Monografias.com > Ingeniería
Descargar Imprimir Comentar Ver trabajos relacionados

Validación del modelamiento de la respuesta mecánica del cemento puzolanico



Partes: 1, 2

    Monografias.com

    Validación del modelamiento de la respuesta mecánica del
    cemento puzolanico
    1.
    2.
    3.
    4.
    5.
    Validación
    Evolución de la resistencia a la compresión durante los días de curado
    Análisis estadístico
    Conclusiones y recomendaciones
    Bibliografía
    1.2 VALIDACION
    MODELAMIENTO DE LA RESPUESTA MECANICA
    Para la modelación del comportamiento se hizo uso de un algoritmo desarrollado en MATLAB que
    grafica el comportamiento del cemento sometido a una fuerza de compresión. Este algoritmo usa el
    Método de Newton Raphson para converger cuadráticamente al resultado más óptimo.
    Para la modelación matemática usamos el Módulo de Elasticidad y el Esfuerzo de fluencia
    obtenidos experimentalmente para cada muestra. Con estos datos se pudo ajustar las curvas del
    programa a las curvas obtenidas experimentalmente.
    El programa desarrollado en MATLAB nos permite por medio del ingreso de los valores de
    Esfuerzo de Fluencia (?y) y Módulo de Elasticidad graficar idealmente el comportamiento del
    cemento sometido a compresión.
    Para este estudio los valores de Esfuerzo de Fluencia y Módulo de Elasticidad de cada muestra
    obtenida para el 10 y 12,5% fueron ingresados al programa para poder establecer a través del
    Error relativo si el Modelo matemático es una buena representación de lo que ocurre
    experimentalmente.
    Para trabajar en el modelo matemático se requirió especificar varios puntos de importancia:
    .
    .


    A cada valor de esfuerzo le corresponde un valor de Módulo de Elasticidad.
    La carga a la cual se fractura la muestra indica que con dicha carga se encuentra el valor
    del esfuerzo de ruptura
    .

    Por último, el módulo de elasticidad requerido en el algoritmo será el promedio de los
    módulos correspondientes a los puntos que se consideren que pertenecen a la Región elástica.

    Con estos puntos claramente especificados, se requiere los valores del módulo de elasticidad y del
    esfuerzo de fluencia experimentales para ingresarlos en el algoritmo y así obtener una curva
    esfuerzo vs deformación del modelo matemático.
    De los datos obtenidos solo se puede indicar con seguridad cual es el esfuerzo de ruptura, para
    aproximar el esfuerzo de fluencia se hizo uso del algoritmo desarrollado en MATLAB y se graficó
    las curvas esfuerzo vs deformación tanto del modelo matemático como de los datos
    experimentales, de esta forma se pudo comparar y acercar estas curvas lo más posible, es decir,
    limitar la zona elástica del modelo. El procedimiento fue el siguiente:
    Para poder disminuir la distancia presente entre la curva del modelo y la experimental se observa
    que en la tabla de datos se posee el esfuerzo de máximo que resistió la muestra, y por tanto un
    correspondiente valor de Módulo de Elasticidad; basado en el criterio de que el Módulo de
    Elasticidad es la pendiente de la curva en la gráfica Esfuerzo vs Deformación, se consideró que si
    el valor del módulo aumenta por ende lo haría la pendiente de dicha curva.
    De tal forma que se comparó el valor de módulo de elasticidad correspondiente al esfuerzo de
    ruptura con el promedio de los valores de módulo de elasticidad correspondientes a los esfuerzos
    anteriores al de ruptura, con el fin de obtener el valor más alto resultante de los promedios de
    dichos valores ; una vez determinado cual es el mayor promedio , el último valor correspondiente a
    la lista de valores usados para obtener el promedio se lo define como ESFUERZO DE FLUENCIA y
    a partir de dicho valor , aquellos que estén debajo de él hasta llegar al esfuerzo de ruptura
    pertenecerán a la región PLASTICA.
    A continuación se muestra una figura descriptiva de este procedimiento tomando como ejemplo la
    muestra 1 con 12,5% de Zeolita a los 25 días de curado.

    Monografias.com

    Este procedimiento se lo repite tantas veces sea necesario hasta obtener el mayor promedio para
    cada muestra, esto es tan solo una aproximación para poder determinar el esfuerzo de fluencia.
    Otros valores muy importantes que se debió aproximar en nuestro modelo matemático son los
    valores de “m” y “a”. Estos valores capturan el esfuerzo óptimo en el modelo. De los cálculos
    desarrollados por el algoritmo, se desprende una ecuación que nos permitirá saber
    aproximadamente el valor de “a”. La ecuación establece que el esfuerzo de ruptura es
    aproximadamente igual al producto del esfuerzo de fluencia más uno:
    F’c = Esfuerzo de fluencia(1+a)
    Dado que conocemos el esfuerzo de ruptura experimental y el esfuerzo de fluencia podemos
    calcular el valor de “a”, dicho valor nos servirá para acercar el esfuerzo de ruptura del modelo
    matemático al esfuerzo de ruptura obtenido experimentalmente.
    Después de haber realizado estos procedimientos, se calcula el error relativo con la siguiente
    fórmula:
    Error relativo=?(sPrograma-s Maquina)/s Máquina?x 100
    Estos datos se calculan para cada valor de deformación experimental, de este modo se puede
    calcular el error relativo promedio por gráfica. Con este valor del error promedio se pudo establecer
    que las consideraciones antes expuestas tienen un tanto por ciento de validez.
    A continuación se muestra la tabla en la que se muestran los errores obtenidos en el proceso de
    modelamiento matemático.
    TABLA 5. ERRORES RELATIVOS Y CAPACIDAD DE PREDICCION DEL
    ALGORITMO

    Monografias.com

    Lo cual muestra que la capacidad de predicción del algoritmo desarrollado es del 61.17%, cabe
    resaltar que este algoritmo no considera los múltiples factores que pueden afectar la resistencia de
    las muestras , tales como, temperatura, humedad, mal apisonamiento, entre otros; además ,
    muestra que las consideraciones que se hicieron antes de ingresar los datos son hasta cierto punto
    válidas.
    EVOLUCION DE LA RESISTENCIA A LA COMPRESION DURANTE LOS DIAS
    DE CURADO.
    En esta sección se muestra la tendencia que presentó la resistencia a la compresión de las
    muestras durante los días de curado; cabe mencionar que para poder describir dichas tendencias
    se hizo uso del programa MATLAB y de la herramienta POLYFIT la cual permitió expresar los
    resultados obtenidos para cada porcentaje en términos de un polinomio de 2do grado.

    Monografias.com

    La relación entre el esfuerzo de ruptura y los días de curado es:
    ESFUERZO = – 0.0121*(DIAS)^2 + 0.3652*DIAS + 61.2242
    Como se puede observar la mezcla del 10% incrementa su resistencia hasta su máximo valor
    aproximadamente a los 15 días, sin embargo, pasado los 15 días la resistencia a la compresión
    decrece aceleradamente.
    Para el 12,5% se tuvo la siguiente tendencia: La relación entre el esfuerzo de ruptura y los días de
    curado es:

    Monografias.com

    ESFUERZO = + 0.02*(DIAS)^2 + 1.1327*DIAS + 39.4680
    En contraste, la muestra de 12,5% presentó una tendencia creciente durante todos los días de
    curado. A continuación se muestran las gráficas ESFUERZO vs. DIAS para todos los porcentajes
    de Zeolita.
    Como se observa, al enfocar los picos de las curvas , la mayor resistencia a la compresión se
    obtiene a los 21 días de curado para la mezcla con 20% de Zeolita, es decir 90,74 MPa,
    posteriormente a los 28 días donde disminuye severamente, en contraste, la mezcla con 5%
    muestra una resistencia de 84 MPa al día 28.

    ANALISIS ESTADISTICO.
    Para el siguiente análisis se hizo uso de la herramienta estadística MINITAB, los objetivos a
    cumplir son los siguientes:
    1. 1.
    Obtener una expresión matemática que permita obtener el esfuerzo máximo de
    compresión mediante el ingreso de los días de curado y el porcentaje de Zeolita.
    2. 1.
    Determinar el mejor tratamiento, es decir, con cuál porcentaje de Zeolita y a lo cuántos
    días de curado se obtiene la mayor resistencia a la compresión en comparación con un cemento
    que no posee adición alguna de este material.
    3. 1.
    Determinar de igual forma cuál de estos tratamientos presenta la mayor resistencia a la
    compresión en comparación a al cemento TIPO

    IV.
    Para comenzar con el análisis en primer lugar se establecieron las siguientes hipótesis, teniendo

    Monografias.com

    en cuenta que se espera obtener una ecuación de la forma:
    ESFUERZO DE RUPTURA = ± B1 ± B2* DIASCURADO ± B3*%ZEOLITA
    Por lo tanto;
    Ho: Bj = 0
    H1: Algún Bj ? 0
    Donde Ho es la hipótesis nula, en la cual se expresa que todos los coeficientes de la ecuación son
    iguales a cero, es decir, no existe relación entre las variables independientes; H1 es la hipótesis
    alterna, en la cual se expresa que al menos existe algún coeficiente diferente de cero, por tanto
    que existe una relación entre las variables.
    Para poder rechazar Ho se debe observar los marcadores estadísticos P y F, donde P es la
    probabilidad de obtener un resultado al menos tan extremo como el valor observado, como
    resultado Ho se acepta; F es la variable de FISHER la cual se emplea para probar si dos muestras
    provienen de poblaciones que poseen varianzas iguales. Esta prueba es útil para determinar si una
    población normal tiene una mayor variación que la otra y también se aplica cuando se trata de
    comparar simultáneamente varias
    medias poblacionales, en ambas situaciones las poblaciones deben ser normales. Los criterios
    para rechazar Ho son: P < a=0.05 o F > Fa (DF REGRESSION, DF RE)
    El primer paso a seguir es determinar la normalidad de los datos obtenidos, para así, garantizar
    que los datos son aleatorios e insezgados.
    Se presenta la tabla de los datos obtenidos en la experimentación:
    TABLA 6. DATOS PARA EL ANALISIS.

    Monografias.com

    Se procedió a realizar la regresión múltiple por medio de MINITAB, teniendo en cuenta que la
    variable dependiente es Ruptura y las independientes Días de curado y %Zeolita, cuyo resultado
    fue:
    Se tiene que la expresión matemática que relaciona las variables es:
    ESFUERZO = 64.7 + 0.394*DIAS – 0.416*%ZEOLITA
    En donde se observa por medio de los valores de P que la probabilidad para que los días de
    curado tengan una influencia en el esfuerzo de compresión del cemento es de 0.176 y para el
    porcentaje de zeolita es de 0.196; según el criterio de rechazo ninguno es menor a 0.05, por lo
    tanto la hipótesis nula no puede ser rechazada.
    Otra observación muy importante la brindan el R-SQ, que indica el porcentaje en que ésta
    regresión a los datos experimentales, valor que fue del 18.3% y los valores generales de F=1.91 y
    P=0.179 aplicando los criterios de rechazo se tiene:
    Para P= 0.179>0.05, por lo tanto no se rechaza Ho; por otro lado , F= 1.91 valor que debe ser
    mayor al valor que expresa la tabla de FISHER para los grados de libertad que son (2,17), el

    Monografias.com

    programa los expresa como DF(degrees of freedom), de la tabla F(2,17)=19.44; por lo tanto
    1.91< 19.44; Ho no puede ser rechazada.
    A continuación se muestra la tendencia que se tuvo entre las variables independientes y la variable
    dependiente:
    Debido a que la expresión no pudo responder a más del 18.3% debido a la variación entre
    experimentales y los obtenidos por la ecuación de regresión, como se presenta en la siguiente
    tabla:
    TABLA 8. DIFERENCIA ENTRE DATOS EXPERIMENTALES Y OTENIDOS POR REGRESION.

    Monografias.com

    48,1
    28
    25
    66,332
    -18,23
    Con el fin de obtener una expresión que responda mejor a los datos, se procedió a separar por
    grupos de días de curado, de tal manera que para cada grupo se obtenga una correspondiente
    ecuación.
    TABLA 9 GRUPO DE DATOS PARA LOS 7 DIAS
    Se muestra el modelo de regresión múltiple para este conjunto de datos:
    Para estos datos se observa que la ecuación es:
    ESFUERZO = 65.8 – 0.344*%ZEOLITA
    El análisis de los parámetros a consideración se muestra en la siguiente tabla:
    TABLA 10. RESULTADOS ESTADISTICOS PARA LOS 7 DIAS
    TABLADERESULTADOS
    Se observa que la ecuación de regresión múltiple responde en un 31.20% de los valores y que la
    resistencia a la compresión disminuye al aumentar el porcentaje de Zeolita; como también no se
    cumplen los criterios para rechazar Ho.
    Para mejorar la respuesta se aproximó por medio de una regresión polinomial cúbica obteniéndose
    lo siguiente:

    Monografias.com

    TABLA 11. RESULTADOS ESTADISTICOS REGRESION POLINOMICA CUBICA PARA LOS 7
    DIAS.
    TABLADERESULTADOS

    Monografias.com

    De donde se observa que el polinomio obtenido responde en un 74.2% de los datos.
    Para los 14 días de curado se tiene:
    TABLA 11. GRUPO DE DATOS PARA LOS 14 DIAS
    Para estos datos se observa que la ecuación es:
    ESFUERZO = 59.9 – 0.287*%ZEOLITA
    El análisis de los parámetros a consideración se muestra en la siguiente tabla:
    TABLA 11. RESULTADOS ESTADISTICOS PARA LOS 14 DIAS.

    TABLADERESULTADOS
    Se observa que la ecuación de regresión múltiple responde en un 56% de los valores y que la
    resistencia a la compresión aumenta al aumentar el porcentaje de Zeolita; como también no se
    cumplen los criterios para rechazar Ho.
    Para mejorar la respuesta se aproximó por medio de una regresión polinomial Cúbica
    obteniéndose lo siguiente:

    Monografias.com

    TABLA 11. RESULTADOS ESTADISTICOS REGRESION POLINOMICA CUBICA PARA LOS 14
    DIAS.
    TABLADERESULTADOS
    De donde se observa que el polinomio obtenido responde en un 64.9% de los datos. Para los 21

    Partes: 1, 2

    Página siguiente 

    Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

    Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

    Categorias
    Newsletter