action 436
resource-related 436

Lognormal distribution 437
Logs

general statistics report 386
Long build menu 334

view 334
LONGEST UNOCCUPIED, (LU) 425
Lower the hoist 276
LU, see LONGEST UNOCCUPIED

M

Macros 95, 241, 409
accessing 241

and subroutines 588
create 241
definition 241
edit 241

table 241
example 241
macros vs. subroutines 241
rti 241, 242
see also run-time interface
subroutines vs. macros 250
text 241
usage with begin/end 242
valid usage 241, 242

Main entity 602
errors

already routed 158
no routing defined 158

Main menus
see glossary 602

Maintenance reports 39
Maintenance, scheduled 282
Managers 39
Manual material handling systems 282

modeling labor 282
simulation benefits 282

MAPARR 516, 588
Mapping

create 129
edit table 128
example 129

Market forecasts 39
MATCH 115, 385, 504, 518, 588
Math functions 435

exp() 479
ln() 508
rand() 536
round() 551
sqrt() 561

Mathematical operators 408, 409
Matrix, resource preemption 141
Maximum run length 349
Maximum speed 273
Memory

allocation
for attributes 226

Menu
bar 67

Merge
models 10, 69, 70
submodel 71

MIN 411, 457, 472
Minutes 411, 412, 472

624
MMHS
see manual material handling systems

MOD files 265
Model

build 9, 41, 53
create new 69
data

protect 75
elements 53

basic 54, 55
example of building a model 53
execution 347
merge 69, 70
new 69
notes 179
open 69
package

create 74
data protection 74
install 74, 75

parameters 347, 352
define 353

partitioning 42
phased modeling approach 54
results, reporting 51
run 11
run-time 11
save 69
save as 69, 70
text

print 72
view 72

validation 43
verification 42

Modeling
services 5

Modeling conveyors 280
conveyor systems 279

Modeling priorities
see priorities

Modulus 408, 409, 413
MOST 426
Motion, bridge 274
MOVE 103, 104, 302, 304, 520, 588
Move

along path network 144
finite move priority 275
graphics 81

special considerations 81
gross move time 277
idle cranes 274
location 81

location graphic 99
logic 157, 159, 302

get, jointly get, use 304
move-related statements 303
statements

processing 304
logic statements 588

free 483
get 486
jointly get 506
move for 522
move on 523
move with 524
use 573

moving a record in a table 76, 77
multiple location graphics 99
object

behind 331
in front 331

path networks 82, 125
resource 82

points 148
routing paths 81
to park 277

MOVE FOR 159, 302, 303, 522, 588
MOVE ON 159, 302, 303, 522, 523, 588
MOVE WITH 159, 269, 270, 275, 302, 303, 486, 522, 523,
524, 588
Moving Graphics, common mode 81
Multi-bridge

crane systems 269, 274
envelopes 276

Multi-crane envelopes 271, 273
Multiple capacity location 106
Multiple load transporters

see industrial vehicles
Multiple locations 98
Multiple single-unit resources 137, 138
Multiple streams 50
Multiplication 408, 409, 413
Multi-unit

locations 106
resources 137

N

Name
index

see glossary 602
location 97

 ProModel 625
User Guide
Name-index numbers 406, 409
conversion functions

loc() 511
res() 543

Names 289, 403, 404
conventions 404
functions

ent() 406
loc() 406
res() 406

Nested functions & statements 297
Network

non-passing 123
passing 123
path 123
resource path network 143
show hidden 94
show networks 83, 92
version

installation procedure 17
New

arrival 61
entity 61
entity check box 158

block number
* 158

location 61
mode 98
model 69

create 69
process

create 160
New & modified features

activex objects 596
New & modified statements and functions 367
New graphic

create 322
New graphics library

create 322
NEXT() 526, 587
No queue-up 273
Node

add resource points to 148
break 144
home 143
logic 134

editor 146
example 147

off shift 143
Node logic-specific system functions 587
Nodes 276

serviceable 269

Non-accumulating conveyor 104
Non-accumulating conveyors 278
Non-exclusive work search 276
Non-terminating simulation 44, 45

running 46
Normal distribution 437
NOT 408, 411, 413
Not equal to 408, 410
Notation

colon 412
Notes

field 98
see glossary 602
windows

editing 78
Numbers 403, 406, 409

converting between numeric types 407
integers 406
name-index 406
numeric type

see glossary 602
random

streams 266
real numbers 406

Numeric expressions 409
Numeric Type, glossary 602
Numeric types, converting between 407

O

Objectives, defining 32
Observation-based statistics 232
Off-shift

locations, preempting 176
logic 174
node 143

Off-shift & break logic specific system functions &
statements 588
On-board vehicle sensing 281
One-dimensional array 235
On-line tracking systems 39
Open

model 69
Operation

crane 270, 275, 276
statements 588
time

using entity attributes 284
zone 276

Operation logic 59

626
processing 153
Operator precedence 408, 413

addition, + 413
and 413
concatenation, $ 413
division, / 413
equalities 413
examples 413
exponentiation, ** 413
inequalities 413
modulus, @ or mod 413
multiplication, * 413
not 413
or 413
parentheses, () 413
subtraction, - 413

Operators 403, 408
comparison 408
mathematical 408
relational 408

Optimization
simrunner 370
study 33

Options 307, 334
menu

debug option 357
during run time 356

simulation 63, 347
OR 408, 411, 413, 496
ORDER 226, 499, 527, 588
Output

analyzing 51
charts 52
costing statistics 186
output menu 68
reporting options 350

batch mean 350
interval length 351
number of replications 351
periodic 351
running a specific replication 351
standard 350

viewing 12
Output Viewer 3DR 374
Overlap

load 280
OWNEDRESOURCE() 528, 587

P

Pan 63
Parameters

see glossary 603
subroutines 248

Parentheses 413
Park and work search 276
Park search 134, 145

edit table 146
see glossary 603

Park, travel to 277
Partitioning, model 42
Paste 330

record in a table 77
text in a notes window 78

Path
networks, see path networks
routing

move 81
show 83, 92, 94
types 89

see glossary 603
segment

edit table 58
Path networks 54, 82, 95, 123

accessing 123
automatic time and distance calculation 127
default time and distance values 127
define 58

color of path network 124
graphically 124

editor 123
example 125
interfaces edit table 127
location interface points 124
mapping 124

edit table 128
example 129

move 125
name 124
nodes 124

creating additional 125
edit table 130

non-passing 123
passing 123
paths 124

creating segments 125
recalculating adjusted paths 334
segment edit table 126
segments 125

 ProModel 627
User Guide
pre-translation check 131
resource 143
speed/distance measurement 124
time measurement 124
types

non-passing 124
passing 124

PAUSE 240, 529, 588
Pause simulation 63
PCX

importing a background graphic 221
Pearson5 distribution 437
Pearson6 distribution 437
People as resources 282
PercentOp() 530
PercentUtil() 531
Performance analysis 33
Pickup time 144
Pitfalls in simulation 52
Planning the study 32
Points

resource 147, 148
Poisson distribution 437
Polygon

draw 328
Positioning spot

place on an icon 329
see glossary 603

Power Tools 337
Pre-analysis 371
Pre-break logic 174
Precedence, see Operator precedence
Predetermined time standards 39
Preemption

creating a preemption process record 300
downtime 185
entities 121
locations 111
off-shift locations 176
process

example 301
logic 300

possible effects of delayed preemption 301
new functions 301

resources 140, 141
examples 142

see glossary 603
shift & break logic 175

Preemption logic 289
and downtimes 289
system functions 587

preemptor() 532

timeleft() 564
PREEMPTOR() 301, 532, 587
Pre-off-shift logic 174
Preparing a simulation specification 32
Pre-translation check 131
Print

graphic 314
library 314

layout 72
model text 72
printer setup 72, 74

change the printer settings 74
text 72

Printing text within a logic window 79
Priorities 438

assign 112
claim 270
crane move 269, 270
dynamic priority changing 418
effective 272
finite move 275
for a destination 288
locations 111, 112
modeling 288

downtimes 289
preemption 289
processing destination 288
selecting resources 288

resource request 269, 276
resources 140, 141
shift 173
task move 269

PRIORITY 174, 175, 305, 533, 588
ProActiveX 340
PROBABILITY 417, 427
Probability mass function 260
Processing 54, 149

add routing mode 160
create and edit process routings 149
define 56, 149

graphically 150
deleting a process or routing record 160
destination location 157
editing 59
editor 151

accessing 149
using 149

entity 150, 152
example 150
find process mode 161
layout window 151
location 152

628
logic 57, 59, 62, 95
move logic 157, 159
new process mode 160
operation logic 153
output part 156
process edit table 57, 59, 151
processing tools 159
records

edit 77
routing

adding additional blocks 160
block number 155
edit table 151, 155
entity to exit 161
path editing 160
rules 157
view routing button 161

tools window 151
using all entity type 153

Processing time
using entity attributes 284

ProClare 338
Product support 4
Program defaults 594

default values table 594
Progressive refinement 42
Promodel Player

promodel player 343
promodel player gold 344

PROMPT 534, 588
ProSetter 339
Protect model data 75
Pull systems

creating 290
send statement

pull systems 290
steps to build 290
types of 290

Q

Quantity 158
Queue 100, 103

by type 116
define 103

color 103
drawing 103
entity preemption 103
first in, first out (fifo)
highest attribute value 116

last in, last out (lifo)
lowest attribute value 116
move 103
no queuing 116
run-time visibility 103
style 103
width 103

Queue-up
bridge 274
conditions 273
situations 273
unrealistic 273

Queuing 278

R

RAND() 61, 536
RANDOM 428
Random

numbers 266
streams 50

Rate of flow 190
Rate, tank flow 190, 201, 202, 203
RDB files 265
RDT files 265
RDW files 265
READ 458, 537, 588
Read data 262
REAL 231, 233, 539, 588
Real number

 see glossary 603
Real numbers 406
REAL() 540
Recharging strategies 282
Reclaim trigger events 272, 275
Record

append
to table 77

copy 77
information 78

between records 78
delete

from a table 76
insert in a table 77
move in a table 77
paste 77

Rectangle
draw 326

Reference
see glossary 603

 ProModel 629
User Guide
view 86
Refinement, progressive 42
Refresh layout 90, 94
Region

see glossary 603
Registration

network installation 26
stand-alone pc 24

Rejection, claim attempt 271
Relational operators 408
Relationships

cause-and-effect 36
Remove view 85
RENAME 118, 186, 541, 588
Rename

views 85
RENAME AS 155, 156
Replace, find and 311
Replications 44, 45

running a specific replication 351
REPORT 352, 542, 545, 588
Reports 382

view 65
Requirements

hardware 15
RES() 132, 406, 407, 412, 467, 471, 506, 543, 565, 570, 587
RESET 537, 544, 581, 582, 585, 588
RESET STATS 352, 545, 588
Reset window positions 90, 91
Resolution

grid lines 87
Resource request 274

logic 276
priorities 269
priority 269, 276

Resource statistics 277
RESOURCE() 175, 305, 546, 547, 587
Resource-related operation statements 436

free 483
get 486
graphic 492
jointly get 506
use 573
wait...until 578

Resources 54, 95, 132
accessing 132
closest 144
cost 184, 186

general statistics report 386
create 132

new resource 134
define 58

definition 132
downtimes 133, 138

clock 138
define 138
usage 139

dynamic 276
dynamic resources 136
edit 132, 133

table 133
entity search rules 144
example 132
general statistics report 387
graphic 134
graphics 329

window 133, 134
group 241
home node 143
icon 133
least utilized 144
logic 134
longest idle 144
motion 144
move 82
multiple resource graphics 136

example 137
multiple, single-unit resources 138
multi-unit 137

vs. multiple single-unit 137
name 133
node logic

editor 146
example 147

notes 134
park search 134, 145

edit table 146
path network 143
people as 282
point

see glossary 604
preemption 140

examples 142
matrix 141

priorities 140
shift downtime 141

res() 132
resource points 134, 147

adding 148
deleting 148
moving 148

search
routines 145
rules 144

630
see glossary 603
selecting 288
shift & break nodes 143
specifications 134, 143
states by percentage

general statistics report 387
static resources 135
statistics 133
units 133
variability

adding 55, 58
work search 134, 145

edit table 145
Resource-specific system functions 435, 587

last() 507
next() 526
ownedresource() 528
resource() 546, 547

ResourceUnit() 547
Response 49

variables 37
Response time 283

minimize 282
RESQTY() 548, 587
RETURN 247, 549, 588
Return home 276
Return home if idle 143
Right-click

editing 80
menus 94
simulation menu 370

Rotate
object 330
text 102

ROUND() 247, 410, 551
ROUTE 156, 383, 499, 552, 559, 588
Routing

block 155
color 94
edit table 57, 59
logic 57, 59, 62
move logic 159
path

color 87, 89
edit 160
move 81
show 83, 92, 94
types 89

priority
see glossary 604

process
create 149

edit 149
quantity 158
start new routing block 158
table

* 158
block number 158

type
related 89
selected 89
unselected 89

Routing rules 415
alternate 416
backup 417
continue 418

dynamic priority changing 418
dependent 420
dialog box 415
empty 421
first available 422
full 431
join 423
load 424
longest unoccupied, (lu) 425
probability 427
random 428
send 429
turn 430
user condition 432

Routing, user condition 284
Rule field, routing edit table 415
Rules

dialog box 115
location 97

Run
length 47

calendar date 348
time only 348
weekly time 348

model 11, 62, 347
non-terminating simulations 46
simulation 355
terminating simulations 45

Run-time
controls 355, 369

animation panning 369
clock display 369
identifying location name 370
simulation speed 369

end simulation 356
errors

already routed 158
no routing defined 158

 ProModel 631
User Guide
file menu 355
help menu 368
information menu 363

arrays 93, 364
locations 93, 364
status light 364
variables 93, 364

interact menu 368
subroutines 368

interface 242
advantages 242
creating 243
defining 243, 353
example 244
model parameters 352, 353
numeric range 243
parameter name 243
prompt 243
record range 243
text 243

menus 355
models, creating 11
options menu 356

animation off/on 356
debug option 356, 357
trace output 356
user pause 356
zoom 356

pause/resume simulation 356
simulation menu 356
window menu 368

S

Save
and run 347
model 69
model as 69

Scale
grid 88

Scenarios 347, 353
defining 354
parameters 353

Scheduled maintenance 282
Scheduling a simulation project 36
Scope 34
Scroll

arrow, see glossary 604
bar, see glossary 604
box, see glossary 604

Search
entity search rules

closest 144
longest waiting 144
maximum value 144
with minimum value 144

park 145
resource search rules

closest 144
least utilized 144
longest idle 144

routines 145
work 145

Search, find and replace 311
SEC 411, 457, 472
Seconds 411, 412, 472
SED files 265
Segments 125
SEND 290, 416, 429, 438, 554, 588
Sensitivity analysis 33
Separation distance, bridge 271
Serviceable nodes 269
SETRATE 556, 588
Settings 83

layout 86
printer 74

Setup and installation 15
hardware requirements 15
network version 17

grant rights and permissions 19
install programs 19

stand-alone pc 15
SFT files 265
Shell 185, 604
Shift

assignments 171
locations 172
overlapping downtimes 177
priorities 173
resources 172

units 172
selecting shift files 172
shift & break

logic 174
functions & statements 174
preemption 175

sequence of events 174
start times 173
usage 171

begin time 169
colors

customize 170

632
copy a shift 170
definition 168

accessing 168
advantage of shifts 168
block begin & end time 169
changing color 170
deleting a block 170
deselecting a block 169
drawing a block 169
duplicating a block 170
editor 168

menus 168
resizing a block 169
selecting an existing block 169

downtime
principles 175

examples 176
locations 175
overlapping downtimes 177
preemption 176
resources 177

priorities 141
draw block 169
editor 168

menus 168
end time 169
file 264
priorities

break 173
end shift 173
off-shift 173
start break 173

shift & break logic 305
break logic 305
functions & statements 305
off-shift logic 305
pre-break logic 305
pre-off-shift logic 305
sequence of events 305

Shift Library 340
Shifts & breaks 282

logic statements
priority 533
skip 557

system functions 435
dtleft() 473
forlocation() 480
forresource() 482
resource() 546, 547

Shift-specific system functions 587
forlocation() 587
forresource() 587

Show
conveyors and queues 103
grid 83, 92, 94, 320
hidden networks 94
networks 83, 92
routing paths 83, 92, 94

SimRunner 370
benefits 371
define

input factors 371
objective function 371

stage three simulation optimization 372
starting a new project 371

Simulation
animation off 64
focus 37
menu 347

description 68
during run time 356
model parameters 347
options 347
running a model 347
run-time

end simulation 356
pause/resume 356

save & run 347
scenarios 347

non-terminating 44, 45
running 46

options 63, 348
clock precision 349
common random numbers 350
customized reporting 352
disable

animation 349
cost 349
time series 349

display notes 349
maximum run length 349
output

path 348
reporting options 350

batch mean 350
interval length 351
number of replications 351
periodic 351
running a specific replication 351
standard 350

pause at start 349
run length

calendar date 348
time only 348

 ProModel 633
User Guide
weekly time 348
pitfalls 52
planning

data gathering 38
steady-state 45, 46, 48
steps 31

analyzing the output 51
building the model 41
conducting experiments 43
defining the system 36
planning the study 32
reporting the results 51

terminating 44, 46, 48
running 45

Single-section conveyors 279
Sizing 82
SKIP 174, 305, 557, 588
Snap

lines to border 161
to grid 82, 83, 94

Snap to grid
off 280
on 280

SOUND 558, 588
Spacing

load 280
Speed

and distance 124
bridge 269
control bar 63
conveyor 106, 278
crane bridge 273
factor 126
hoist 269
horizontal 283
simulation

run-time control 369
traveling empty/full 144
vertical 283

SPLIT AS 103, 104, 118, 155, 156, 157, 186, 226, 383, 459,
463, 493, 509, 559, 571, 588
Spreadsheet

external file 588
SQRT() 561
Square

draw 326
Square root 561
Stage one

pre-analysis 371
Stand-alone PC

setup and installation 15
Start new block 158

Stat::Fit 307
State

initial 44
terminating 44

State Chart 392
Statements 436

and expression groups 587
blocks 436
control 436
cost related 499, 500, 501
entity-related operation 436
general action 436
nested 297
new 367
resource-related 436

Static resources 135
Statistics 97

basic 97
cost 601
displaying on screen 289

system throughput 289
total system time for entities 289

none 97
observation-based 232
resource 277
time 605
time series 97
time-weighted 232
view 65

Status
light 100, 364

place on icon 329
see glossary 604

Steady-state 43, 46, 47
simulation 45, 46, 48

Step
back 331
front 331
trace 64

STOP 562, 588
Stream, distributions 437
Streams 266

accessing 266
definition 266
edit table 266
example 267
multiple 50
random number 50, 266
usage 266

String
see glossary 604

Strings

634
character 403
expressions 409, 412, 588

char() 412
character strings 412
concatenation operators 412
ent() 412
format() 412
loc() 412
numeric expressions 412
res() 412

functions
char() 456
format() 481

Submodel
merge 71
tank 188

import 188
uses 10

Submodels
tank

tank_dec 198
tank_inc 198
tank_risetrigger 199

Subroutines 95, 246, 409
accessing 246
and macros 588
create 246
definition 246
edit 246

table 246, 248
example 248
executing interactive subroutines during run time 368
external 250
format 247
interactive 249
logic 247, 249
parameters 247, 248
return statement 247
subroutines vs. macros 250
tank

tank_cap 200
tank_dooperation 201
tank_doprep 203
tank_empty 194
tank_falltrigger 200
tank_fill 193
tank_freecap 200
tank_godown 201
tank_godownsched 202
tank_rate 207
tank_selectinput 206
tank_selectoutput 204

tank_setlevel 197
tank_setstate 204
tank_transfer 195
tank_transferdownto 196
tank_transferupto 195
tank_updatestats 206

type (none, real, integer or interactive) 246
valid usage 247

Subtraction 408, 409, 413
Supply chains & logistics 7
Switches 83
Symbols and notation

keyboard 3
logic 3
text 3

System
definition 36, 37
menu, see glossary 604

System functions 409, 435
break logic-specific 587
downtime-specific 587
entity-specific 587
location-specific 587
node logic-specific 587
preemption logic specific 587
resource-specific 587
shift-specific 587

System throughput 289

T

Table
editing 76
functions 256

accessing 256
defining 256
edit table 257
editor 256
examples 256, 257

Table functions 409
TAKE 463
TANK_CAP 200
TANK_DEC 198
TANK_DOOPERATION 201
TANK_DOPREP 203
TANK_EMPTY 194
TANK_FALLTRIGGER 200
TANK_FILL 193
TANK_FREECAP 200
TANK_GODOWN 201

 ProModel 635
User Guide
TANK_GODOWNSCHED 202
TANK_INC 198
TANK_RATE 207
TANK_RISETRIGGER 199
TANK_SELECTINPUT 206
TANK_SELECTOUTPUT 204
TANK_SETLEVEL 197
TANK_SETSTATE 204
TANK_TRANSFER 195
TANK_TRANSFERDOWNTO 196
TANK_TRANSFERUPTO 195
TANK_UPDATESTATS 206
Tanks 100, 101, 188

add labels and figures 189
basic concepts 189
border color 188
capacity

maximum 97
change between a tank and a gauge 189
define 188
edit 188
fill color 188
flow time step 190
levels 189
rate of flow 190
submodel 188

import 188
Tanks, time units 190, 201, 202, 203
Task move priority 269
Technical support 4
Terminating

simulation 44, 46, 48
running 45

state 44
Termination logic 180

execution time 180
Testing

hypothesis 48
Text 3

clear 78
copy 78
cut 78
dialog box 102
file

view 63
label 100
paste 78
see glossary 605

THEN 298, 496
THEN FREE 303, 524
THREADNUM() 563
Throughput 289

Tile 91
Time 124, 126

between autosaves 335
blocked 277
default grid time 88
expressions 409, 411

colon notation 412
load delivery 278
move 277
statistics 605
studies 39
time and condition dependent activities 37
time-weighted statistics 232
units 179

Time units, tank 190, 201, 202, 203
TIMELEFT() 301, 564, 587
Timeplot 396
TIMESUSED() 565, 587
Title of model 179
Toolbar 92
Tools

button bar 219
menu

description 68
options

confirm record deletion 334
long build menu 334
recalculating adjusted paths 334

settings
directories 334

processing 159
TRACE 566, 588
Trace 356

continuous 64, 362
filtered 362
off 361
options 361
output to file 363
step 64, 361
window 11

Training 8
Trajectory, hoist and bridge 275
Transfer lines 7
Transfering a license key 26
Translation status window 355
Travel to park 277
TRC files 265
Triangle

draw 326
Triangular distribution 437
Trigger events, reclaim 275
TRUNC() 567

636
TURN 430
Two-dimensional array 236
Two-level design 49
Type 289

conversion functions 435
ent() 476
real() 540
trunc() 567

numeric 407
Type of experimentation 34, 35

U

Unbatching 286
UNGROUP 103, 104, 186, 286, 291, 383, 459, 463, 493, 509,
559, 568, 571, 588
Ungroup

graphics 222, 317
objects 317

Uniform distribution 437
Units 97

location 106
UNITS() 570, 587
UNLOAD 103, 104, 229, 287, 459, 463, 493, 509, 559, 568,
571, 588
Unlock

graphics 222
UNTIL FULL 157, 421
Usage-based downtime 139
USE 121, 140, 183, 186, 269, 275, 277, 301, 304, 358, 438,
485, 486, 573, 588
User

distributions 40, 54, 259
accessing 259
continuous 261
cumulative 259
definition 259
discrete 259
edit table 259
table 259
type (discrete or continuous) 259

pause 64
USER CONDITION 417, 432
User-defined distribution 437
Utilization

graphs 13

V

Valid expressions & statements 587, 589
fields evaluated during simulation 591
fields evaluated only at translation 589
groups by field 589

Validation, model 43
Variability

resources
adding 55, 58

VARIABLE() 575, 587
Variables 95, 231, 409

accessing 231
displaying information during run time 93, 364
edit

icon 233
table 231

global variable definition 231
icon 231

editing 233
placement 232
removal 233

initial value 231
input 37
layout 232
local

example 233
variables 233

response 37
statistics 231
type (real or integer) 231

Vehicles, industrial 282
Verification, model 42
Vertical bridge crane 283
Vertical speed 283
VIEW 576, 588
View 64, 84, 92, 94

add 85
define 84
location 99
managing 85
menu 225

accessing 83
commands 90
description 67
edit table 90

color 90
edit table font 90

layout settings 86
background color 87, 88
grid settings 87, 88

 ProModel 637
User Guide
routing path color 87, 89
refresh layout 90
reset window positions 90
settings 83
switches 83
views 84, 92

managing 85
reference

in model logic 86
zoom 84, 86, 92

to fit layout 84, 92
model

reports 65
statistics 65
text 72

move
down 85
up 85

output 12
reference

in model logic 86
remove 85
rename 85
routing 161
select 84

view 85
with shortcut key 85

set view 85
text 72

file 63
Views

defining 84
selecting 85

W

WAIT 140, 155, 174, 175, 183, 299, 301, 304, 305, 358, 385,
441, 486, 564, 577, 588
WAIT UNTIL 115, 146, 174, 190, 234, 240, 304, 305, 352, 384,
385
WAIT...UNTIL 441, 578, 588
WARMUP 352, 579, 588
Warm-up period 46

determine 46
initial 47

Weeks 411, 457, 472
Weibull distribution 437
What’s new

features
activex objects 596

statements and functions 367
WHILE...DO 237, 242, 297, 441, 447, 502, 580, 588
Window menu 91

description 68
during run-time 368

WIP 289, 360, 554
WK 411, 457, 472
WMF

importing a background graphic 221
Work search 134, 145

and park search 276
edit table 145
exclusive 276
non-exclusive 276
see glossary 605

WRITE 263, 458, 581, 585, 588
Write data 262
WRITELINE 263, 458, 582, 585, 588
WWW.PROMODEL.COM 67

X

XSUB() 246, 583, 587
external subroutine calls 583

XWRITE 263, 458, 481, 581, 585, 588

Z

Zero units 133
Zone

active operation 276
blocking 281
claim examples 271
claims 271
extended movement 271

Zoom 63, 64, 84, 86, 92, 94
animation 363
custom 86
to fit layout 84, 92, 94

638

	Disclaimer
	Copyright Information
	1/06

	Table of Contents
	About the User Guide 1
	Symbols and Notation 3
	Product Support 4
	Modeling Services 5
	Reporting Suggestions 5
	Chapter 1: Getting Started 7
	Welcome to ProModel 7
	Using ProModel 9

	Chapter 2: Installation and Registration 15
	General Setup Information 15
	Installation Procedure for a Stand-alone PC 15
	Installation Procedure for Network Version 17
	Registering ProModel 24

	Chapter 3: Planning the Model 31
	Steps for Doing Simulation 31
	Building a Model 53
	Running a Model 62
	Viewing Model Statistics & Reports 65

	Chapter 4: Modeling Environment 67
	Menu Bar 67
	File Menu 68
	Edit Menu 76
	View Menu 83
	Window Menu 91
	Help Menu 91
	Toolbars 92
	Right-Click Menu 94

	Chapter 5: Building the Model: General Elements 95
	Locations 96
	Entities 118
	Path Networks 123
	Resources 132
	Processing 149
	Arrivals 163
	Shifts & Breaks 168
	General Information 179
	Cost 183
	Tanks 188
	Pre-defined Tank Subroutines 193
	Background Graphics 218

	Chapter 6: Building the Model: Advanced Elements 225
	Attributes 225
	Variables 231
	Arrays 235
	Macros 241
	Subroutines 246
	Arrival Cycles 252
	Table Functions 256
	User Defined Distributions 259
	External Files 262
	Streams 266
	Material Handling Systems 269
	Modeling Tips 284

	Chapter 7: Building the Logic 293
	Logic Builder 293
	Operation Logic 299
	Preemption Process Logic 300
	Routing Move Logic 302
	Shift & Break Logic 305

	Chapter 8: Using Auxiliary Tools 307
	Expression Search 308
	Graphic Editor 312
	Options 334
	Customize 336
	Power Tools 337

	Chapter 9: Running the Model 347
	Simulation Options 348
	Model Parameters & Scenarios 352
	Running the Simulation 355
	Run-Time Menus & Controls 355

	Chapter 10: Reports and Graphs 373
	Output Viewer 3DR 374
	Creating Reports 382
	Creating Charts 389

	Chapter 11: Language Elements and Expressions 403
	Names 404
	Keywords 405
	Numbers 406
	Character Strings 407
	Operators 408
	Numeric Expressions 409
	Boolean Expressions 410
	Time Expressions 411
	String Expressions 412
	Operator Precedence 413

	Chapter 12: Routing Rules 415
	Alternate 416
	Backup 417
	Continue 418
	Dependent 420
	Empty 421
	First Available 422
	Join 423
	Load 424
	Longest Unoccupied 425
	Most Available 426
	Probability 427
	Random 428
	Send 429
	Turn 430
	Until Full 431
	User Condition 432

	Chapter 13: Logic Elements 435
	Functions 435
	Statements 436
	Distribution Functions 437
	Priorities 438

	Chapter 14: Statements and Functions 439
	Accum 439
	Activate 441
	Animate 442
	ArrayDims() 443
	ArrayDimSize() 444
	Assignment Statement 445
	Begin 446
	Break 447
	BreakBlk 448
	CalDay() 449
	CalDOM() 450
	CalHour() 451
	CalMin() 452
	CalMonth() 453
	CalYear() 454
	Cap() 455
	Char() 456
	Clock() 457
	Close 458
	Combine 459
	Comments 461
	Contents() 462
	Create 463
	Debug 465
	Dec 466
	Display 467
	Do...Until 468
	Do...While 469
	Down 470
	DownQty() 471
	DTDelay() 472
	DTLeft() 473
	DynPlot() 474
	End 475
	Ent() 476
	Entity() 477
	Entries() 478
	Exp() 479
	ForLocation() 480
	Format() 481
	ForResource() 482
	Free 483
	FreeCap() 484
	FreeUnits() 485
	Get 486
	GetCost() 488
	GetReplicationNum() 489
	GetResRate() 490
	Goto 491
	Graphic 492
	Group 493
	GroupQty() 495
	If...Then...Else 496
	Inc 498
	IncEntCost 499
	IncLocCost 500
	IncResCost 501
	Int 502
	Join 504
	Jointly Get 506
	Last() 507
	Ln() 508
	Load 509
	Loc() 511
	LocState() 512
	Location() 513
	Log 514
	MapArr 516
	Match 518
	Move 520
	Move For 522
	Move On 523
	Move With 524
	Next() 526
	Order 527
	OwnedResource() 528
	Pause 529
	PercentOp() 530
	PercentUtil() 531
	Preemptor() 532
	Priority 533
	Prompt 534
	Rand() 536
	Read 537
	Real 539
	Real() 540
	Rename 541
	Report 542
	Res() 543
	Reset 544
	Reset Stats 545
	Resource() 546
	ResourceUnit() 547
	ResQty() 548
	Return 549
	Round() 551
	Route 552
	Send 554
	SetRate 556
	Sound 558
	Split As 559
	Sqrt() 561
	Stop 562
	ThreadNum() 563
	TimeLeft() 564
	TimesUsed() 565
	Trace 566
	Trunc() 567
	Ungroup 568
	Units() 570
	Unload 571
	Use 573
	Variable() 575
	View 576
	Wait 577
	Wait Until 578
	Warmup 579
	While...Do 580
	Write 581
	WriteLine 582
	Xsub() 583
	Xwrite 585

	Introduction
	About the User Guide
	Chapter 1 Getting Started
	Chapter 2 Installation and Registration
	Chapter 3 Planning the Model
	Chapter 4 Modeling Environment
	Chapter 5 Building the Model: general elements
	Chapter 6 Building the Model: advanced elements
	Chapter 7 Building the Logic
	Chapter 8 Using Auxiliary Tools
	Chapter 9 Running the Model
	Chapter 10 Reports and Graphs
	Chapter 11 Language Elements and Expressions
	Chapter 12 Routing Rules
	Chapter 13 Logic Elements
	Chapter 14 Statements and Functions
	Appendix A
	Appendix B
	Glossary
	Bibliography

	Symbols and Notation
	Keyboard
	Text
	Logic

	Product Support
	User Profile
	Problem Description
	Telephone (888) PROMODEL
	After Hours Support (801) 362-8324
	Fax (801) 226-6046
	FTP ftp.promodel.com
	Email support@promodel.com

	Modeling Services
	Reporting Suggestions

	Chapter 1: Getting Started
	Welcome to ProModel
	Where to Go from here
	Training

	Using ProModel
	Building Models
	Edit Tables
	Dialog Boxes
	Logic Builder
	Model Merging and Submodels
	On-Line Help

	Running Models
	Creating Run-Time Models
	Trace Window
	Location Information Windows
	Viewing Output
	Graphical Analysis
	Utilization Graphs
	Timeplots

	Chapter 2: Installation and Registration
	General Setup Information
	Hardware Requirements
	Minimum
	Recommended

	Installation Procedure for a Stand-alone PC
	Installation Procedure for Network Version
	Overview
	Installation Types
	Local Machine Install
	Pros
	Cons

	File Server Install
	Pros
	Cons

	Set Up Network License Server

	Local Machine Install
	File Server Install
	Install Programs & Grant Rights/ Permissions
	Workstation Set up

	Set Up License Server
	Set Up License Server Manually
	Find a License Key Server on a Routed Network

	Registering ProModel
	Registration for a Stand-alone PC Installation
	Registration for a Network Installation
	Transferring Your Software Key
	Moving a License
	Terminating a License

	Checking for ProModel Updates
	Software License Key FAQ

	Chapter 3: Planning the Model
	Steps for Doing Simulation
	Introduction
	General Procedure
	Procedure for Conducting a Simulation Study

	Step 1: Planning the Study
	Defining Objectives
	Identifying Constraints
	Preparing a Simulation Specification
	Developing a Budget and Schedule

	Step 2: Defining the System
	Determining Data Requirements
	Using Appropriate Data Sources
	Making Assumptions
	Converting Data to a Useful Form
	Frequency Distributions of Delivery Times
	Total Number of Observations = 152

	Documenting and Approving the Data

	Step 3: Building the Model
	Progressive Refinement
	Incremental Expansion
	Model Verification
	Model Validation

	Step 4: Conducting Experiments
	Terminating Versus Non-terminating Simulations
	Running Terminating Simulations
	Running Non-terminating Simulations
	Comparing Alternative Systems
	Factorial Design
	Use of Random Streams

	Step 5: Analyzing the Output
	Step 6: Reporting the Results
	Pitfalls in Simulation
	Summary

	Building a Model
	Modeling Scenario
	Model Elements
	Locations
	Entities (Parts)
	Arrivals
	Processing
	Resources
	Path Networks
	Attributes
	User Distributions

	Phased Modeling Approach
	Phase 1: Basic Model Elements
	Phase 2: Adding Resources & Variability
	Phase 3: Additional Operations

	Phase 1: Basic Model Elements
	General Information
	Importing a Background Graphic
	Defining Locations
	Layout Window (maximized)
	Location Edit Table

	Defining Entities
	Defining Arrivals
	Defining Process Logic
	Process Edit Table
	Routing Edit Table
	Process and Routing Logic

	Phase 2: Adding Resources & Variability
	Defining Path Networks
	Path Network Edit Table
	Path Segment Edit Table

	Defining Resources
	Process Editing
	Process Edit Table and corresponding operation logic
	Routing Edit Table

	Process and Routing Logic

	Phase 3: Additional Operations
	Defining Attributes
	Defining a Distribution
	New Location, Entity, and Arrival
	Defining Location Downtimes
	Process and Routing Logic

	Running a Model
	Simulation Options
	Animation Screen
	Options Menu
	Information Menu

	Viewing Model Statistics & Reports

	Chapter 4: Modeling Environment
	Menu Bar
	File Menu
	File Management
	File Management Procedures
	Backup File

	Model Merging
	Merge Model
	Merge Submodel

	View/Print Model Text
	View Text
	Print Text
	Print Layout
	Printer Setup

	Model Packaging/Data Protection
	Creating a Model Package
	Installing a Model Package

	Edit Menu
	Editing Tables
	Editing Process Records
	Editing Notes Windows
	Editing Logic Windows
	Editing Background Graphics
	Editing & Moving Graphics
	Special Considerations for Moving Graphics

	View Menu
	Switches
	Toolbars
	Settings
	Views
	Defining & Selecting Views
	Managing Your Views
	Using Views at Run-time
	Referencing a View in Model Logic

	Zoom Feature
	Layout Settings
	Grid Size
	Grid Scale
	Background Color
	Custom Colors
	Routing Path Color
	Routing Path Types

	Edit Tables
	Edit Table Fonts
	Edit Table Color

	Commands

	Window Menu
	Help Menu
	Toolbars
	File
	Layout
	View
	Build Basic
	Build Advanced
	Simulation
	Simulation Information
	Debug
	Tools

	Right-Click Menu

	Chapter 5: Building the Model: General Elements
	Build Menu
	Locations
	Locations Editor
	Location Edit Table
	Location Graphics Window
	New mode
	Add mode

	Location Graphics
	Counter Dialog Box
	Gauge/Tank Dialog Box
	Text Dialog Box
	Library Graphic Dialog Box
	Queue/Conveyor Dialog Box
	Queues
	Conveyors
	Conveyor Graphics Display
	Conveyor Animation
	Conveyor Options Dialog Box

	Capacities and Units
	Capacities
	Units
	Multi-Capacity, Multi-Unit, and Multiple Locations
	Defining a Multi-Unit Location

	Location Downtimes
	Clock Downtime Editor
	Entry Downtime Editor
	Usage Downtime Editor
	Setup Downtime Editor
	Called Downtime Editor
	Location Priorities and Preemption
	Assigning priorities
	Minimum Required Priority Levels for Preempting at a Location
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Special Notes Regarding Location Downtimes

	Rules Dialog Box
	Selecting Incoming Entities
	Queuing For Output
	Selecting a Unit
	Rules Dialog box Example

	Entities
	Entities Editor
	Defining Entities
	Entity Graphic Dimensions
	Defining Multiple Entity Graphics
	Preemptive Entities
	Example of Preemptive Entities

	Path Networks
	Path Networks Editor
	To create a new path from an existing node
	To delete a joint
	To add a joint
	To highlight a path on the layout and in the Path Segment edit table

	A Typical Path Network
	Path Segment Edit Table
	Automatic Time and Distance Calculation
	Interfaces Edit Table
	Mapping Edit Table
	Mapping Example

	Nodes Edit Table
	Pre-translation check for Path Networks

	Resources
	Typical Use of Resources
	Resources Editor
	Resources Edit Table
	Resource Graphics Window

	Static Resources
	Dynamic Resources
	Multiple Resource Graphics
	Multiple Resource Graphics Example

	Multi-Unit Resources vs. Multiple Single-Unit Resources
	Multi-Unit Resources
	Multiple Single-Unit Resources

	Resource Downtimes
	Clock-Based Downtime
	Usage-Based Downtime

	Resource Priorities and Preemption
	Resource Shift Downtime Priorities
	Resource Preemption Matrix
	Resource Specifications Dialog Box
	Resource Search Routines
	Work Search Edit Table
	Park Search Edit Table

	Node Logic Editor
	Node Logic Example

	Resource Points

	Processing
	Using the Processing Editor
	Example Model

	Defining Entity Processing
	Processing Editor
	Process Edit Table
	Using the “ALL” Entity Type
	1. All entities have a common operation and a common routing.
	2. All entities have common operations but individual routings.
	3. All entities have a common routing but individual operations.

	Routing Edit Table
	Routing Rule Dialog Box
	Routing Move Logic

	Processing Tools
	New Process Mode
	Editing a Routing Path

	Add Routing Mode
	Find Process Mode
	View Routing
	Snap Lines to Border
	Show Only Current Entity

	Arrivals
	Arrivals Editor
	Arrivals Edit Table
	Defining Arrivals
	Independent Arrivals
	Arrival Logic

	Shifts & Breaks
	Shift Editor
	Shift Editor Menus

	Drawing a Shift or Break Block
	Selecting a Block
	Resizing a Block
	Editing the Begin or End Time
	Deleting a Block
	Duplicating a Specific Day Shift
	Customizing Shift and Break Colors
	Shift Assignments
	Assigning Shifts
	Shift & Break Logic
	Functions and Statements
	Preemptions to Off-Shift or Break Logic

	Shift Downtime Principles
	Locations Shift Downtime Principles
	Shift Downtimes for Locations
	Example 1 (a)
	Example 1 (b)
	Preempting Off-Shift Locations
	Example 2
	Overlapping Downtimes
	Example 3

	Resource Downtime Principles
	Shift Downtimes for Resources
	Example 1
	Example 2

	General Information
	General Information Dialog Box
	Initialization Logic
	Termination Logic
	Execution Time of Initialization and Termination Logic
	Graphic Library File

	Cost
	Cost Dialog Box
	Locations
	Resources
	Entities

	Building a Model with Costing
	Preemption/Downtime
	Join/Load
	Combine/Group
	Special Cost Handling
	Costing Output Statistics
	Locations
	Resources
	Entities

	Enable or Disable Costing

	Tanks
	The Tank Submodel
	Basic Concepts
	Tank Levels
	The Flow Time Step
	Rate of Flow
	Tank States
	Over Filling/Emptying Tanks
	Tank Downtimes

	Tank Logic Builder

	Pre-defined Tank Subroutines
	Tank_Fill
	Tank_Empty
	Tank_Transfer
	Description
	See Also

	Tank_TransferUpTo
	Description

	Tank_TransferDownTo
	Description
	See Also

	Tank_SetLevel
	Description
	See Also

	Tank_Inc
	Description

	Tank_Dec
	Description
	See Also

	Tank_RiseTrigger
	Description
	See Also

	Tank_FallTrigger
	Description
	See Also

	Tank_Cap
	Description

	Tank_FreeCap
	Description

	Tank_DoOperation
	Description
	See Also

	Tank_GoDown
	Description

	Tank_GoDownSched
	Description

	Tank_DoPrep
	Description
	See Also

	Tank_SetState
	Description

	Tank_SelectOutput
	Description
	See Also

	Tank_SelectInput
	Description
	See Also

	Tank_UpdateStats
	Description

	Tank_Rate
	Description
	See Also

	Pre-defined Data Elements
	Statistics

	Defining Tank Control Subroutines
	Examples of Tank Control Logic
	Filling from an Entity
	Initializing and Replenishing Supply Tanks
	Mixing and Reactor Tanks
	Emptying to an Entity
	Tank Transfers
	Selecting from Multiple Input or Output Tanks
	Split Transfers
	Varying the Transfer Rate
	Dynamically Suspending Flow
	Dynamically Terminating a Flow
	Defining Trigger Levels
	Processing Multiple Products
	Showing Pipes
	High-Rate Entity Processing
	Special Notes

	Background Graphics
	Background Graphics Editor Modes
	Front of Grid Mode
	Behind Grid Mode

	Background Graphics Editor
	Library Graphics Window
	Tools Button Bar
	Edit Menu
	Importing a Graphic
	Exporting a Graphic

	Graphics Menu

	Chapter 6: Building the Model: Advanced Elements
	Attributes
	Attribute Types
	Entity Attributes
	Location Attributes

	Memory Allocation for Attributes
	Attributes vs. Local Variables
	Cloning Attributes
	Process Logic
	Routing Table

	Attribute Edit Table
	Example of Attributes in Logic
	Attributes and the JOIN Statement
	Attributes and the GROUP/ UNGROUP Statements
	Attributes and the LOAD/ UNLOAD Statements
	Attributes and the COMBINE Statement

	Variables
	Variable Edit Table
	Variable Layout
	Editing a Variable’s Icon
	Local Variables
	Example

	Arrays
	Example Arrays
	One-dimensional array
	Two-dimensional array

	Arrays Edit Table
	Initializing Arrays
	Import Data into Arrays
	Import from an Excel Spreadsheet
	Import from a SQL Database

	Export Arrays to Spreadsheets
	Using Arrays
	Notes on Arrays

	Macros
	Macro Editor
	Run-Time Interface
	Run-Time Interface Example

	Resource Grouping

	Subroutines
	Subroutine Editor
	Subroutine Format
	Subroutine Example
	Subroutines Edit Table
	Subroutine Parameters
	Subroutine Logic

	Interactive Subroutines
	External Subroutines
	Subroutines vs. Macros

	Arrival Cycles
	Arrival Cycles Edit Table
	Arrival Cycles Example
	Defining the Arrival Cycle
	Assigning Arrivals to the Arrival Cycle

	Cumulative Cycle Tables
	Arrival Cycles by Quantity
	Example 1
	Example 2

	Table Functions
	Table Functions Editor
	Example 1
	Example 2

	Table Function Edit Table

	User Defined Distributions
	User Distribution Edit Table
	Discrete Distributions
	Discrete (probability mass function)
	Discrete (cumulative distribution function)

	Continuous Distributions

	External Files
	External Files Editor
	File Types
	General Read File
	General Write File
	Entity-Location File
	Arrivals File
	Shift File
	DLL File
	Excel File
	Other External Files
	Open Files

	Streams
	Streams Edit Table
	Using Random Number Streams
	Stream Example

	Material Handling Systems
	Crane Systems
	Creating Multi-Bridge Crane Systems
	Crane Priorities, Preemption & Bridge Bump-Away
	Crane Operations
	Crane Animation
	Crane Specifications
	Handling Zone Claims In Multi- Crane Envelopes
	Case Examples of Zone Claims
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5

	Treatment of Potential Queue-Up Situations
	Conditions for No Queue-Up
	Bridge Motion after Queue-Up

	Moving Idle Cranes can Respond to Resource Requests
	Reclaim Trigger Events
	Other Crane Operation Rules
	Crane Operations Notes
	Nodes, Work, and Park Searches
	Crane Resource Statistics
	Special Case-Blocked Time Accrual for Moving to Park

	Conveyors
	Conveyor Simulation Benefits
	Conveyor Types
	Accumulating & Non-Accumulating
	Single Section Conveyors
	Conveyor Networks
	Modeling Conveyor Systems
	Modeling Conveyors

	Automated Guided Vehicle Systems
	Modeling AGVS
	AGVS Simulation Benefits

	Manual Material Handling Systems
	MMHS Simulation Benefits

	Industrial Vehicles
	Modeling Industrial Vehicles
	Industrial Vehicle Simulation Benefits

	Automated Storage/Retrieval Systems
	Modeling AS/RSs
	Modeling an AS/RS as a Vertical Bridge Crane
	AS/RS Simulation Benefits

	Modeling Tips
	Using Entity Attributes
	Customizing Graphics
	Batching & Unbatching Entities
	Temporary Batching Using GROUP/UNGROUP
	COMBINE Statement
	LOAD/UNLOAD Statements
	ACCUM Statement

	Modeling Priorities
	Choosing a Processing Destination
	Selecting Resources
	Downtimes and Preemption

	Displaying Statistics On Screen
	Creating Pull Systems
	Types of Pull Systems
	Creating the Pull System

	Making Assemblies

	Chapter 7: Building the Logic
	Logic Builder
	Using the Logic Builder
	Logic Builder Components
	Selecting Statements
	Editing Statement Parameters
	Selecting Logic Elements
	Nested Functions & Statements
	Creating Expressions or Pasting Logic/Model Elements Only

	Operation Logic
	Preemption Process Logic
	Possible Effects of Delayed Preemption
	Functions for Defining Logic in a Preemption Process
	Preemption Process Example

	Routing Move Logic
	Move-Related Statements
	Related Logic Statements
	Statement Processing

	Shift & Break Logic
	Shift & Break Logic
	Functions and Statements

	Chapter 8: Using Auxiliary Tools
	Tools Menu
	Expression Search
	Expression Search Sub-Menu Choices
	Find
	Replace
	Search Next

	Find Expression
	Replace Expression
	Important Notes Regarding Expression Searches
	Local Find and Replace

	Graphic Editor
	Overview
	Graphic Editor Menus

	File Menu
	Opening a Graphics Library File
	Closing a Graphics Library File
	Saving a Graphics Library File
	Printing an Individual Graphic
	Printing an Entire Graphics Library

	Edit Menu
	Importing a Graphic
	Exporting a Graphic
	Copying a Graphic from One Library to Another

	Graphics Menu
	Group
	Ungroup
	Line Styles
	Fill Patterns
	Line and Fill Color
	Dimension

	Options Menu
	Grid Settings
	Show Grid
	Snap to Grid
	Background Color
	Zoom

	Window Menu
	Library Edit Buttons
	or...

	Manipulating Graphics
	Create New Graphics and Libraries
	Naming a Graphic
	Graphic Tools Button Bar
	Selector
	Text Tool
	Lines
	Arcs
	Triangles
	Squares and Rectangles
	Circles and Ellipses
	Chords and Pies
	Polygons
	Positioning Spot
	Status Lights
	Flip and Rotate
	Cut, Copy, and Paste
	Step Back and Step Front
	Line and Fill Color

	Editing a Library Graphic

	Options
	Directories
	Long Build Menu
	AutoSaving Files

	Customize
	Power Tools
	ProClare
	Tools
	Options

	ProSetter
	Products
	Locations

	Shift Library
	ProActiveX
	Overview
	Worksheets
	Drop-down lists, check boxes and text boxes
	Not Enabled and Partially Enabled
	Shift Editor Button
	Browse Button
	Comments
	Panes and Sections

	Controls Sheet
	Get (All)
	Build Model
	Save Model
	Run Simulation
	Open ProModel
	Load Model

	Macros

	Promodel Player
	Viewing Simulation Models
	Using Promodel Player
	Promodel Player Gold

	Chapter 9: Running the Model
	Simulation Menu
	Simulation Options
	General Options & Settings
	Output Reporting Options
	Running a Specific Replication
	Customized Reporting

	Model Parameters & Scenarios
	Model Parameters
	Scenarios
	Scenario Parameters Dialog

	Running the Simulation
	Run-Time Menus & Controls
	Run-Time File Menu
	Run-Time Simulation Menu
	Run-Time Options Menu
	Debug Option
	Debugging ProModel Logic
	Debugger Options Dialog Box
	Debugger Dialog Box
	Advanced Debugger Dialog Box
	Debugger Options Examples
	Debug Statement Example
	Global Change Example
	User Condition Example

	Trace Options
	Trace Mode
	Trace Off
	Trace Step
	Trace Continuous
	Filtered Trace...
	Output to File

	Animation Options
	Run-Time Information Menu
	Location Status Legend

	Dynamic Plots
	Basic Operation
	Starting Dynamic Plots
	Setting up a Plot
	Tree View
	Statistic List
	Chart View

	Dynamic Plot Configurations

	Advanced Operation

	Run-Time Window Menu
	Run-Time Interact Menu
	Run-Time Help Menu
	Run-Time Controls
	Run-Time Right-Click Menu
	SimRunner
	SimRunner Benefits
	Starting a New Project
	Stage one: Pre-Analysis
	Stage two: Simulation Optimization

	Chapter 10: Reports and Graphs
	Output Viewer 3DR
	Menu Bar
	File Menu
	View Menu
	Reports and Charts
	Sheet/Chart Properties
	Sheet Properties - Display Items
	Sheet Properties - Columns
	Chart Properties

	Tools Menu
	View Manager
	Next/Previous View
	Set as Default Style
	Options

	Window Menu
	Help Menu

	Toolbar
	File Tools
	Report and Chart Tools
	Option Tools
	Help Tool
	View Manager Tools

	Right-click Menu
	Right-click Menu in Reports
	Right-click Menu in Charts
	Right-click Menu for the Legend Area
	Right-click Menu for the Chart Area
	Right-click Menu for Titles and Labels

	Creating Reports
	Report Window
	Report Data
	General
	Entity Activity
	Entity Costing
	Entity States
	Failed Arrivals
	Locations Costing
	Location Setup
	Location States (Multiple Capacity)
	Location States (Single Capacity/ Tank)
	Locations
	Logs
	Node Entries
	Resources Costing
	Resource States
	Resources
	Variables

	Creating Charts
	Chart Window
	Chart Toolbar
	Legend Field
	Chart Area
	Display and Alias

	Category Chart
	Category Chart Properties
	Category Chart Example

	State Chart
	State Chart Selection Window
	State Chart Properties
	State Chart Example

	Histogram
	Time Weighted Values Histogram
	Selection Window
	Chart Properties
	Chart Properties: Data
	Chart Properties: Display

	Chart Example

	Simple Values Histogram
	Selection Window
	Chart Properties
	Chart Example

	Time Plot
	Time Weighted Values Time plot
	Selection Window
	Chart Properties
	Chart Properties: Data
	Chart Properties: Display

	Chart Example

	Simple Values Time plot
	Selection Window
	Chart Properties
	Chart Properties: Data
	The chart properties:data for the simple values time plot are the same as for the time-weighted values histogram. See “Chart Properties” on page 394.
	Chart Properties: Display

	Chart Example

	State Values Time plot
	Selection Window
	Chart Properties
	Chart Properties: Data
	Chart Properties: Display

	Chart Example

	Counts Time Plot
	Selection Window
	Chart Properties
	Chart Properties: Data
	The chart properties:data for the counts time plot are the same as for the time-weighted values histogram. See “Chart Properties” on page 394.
	Chart Properties: Display

	Chart Example

	Chapter 11: Language Elements and Expressions
	Language Elements
	Names
	Keywords
	Numbers
	Integers
	Real Numbers
	Name-Index Numbers
	Converting Between Numeric Types

	Character Strings
	Operators
	Mathematical Operators
	Relational Operators
	Comparison Operators
	Operator Precedence
	Expressions

	Numeric Expressions
	Boolean Expressions
	Time Expressions
	Examples
	Colon Notation for Time Values

	String Expressions
	Operator Precedence

	Chapter 12: Routing Rules
	Routing Rules
	Alternate
	Description
	Valid In
	See Also

	Backup
	Description
	Valid In
	See Also

	Continue
	Description
	Valid In
	See Also

	Dependent
	Description
	Valid In
	See Also

	Empty
	Description
	Valid In
	See Also

	First Available
	Description
	Valid In
	See Also

	Join
	Description
	Valid In
	See Also

	Load
	Description
	Valid In
	See Also

	Longest Unoccupied
	Description
	Valid In
	See Also

	Most Available
	Description
	Valid In
	See Also

	Probability
	Description
	Valid In
	See Also

	Random
	Description
	Valid In
	See Also

	Send
	Description
	Valid In
	See Also

	Turn
	Description
	Valid In
	See Also

	Until Full
	Description
	Valid In
	See Also

	User Condition
	Description
	Valid In
	See Also

	Chapter 13: Logic Elements
	Functions
	System Functions
	General System Functions
	Entity-Specific System Functions
	Resource-Specific System Functions
	Downtime-Specific System Functions
	Shift & Break System Functions

	General Functions
	Math Functions
	Type Conversion Functions

	Statements
	General Action and Control Statements
	Resource- and Entity-Related Operation Statements
	Statement Blocks

	Distribution Functions
	General Components

	Priorities

	Chapter 14: Statements and Functions
	Accum
	Entity-Related Operation Statement
	Description
	Valid In
	See Also

	Activate
	General Action Statement
	Description
	Valid In
	See Also

	Animate
	General Action Statement
	Description
	Valid In
	See Also

	ArrayDims()
	General System Function
	Description
	Valid In
	See Also

	ArrayDimSize()
	General System Function
	Description
	Valid In
	See Also

	Assignment Statement
	Description
	Valid In

	Begin
	General Control Statement
	Description
	Valid In
	See Also

	Break
	General Control Statement
	Description
	Valid In
	See Also

	BreakBlk
	General Control Statement
	Description
	Valid In
	See Also

	CalDay()
	General System Function
	Description
	Valid In
	See Also

	CalDOM()
	General System Function
	Description
	Valid In
	See Also

	CalHour()
	General System Function
	Description
	Valid In
	See Also

	CalMin()
	General System Function
	Description
	Valid In
	See Also

	CalMonth()
	General System Function
	Description
	Valid In
	See Also

	CalYear()
	General System Function
	Description
	Valid In
	See Also

	Cap()
	General System Function
	Description
	Valid In
	See Also

	Char()
	String Function
	Description
	Valid In
	See Also

	Clock()
	General System Function
	Description
	Valid In
	See Also

	Close
	General Operation Statement
	Description
	Valid In
	See Also

	Combine
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	See Also

	Comments
	Documentation Symbols
	Description
	Valid In

	Contents()
	General System Function
	Description
	Valid In
	See Also

	Create
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	Implicit Entity Actions
	See Also

	Debug
	General Action Statement
	Description
	Valid In
	See Also

	Dec
	General Operation Statement
	Description
	Valid In
	See Also

	Display
	General Action Statement
	Description
	Valid In
	See Also

	Do...Until
	General Control Statement
	Description
	Valid In
	See Also

	Do...While
	General Control Statement
	Description
	Valid In
	See Also

	Down
	Downtime-Specific System Function
	Description
	Valid In
	Please Note
	See Also

	DownQty()
	General System Function
	Description
	Valid In
	See Also

	DTDelay()
	Downtime-Specific System Function
	Description
	Valid In
	See Also

	DTLeft()
	Shift & Break System Function
	Description
	Valid In
	See Also

	DynPlot()
	General Action Statement
	Description
	Valid In

	End
	General Control Statement
	Description
	Valid In
	See Also

	Ent()
	Type Conversion Function
	Description
	Valid In
	See Also

	Entity()
	Entity-Specific System Function
	Description
	Valid In
	See Also

	Entries()
	General System Function
	Description
	Valid In
	See Also

	Exp()
	Math Function
	Description
	Valid In
	See Also

	ForLocation()
	Shift & Break System Function
	Description
	Valid In
	See Also

	Format()
	String Function
	Description
	Valid In
	See Also

	ForResource()
	Shift & Break System Function
	Description
	Valid In
	See Also

	Free
	Resource-Related Operation Statement
	Description
	Valid In
	See Also

	FreeCap()
	General System Function
	Description
	Valid In
	See Also

	FreeUnits()
	General System Function
	Description
	Valid In
	See Also

	Get
	Resource-Related Operation/Move Logic Statement
	Description
	Valid In
	See Also

	GetCost()
	Cost Related Function
	Description
	Valid In
	See Also

	GetReplicationNum()
	General System Function
	Description
	Valid In

	GetResRate()
	Cost Related Function
	Description
	Valid In
	See Also

	Goto
	General Control Statement
	Description
	Valid In
	See Also

	Graphic
	General Operation Statement
	Description
	Valid In
	See Also

	Group
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	See Also

	GroupQty()
	Entity-Specific System Function
	Description
	Valid In
	See Also

	If...Then...Else
	General Control Statement
	Description
	Valid In
	See Also

	Inc
	General Operation Statement
	Description
	Valid In
	See Also

	IncEntCost
	Cost Related Statement
	Description
	Valid In
	See Also

	IncLocCost
	Cost Related Statement
	Description
	Valid In
	See Also

	IncResCost
	Cost Related Statement
	Description
	Valid In
	See Also

	Int
	Local Variable Declaration Statement
	Description
	Valid In
	See Also

	Join
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	See Also

	Jointly Get
	Resource-Related Operation Statement
	Description
	Valid In
	See Also

	Last()
	Resource-Specific System Function
	Description
	Valid In
	See Also

	Ln()
	Math Function
	Description
	Valid In
	See Also

	Load
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	See Also

	Loc()
	Name-Index-Number Conversion Function
	Description
	Valid In
	See Also

	LocState()
	General System Function
	Description
	Valid In

	Location()
	Location-Specific System Function
	Description
	Valid In
	See Also

	Log
	General Action Statement
	Description
	Valid In
	See Also

	MapArr
	General Action Statement
	Description
	Valid In

	Match
	Entity-Related Operation Statement
	Description
	Valid In
	See Also

	Move
	Entity-Related Operation Statement
	Description
	Valid In
	See Also

	Move For
	Entity-Related Move Logic Statement
	Description
	Valid In
	See Also

	Move On
	Entity-Related Move Logic Statement
	Description
	Valid In
	See Also

	Move With
	Entity-Related Move Logic Statement
	Description
	Valid In
	See Also

	Next()
	Resource-Specific System Function
	Description
	Valid In
	See Also

	Order
	General Action Statement
	Description
	Valid In
	See Also

	OwnedResource()
	Resource-Specific System Function
	Description
	Valid In
	See Also

	Pause
	General Action Statement
	Description
	Valid In
	See Also

	PercentOp()
	General System Function
	Description
	Valid In

	PercentUtil()
	General System Function
	Description
	Valid In

	Preemptor()
	Preemption Logic System Function
	Description
	Valid In
	See Also

	Priority
	Shift & Break Logic Statement
	Description
	Valid In
	See Also

	Prompt
	General Operation Statement
	Description
	Valid In
	See Also

	Rand()
	Math Function
	Description
	Valid In
	See Also

	Read
	General Action Statement
	Description
	Valid In
	See Also

	Real
	Local Variable Declaration Statement
	Description
	Valid In
	See Also

	Real()
	Type Conversion Function
	Description
	Valid In
	See Also

	Rename
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	Implicit Entity Actions
	See Also

	Report
	General Action Statement
	Description
	Valid In
	See Also

	Res()
	Name-Index-Number Conversion Function
	Description
	Valid In
	See Also

	Reset
	General Action Statement
	Description
	Valid In
	See Also

	Reset Stats
	General Action Statement
	Description
	Valid In
	See Also

	Resource()
	Shift & Break System Function
	Description
	Valid In
	See Also

	ResourceUnit()
	Shift & Break System Function
	Description
	Valid In

	ResQty()
	Entity-Specific System Function
	Description
	Valid In
	See Also

	Return
	General Action Statement
	Description
	Valid In
	See Also

	Round()
	Math Function
	Description
	Valid In
	See Also

	Route
	Entity-Related Operation Statement
	Description
	Valid In
	See Also

	Send
	General Action Statement
	Description
	Valid In
	See Also

	SetRate
	General Operation Statement
	Description
	Valid In
	See Also
	Shift & Break Logic Statement
	Description
	Valid In
	See Also

	Sound
	General Action Statement
	Description
	Valid In
	See Also

	Split As
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	Implicit Entity Actions
	See Also

	Sqrt()
	Math Function
	Description
	Valid In
	See Also

	Stop
	General Operation Statement
	Description
	Valid In
	See Also

	ThreadNum()
	General System Function
	Description
	Valid In
	See Also

	TimeLeft()
	Preemption Logic System Function
	Description
	Valid In
	See Also

	TimesUsed()
	General System Function
	Description
	Valid In
	See Also

	Trace
	General Action Statement
	Description
	Valid In
	See Also

	Trunc()
	Type Conversion Function
	Description
	Valid In
	See Also

	Ungroup
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	See Also

	Units()
	General System Function
	Description
	Valid In
	See Also

	Unload
	Entity-Related Operation Statement
	Description
	Valid In
	Explicit Entity Actions
	See Also

	Use
	Resource-Related Operation Statement
	Description
	Valid In
	See Also

	Variable()
	General System Function
	Description
	Valid In
	See Also

	View
	General Action Statement
	Description
	Valid In
	See Also

	Wait
	Entity-Related Operation Statement
	Description
	Valid In
	See Also

	Wait Until
	Entity And Resource-Related Operation Statement
	Description
	Valid In
	See Also

	Warmup
	General Action Statement
	Description
	Valid In
	See Also

	While...Do
	General Control Statement
	Description
	Valid In
	See Also

	Write
	General Operation Statement
	Description
	Valid In
	See Also

	WriteLine
	General Operation Statement
	Description
	Valid In
	See Also

	Xsub()
	External Subroutine Call
	Description
	Valid In
	See Also

	Xwrite
	General Operation Statement
	Description
	Valid In
	See Also

	Appendix A
	Expression and Statement Groups
	1. General Expression
	2. Arrays
	3. Location Attributes
	4. Entity-Specific System Functions and Attributes
	5. General System Functions
	6. Location-Specific System Function
	7. Resource-Specific System Function
	8. Node Logic-Specific System Functions
	9. Downtime-Specific System Function
	10. Shift-Specific System Functions
	11. Preemption Logic-Specific System Functions
	12. Off-Shift & Break Logic-Specific System Functions & Statements
	13. Cost Functions & Statements
	14. General Statements: (Run-Time Only)
	15. Operation Statements (Group 1)
	16. Operation Statements (Group 2)
	17. Operation Statements (Group 3)
	18. Move Logic-Specific Statements
	19. External Spreadsheet File
	20. Graphic Statement
	21. Wait Until Statement

	Macros and Subroutines
	Valid Expression and Statement Groups by Field
	Fields Evaluated Only at Translation
	Fields Evaluated During Simulation

	Program Defaults
	Default Values
	Build Menu
	Tools Menu
	View Menu
	Directories
	INI Defaults

	ActiveX Objects
	Program Operations
	Location Table
	Entity Table
	Resource Table
	Processing & Routing Tables
	Path Networks Table
	Arrivals Table
	Shift Assignments
	Scenarios
	Model Parameters
	Attribute Table
	Variables Table
	Arrays Table
	Macro Table
	Subroutine Table
	User Distributions
	External Files Table
	General Information Dialog
	Simulation Options Dialog

	Suggested readings

	Glossary
	Cost Statistics
	Counter
	Dialog Box
	Edit Tables
	File Name
	Font
	Frame
	Gauge
	Integer Number
	Library Graphic
	Main Entity
	Main Menus
	Name Index
	Note
	Numeric Type
	Numeric Value
	Parameter
	Park Search
	Paths
	Positioning Spot
	Preemption
	Real Number
	Reference
	Region
	Resource
	Resource Point
	Routing Priority
	Scroll Arrow
	Scroll Bar
	Scroll Box
	Shell
	Status Lights
	String
	System Menu
	Text
	Time Statistics
	Work Search

	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

