Monografias.com > Física
Descargar Imprimir Comentar Ver trabajos relacionados

Calor, trabajo y energia



    Monografias.com

    q = 200 g x 79.71 cal g
    x 4.184 J cal
    CALOR, TRABAJO Y ENERGIA.

    CALOR.
    Es la energía transferida como consecuencia de una diferencia de temperatura entre sistema y
    alrededores, o entre un sistema y otro. Espontáneamente, el flujo de calor es unidireccional; se
    produce siempre desde la mayor a la menor temperatura hasta que se alcanza el equilibrio
    térmico.

    La energía, en forma de calor, absorbida o cedida por un sistema puede provocar un cambio de
    fase (cambio del estado de agregación) o un cambio en la temperatura del sistema.

    a) Cambio de fase.
    Fusión
    Sistema (s, Tf , 1 atm)
    Sistema (l, Tf, 1 atm)
    Proceso Isotérmico e Isobárico

    El proceso inverso es una solidificación.

    Vaporización
    Sistema (l, Te , 1 atm)
    Sistema (g, Te , 1 atm)
    Proceso Isotérmico e Isobárico

    El proceso inverso es una condensación.

    Se observa que tanto la temperatura como la presión permanecen constantes durante el proceso.
    La energía, en forma de calor, por unidad de masa
    (m), o por unidad de cantidad (n) de
    sustancia, involucrada en un cambio de fase, se llama calor de cambio de fase.
    Símbolo SI:
    L.
    Unidad SI: J/kg o J/mol.
    Unidad no SI: cal/g. o kcal/kg. (1 cal = 4.184 J
    exactamente).

    Puede ser calor de fusión (Lf ), calor de vaporización (Lv ), calor de solidificación (Ls ), etc. Para
    una masa m, o para una cantidad n, de sustancia, la cantidad de energía, en forma de calor,
    involucrada es
    :
    q = Lm
    o
    q = Ln
    Problema. Calcular la energía, expresada en Joule, necesaria para fundir 200 g de hielo.
    (Calor de fusión del agua: 79.71 cal/g).
    -1
    -1
    = 66 709 J
    factor unitario de conversion

    La energía, en forma de calor, involucrada en estos procesos, se invierte en el trabajo interno
    realizado sobre las partículas constituyentes.

    b) Cambio en la temperatura del sistema.
    Experimentalmente puede demostrarse que la capacidad que tiene un cuerpo para absorber
    energía en forma de calor depende:
    1. de la masa del cuerpo
    2. de la naturaleza del cuerpo
    3. de la temperatura inicial del cuerpo
    4. del tipo de proceso

    Monografias.com

    J mol K
    Se define la Capacidad calorífica de un cuerpo, como la cantidad de calor q que absorbe cuando
    experimenta un cambio unitario de temperatura. Matemáticamente
    _
    C
    =
    q
    ?T
    (1)
    Unidad SI:
    J/K
    Unidad no-SI: cal/ºC o kcal/ºC

    Es una magnitud extensiva, por depender de la masa. Dividiéndola por m se tiene la capacidad
    calorífica específica o calor específico c;
    c
    =
    C
    m
    q
    m ?T
    =
    (2)
    Unidad SI:
    J / kg K
    Unidad no-SI: cal/g ºC o kcal/kg ºC

    y dividiéndola por n se tiene la capacidad calorífica molar o calor molar Cm
    Cm =
    C
    n
    q
    n ?T
    =
    (3)
    Unidad SI:
    -1 -1
    Unidad no-SI: cal / mol ºC

    La energía, en forma de calor, absorbida o desprendida por una masa m, o por una cantidad n, de
    un cuerpo cuando su temperatura varía en ?t o en ?T será:
    q = c m ?t
    = Cm n ?T
    (4)
    en donde se puede apreciar que q es proporcional a m o a n y al cambio de temperatura.

    Dependencia con la temperatura.
    Debido a la dependencia del calor con el tipo de proceso, el calor específico no sólo depende de la
    naturaleza del cuerpo sino también de la temperatura a que se encuentra;

    Pero ¿cuál es la relación de dependencia entre c y T ? Sólo se conocen relaciones empíricas, las
    que suelen ser de la forma
    c = a + bT + cT
    2
    + ………
    (5)
    En el diagrama de la figura se tiene un trozo de una curva c = c(T), en donde el área ABT2T1 es
    igual al calor q absorbido por el sistema, en un proceso representado por la curva AB. Se
    aprecia la dependencia de q con el tipo de proceso y, además, que c no es constante en el
    intervalo ?T de temperatura.
    c
    B
    c = c (T)
    c2
    c1
    A
    qq
    T1
    dT
    T2
    T
    y el calor q se obtendría por integración, una especie de suma de esas cantidades infinitesi-
    males de calor dq lo que se expresa matemáticamente en la forma
    dq
    q
    Sin embargo, si el proceso AB
    se lleva a cabo cuasiestática-mente, a
    través de infinitas etapas, en cada una de
    ellas se produce una variación infini-
    tesimal dT de la temperatura
    del sistema y el calor absorbi-
    do es una cantidad infinitesi-
    mal , representada por dq. Entonces, el
    calor sería
    dq = c dT
    (6)

    Monografias.com

    ?
    ?
    q =
    =
    T 2
    T1
    c
    G7
    Area ABT2T1
    (7)
    la integración sólo puede efectuarse si se conoce la ecuación de la curva AB.

    Es posible definir, sin embargo, un calor específico medio, constante entre T1 y T2 , trazando
    una recta A’B’ de modo que el área AA’C sea igual al área BB’C como se observa en la figura

    c
    c2
    B
    c = c(T)
    _
    A’
    C
    c
    B’
    B’
    A
    c1
    T1
    T2
    T
    Area A’B’T2T1
    =
    Area ABT2T1
    c (T2 – T1)
    =
    T 2
    T1
    c
    G7
    (8)
    Por otra parte, el calor absorbido por un sistema al aumentar su temperatura de T1 a T2 puede
    calcularse por cualquiera de las siguientes igualdades, si la capacidad calorífica es constante
    entre T1 y T2
    q = C?T = mc?T = nCm ?T
    (9)
    Si ?T > 0
    Tf
    >
    Ti
    y
    q >
    0
    calor absorbido por el sistema
    Si ?T < 0
    Tf <
    Ti
    y
    q <
    0
    calor cedido por el sistema
    Si
    ?T = 0
    Tf =
    Ti
    y
    q = 0
    equilibrio térmico
    q > 0
    calor absorbido
    q < 0
    calor cedido
    Calores específicos de gases

    Dependen del tipo de proceso que eleva la temperatura del sistema. Para un sistema gaseoso que
    se comporta idealmente, algunos procesos se muestran en el siguiente gráfico:
    Sistema
    q

    Monografias.com

    ?
    p
    A ——? B Calentamiento adiabático
    A ——? C Calentamiento isocórico
    A ——? D Calentamiento isobárico
    a presión constante:
    Cp
    =
    ? ?
    ? d ?7
    ? ? p
    (10)
    a volumen constante:
    Cv =
    ? ?
    ? dqG?7
    ? ?v
    (11)
    La diferencia entre Cp y Cv para un mismo gas estriba en que en el calentamiento isocórico todo
    el calor se invierte en incrementar la temperatura del sistema, mientras que en el calentamiento
    isobárico el sistema debe recibir una cantidad adicional de calor el que se invierte en el trabajo de
    dilatación del sistema. Para sólidos y líquidos, este trabajo de dilatación puede despreciarse, pero
    en el caso de los gases, alcanza valores apreciables y por lo tanto, Cp > Cv.

    TRABAJO

    Es la forma útil de energía, intercambiada entre un sistema y su medio exterior, cuando una fuerza
    generalizada externa, provoca en el sistema un desplazamiento generalizado,
    alterando su
    estado termodinámico. Dicha fuerza es una propiedad termodinámica intensiva, cuyo valor es
    diferente a la del sistema. Representándola por I, tenemos:
    Iext
    ?
    Isist
    (12)
    El desplazamiento generalizado es una propiedad termodinámica extensiva del sistema.
    Representándola por X, una cantidad infinitesimal de trabajo generalizado, o trabajo elemental,
    será:
    dw
    = I dX
    (13)
    y el trabajo realizado cuando X cambia de X1 a X2 será:
    w
    =
    x2
    x1
    I dX
    (14)
    Graficando I en función de X, para un cierto proceso, el área bajo la curva entre abscisas X2 y
    X1 corresponderá al trabajo w.
    A
    T+dT
    T
    V

    Experimentalmente se comprueba que el calor absorbido por el sistema en cada uno de estos
    procesos varía desde 0 (proceso adiabático) hasta 8 (proceso isotérmico).

    Para un sistema PVT las capacidades caloríficas más importantes son:
    B
    C
    D

    Monografias.com

    ?
    J = Pa m = N m
    m = Nm
    El tipo de trabajo depende de la naturaleza de I y de su propiedad conjugada X. Por ejemplo, en
    el trabajo de expansión, I = p (presión) y X = V (volumen) y se tiene:
    dwexp
    = p dV
    Unidades:
    3
    -2
    3
    en el trabajo eléctrico, I = E (fuerza electromotriz) y X = Q (carga eléctrica), y se tiene:
    dwelec
    = – E dQ
    Unidades:
    J = VC
    I = ? (tensión superficial) y X = A (área)
    en el trabajo realizado sobre una lámina superficial,
    y se tiene:
    dwsup = – ? dA
    Unidades:
    J = Nm
    -1
    m
    2
    = Nm
    en el trabajo sobre un hilo estirado, I = t (tensión) y X = L (longitud) y se tiene:
    dwhilo = – t dL
    Unidades:
    J = Nm
    Los signos obedecen al convenio termodinámico de asignar signo positivo al trabajo realizado por
    el sistema sobre el medio exterior; y el signo negativo, al realizado sobre el sistema.
    w 0
    B
    I(X)
    I
    I
    A
    X1
    dX
    X2
    X
    w
    dw
    Diagrama de trabajo generalizado
    w =
    G;
    X2
    X1
    I
    = Area ABX2X1
    Sistema

    ENERGIA INTERNA, CALOR Y TRABAJO. PRIMER PRINCIPIO.

    Sea un sistema PVT en equilibrio termodinámico que recibe una cantidad infinitesimal dq de
    pext
    pext
    calor en un proceso cuasiestático.
    pext
    pext
    calentamiento
    cuasiestático
    pext
    pext
    pext
    pext
    dq
    Sistema
    p
    V
    T
    U
    Sistema
    p
    V
    T
    U
    +
    +
    +
    +
    dp
    dV
    dT
    dU

    Monografias.com

    Observaciones:

    — El incremento dT de temperatura incrementa la energía cinética interna Eci asociada a los
    movimientos de las partículas constituyentes del sistema (Energía Térmica).

    — Con el aumento dV del volumen, aumentan las distancias interpartículas constituyentes en contra
    de las fuerzas atractivas internas, lo que requiere la realización de un trabajo interno (trabajo de
    disgregación) que incrementa la energía potencial interna Epi de las partículas. El incremento
    de energía interna será dU = dEpi + dEci.

    — Además, como consecuencia del aumento de volumen, el sistema realiza un trabajo dwext en
    contra de la presión exterior.

    Balance energético. De acuerdo con el Principio de Conservación de la Energía se tiene:
    + dwext
    dq = d Epi + d Eci

    dU
    dq = dU
    +
    dwext
    (16)
    Formulación matemática del Primer
    Principio de la Termodinámica.
    q
    =
    ?U
    +
    wext
    (17)
    en donde q es el calor absorbido por el sistema, ?U es el incremento de energía interna y wext es
    el trabajo realizado por el sistema sobre el medio exterior.

    Cuando el proceso es cuasiestático, en todo momento la presión p del sistema es igual a la
    presión exterior pext y, por lo tanto, el trabajo de expansión del sistema pdV es igual al trabajo
    exterior:
    dwext = dwexp =
    pdV
    (18)
    y el Primer Principio para un sistema químico queda:
    dq = dU
    +
    pdV
    (19)
    en donde U es función de dos cualesquiera de las variables p, V, T, y p, función de V y T.

    Para otros sistemas, la ecuación (16) quedaría:
    dq = dU

    dq = dU


    EdQ

    ?dA
    para una pila eléctrica

    para una lámina superficial
    dq
    =
    dU

    tdL
    para un hilo estirado
    Pero la ecuación (19) sólo se cumple cuando el proceso es cuasiestático; es decir, cuando el
    sistema va pasando a través de una sucesión de estados de equilibrio, en los cuales, las
    diferencias de presión y temperatura con las del medio exterior, en cada etapa, son
    infinitesimales. Si tales diferencias fueran finitas, el proceso sería irreversible y habría una
    pérdida de trabajo exterior. En efecto, una diferencia finita
    ?p
    de presión, entre sistema y
    alrededores, provocaría una variación brusca del volumen dando lugar a torbellinos internos que
    se apaciguarían con el tiempo y su energía se transformaría en energía térmica. Una diferencia

    Monografias.com

    finita ?T de temperatura entre sistema y medio exterior haría que el proceso se llevara a cabo
    irreversiblemente.

    Para comprender la diferencia entre un proceso irreversible y otro reversible o cuasiestático
    consideremos las siguientes situaciones:
    pext
    pext
    Pesa
    A
    pext
    pext
    arena
    B
    a) Un gas encerrado en un cilindro provisto de un pistón sobre el cual se ha colocado una pesa.
    La presión que ejerce el gas sobre el pistón se halla equilibrada por la presión que ejerce la pesa
    más la presión atmosférica. El gas se halla en un estado de equilibrio termodinámico. Si se retira
    la pesa, el pistón sube bruscamente y el gas se expande bruscamente también, dando lugar a
    torbellinos internos y a una distribución no uniforme de sus moléculas y de la presión interna. Se
    rompió el equilibrio termodinámico del sistema. El proceso es real o irreversible.

    b) La misma situación anterior pero la pesa ha sido reemplazada por arena, la que se va retirando
    de granito en granito. En tal caso, el proceso es muy lento, pues se lleva a cabo en tantas etapas
    como granitos hay en el montón. No obstante, las variaciones de presión y de volumen, en cada
    etapa, serían finitas ?p y
    ?V,
    las cuales, aunque muy pequeñas, no lo son tanto como si
    fueran variaciones infinitesimales dp y dV, las que se producirían si los granitos de arena
    fueran infinitamente pequeños. En tal caso, el tiempo sería infinitamente grande y el proceso se
    llevaría a cabo en condiciones de equilibrio y reversibilidad. Entonces, el proceso sería ideal,
    reversible o cuasiestático.

    Por otra parte, de las ecuaciones (16), (18) y (19), si el trabajo es exclusivamente de expansión,
    tenemos:
    dq = dU +
    dwext = dU + dwexp = dU
    +
    pdV
    (20)
    1) Si dq = 0 el proceso es adiabático y
    dwext
    = dwexp = – dU
    El trabajo realizado por el sistema, sobre el medio exterior, lo hace a expensas de su energía
    interna U; y el realizado por el medio exterior sobre el sistema la incrementará.

    Monografias.com

    ??U ?
    ? dq ?
    2) Si V es constante, dV = 0, el proceso es isocórico y
    dq
    =
    dU
    Se tiene un calentamiento isocórico. El calor absorbido por el sistema, incrementa su energía
    interna y la disminuye si cede energía en forma de calor al medio exteior.

    Por otra parte, de acuerdo con la ecuación (9) se tiene:
    dU = dqv =
    Cv dT
    = n (Cv)m dT = m cv dT
    (21)
    de donde, dividiendo por dT, se tiene
    ?
    ? ?
    ? ?T ?v
    = ? G7
    ? ?v
    = Cv = n(Cv)m = m cv
    (22)
    ecuación que identifica la derivada parcial (?U/?T)v con Cv, derivada que podrá ser reemplazada
    por Cv en cualquier ecuación que se presente, aún en aquellos procesos en los cuales V no sea
    constante.

    3) Si psist = pext = Cte.

    Se tiene un calentamiento isobárico; como el que ocurre en un recipiente abierto, en contra
    de la presión exterior constante, ecuación (18). Entonces,
    dq
    = dU
    +
    pdV

    d(pV) – Vdp
    pues
    d(pV) = pdV + Vdp
    Por lo tanto,
    dq =
    dU + d(pV) –
    Vdp
    =
    d(U + pV)

    Vdp
    .
    H
    dq
    =
    dH – Vdp
    (23)
    otra expresión del Primer Principio.
    Por definición,
    H = U + pV
    (24)
    es la entalpía del sistema.
    Diferenciando,
    dH = dU + pdV
    +
    Vdp
    dH =
    dq
    – dwext +
    pdV
    +
    Vdp
    (25)
    el sistema se encontrara térmica y
    y si el único trabajo posible fuera de expansión y
    mecánicamente aislado, o sea,

    Monografias.com

    ??H ?
    ? ?T ? p
    ? dq ?
    ??T ? p
    si
    dwext
    =
    dwexp
    =
    pdV =
    0
    y además si
    dq
    = 0
    se tendría:
    dH
    =
    Vdp
    (26)
    y
    ?H =
    V (pf – pi)
    (27)
    según las cuales, la entalpía del sistema puede cambiar si cambia la presión del sistema, como
    puede ocurrir por ejemplo, en una reacción química que se lleva a cabo en un recipiente de
    paredes rígidas y térmicamente aislado.

    Por otra parte, si en la ecuación (23) p = cte., entonces dp = 0 y se tiene:
    dqp =
    dH
    (28)
    el calor absorbido a presión cte. incrementa la entalpía del sistema.
    si dqp > 0

    si dqp < 0
    dH

    dH
    > 0

    < 0
    proceso endotérmico

    proceso exotérmico
    Por otra parte, de acuerdo con la ecuación (9), se tiene:
    dH = dqp
    = CpdT =
    n(Cp)m dT
    =
    mcpdT
    (29)
    de donde, dividiendo por dT, se tiene:
    =
    = ? ?
    ? ?
    Cp =
    n(Cp)m
    =
    mcp
    (30)
    ecuación que identifica la derivada parcial (?H/?T)p
    con Cp.
    Por otra parte, en los procesos con cambios de fases (procesos isobáricos e isotérmicos), se
    tiene:
    Ltrans =
    qp
    =
    ?Htrans
    Entalpías de transición.
    Por último, en la ecuación de definición de la entalpía H = U + pV,
    el producto pV es un
    trabajo de desalojamiento, pues corresponde al trabajo realizado por el sistema en conquistar el
    espacio que ocupa en un medio de presión p.

    CALOR, TRABAJO Y ENERGIA.
    Enviado por:
    Ing.+Lic. Yunior Andrés Castillo S.
    “NO A LA CULTURA DEL SECRETO, SI A LA LIBERTAD DE INFORMACION”
    ®
    www.monografias.com/usuario/perfiles/ing_lic_yunior_andra_s_castillo_s/monografias
    Página Web: yuniorandrescastillo.galeon.com
    Correo: yuniorcastillo@yahoo.com
    yuniorandrescastillosilverio@facebook.com
    Twitter: @yuniorcastillos

    Monografias.com

    Celular: 1-829-725-8571
    Santiago de los Caballeros,
    República Dominicana,
    2015.
    “DIOS, JUAN PABLO DUARTE Y JUAN BOSCH – POR SIEMPRE”
    ®

    Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

    Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

    Categorias
    Newsletter