Monografias.com > Física
Descargar Imprimir Comentar Ver trabajos relacionados

La masa en reposo y la energía total del fotón




    Monografias.com

    mc
    1?vr 4
    mc
    ?
    kqq ?
    G M ?1? ?
    1
    2
    r c
    r ?
    GMm ?
    Heber Gabriel Pico Jiménez MD.
    La masa en reposo y la energía total del fotón
    The rest mass and the total energy of the photon
    Heber Gabriel Pico Jiménez MD1

    Resumen
    Toda partícula tiene siempre una frecuencia de onda electromagnética asociada exclusivamente a su cantidad de movimiento
    relativo que tiene dicha partícula y otra frecuencia electromagnética que es la que está asociada pero a la energía total de la
    respectiva partícula. Debido a esto consideramos al fotón como aquella partícula elemental que también tiene una masa en
    reposo, cuyo movimiento configura una frecuencia de onda electromagnética asociada exclusivamente a la cantidad de
    movimiento relativo de esa respectiva masa en reposo que es menor y distinta a la frecuencia de la onda electromagnética de
    la energía total del fotón como partícula donde va incluida la cantidad de energía en reposo.
    E
    t
    ? h?
    ?
    ?
    GM ?
    ?
    ? h?a
    ? h?ac
    v
    ?
    ?
    2

    kq1q2?
    ?
    2

    2
    r
    2 2
    2

    2

    ? GMm?
    2 4
    4
    2

    c
    c
    1?
    1?
    Donde Etes la energía total de la partícula observada, m es la masa en reposo de la partícula observada, vres la velocidad resultante de la
    partícula observada, G es la constante gravitacional, M es la masa en reposo del observador, r es el radio o distancia desde el observador
    hasta la partícula observada, k es la constante de Coulomb, q1 es la carga eléctrica de la partícula observada, q2 es la carga eléctrica del
    observador, h es la constante Planck, ?aes la frecuencia de la onda electromagnética asociada a la cantidad de movimiento de la partícula
    observada, ? es la frecuencia de la onda electromagnética asociada a la energía total del fotón y c es la velocidad de la luz en el vacío.

    Palabras claves: Gravedad Cuántica, Relación de energía-momento.

    Abstract
    Every particle always has a frequency of electromagnetic wave associated exclusively to its amount of relative motion that
    has the particle and electromagnetic frequency which is which is associated but the total energy of the respective particle.
    Because of this, we consider the photon as the elementary particle that also has a mass at rest, whose movement set a
    frequency of electromagnetic wave exclusively associated with the amount of relative motion of that respective rest mass
    that is smaller and different from the frequency of the electromagnetic wave of the total energy of the photon as a particle
    which is included the amount of energy at rest.

    Keywords: Quantum gravity, The energy-momentum relation.

    © heberpico@hotmail.com todos los derechos reservados1.

    1. Introducción

    1

    Monografias.com
    ?
    ?
    mv
    ?
    ?c 1?
    ?
    ?
    ? ? hc? ?2?
    c? ?? ?
    ? ? ?
    ?
    ?
    mvr
    ?3?
    c ?
    ?
    c 1?vr 4
    mvr
    1?vr 4
    ?
    ?
    ?
    ?
    ? mc ? ? mv ?
    ?hc? ?1?
    ??mc? ?
    ??mc? ??pc? ??mc? ??
    ?E? ??
    ?
    c?
    ?
    ?
    2
    2
    2
    ?? ?
    ? 1?v ?
    ?c 1?v ?
    ?
    ?
    ?
    ?
    ? c ? ? c ?
    mvr
    v
    1?vr 4?6?
    La masa en reposo y la energía total del fotón.
    Heber Gabriel Pico Jiménez MD: La masa en reposo y la energía total del fotón.
    2
    Este artículo se basa sobre todo en las últimas publicaciones
    denominadas Energía del Vacío, la Energía Cinética, el
    Agujero Negro de Kerr-Newman-Pico. También introduce a
    este trabajo la “configuración electrónica de la gravedad
    cuántica”. Sirve como introducción el trabajo del Radio del
    protón es el radio de un Leptón. También hace parte de la
    introducción de este trabajo el anterior artículo de los
    Números cuánticos en la gravedad cuántica. También hace

    Todos estos trabajos son en base al trabajo aceleración de la
    gravedad cuántica.
    También hace parte de introducción el trabajo del espacio
    tiempo se curva entorno al observador.

    Referimos enesta introducciónal trabajo de cuadrivelocidad,
    cuadriaceleración y cuadrimomento en la relatividad general.

    Referimos al trabajo anterior llamado como redefinición o
    redescubrimiento de la cantidad de movimiento.

    También nos referimos al trabajo anterior llamado como
    redefinición o redescubrimiento de la energía cinética.

    También referimos al trabajo anterior llamado como
    redefinición o redescubrimiento de la relación de energía
    momento.
    2. Desarrollo del Tema.
    MASA Y ENERGÍA EN REPOSO Y TOTAL DEL FOTÓN
    EN LA RELATIVIDAD ESPECIAL

    A partir de la relación energía momento de nuestro trabajo
    anterior, podemos decir que la masa en reposo unifica a la
    relatividad general con la relatividad especial.

    2 2
    ? ? ? ?
    2
    2 2
    2 2 2 2 2
    r
    4 4
    a
    r r
    4 4
    Donde Ees la energía total de la partícula observada en movimiento, m es la
    masa en reposo de la partícula observada, vr es la velocidad resultante de la
    partícula observada, p es la cantidad de movimiento de la partícula
    observada, h es la constante de Planck, ?aes la longitud de onda asociada a
    la cantidad de movimiento de la partícula observada y c es la velocidad de
    la luz en el vacío.
    De la anterior ecuación podemos tomar una parte de la
    relación y deducir lo siguiente:
    2
    2
    ?

    ?
    a
    4
    r
    4
    ?

    ? c
    2
    r

    v
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    longitud de onda asociada a la cantidad de movimiento de la partícula
    observada y c es la velocidad de la luz en el vacío.

    2
    hc
    4
    a

    c
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    longitud de onda asociada a la cantidad de movimiento de la partícula
    observada y c es la velocidad de la luz en el vacío.
    ?4?
    4
    hc
    ?a
    2

    c
    ?
    r
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    longitud de onda asociada a la cantidad de movimiento de la partícula
    observada y c es la velocidad de la luz en el vacío.

    2
    4 ? h?a?5?
    1?v4
    c
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    frecuencia de la onda asociada a la cantidad de movimiento de la partícula
    observada y c es la velocidad de la luz en el vacío.
    4
    c
    m ?
    h?a
    2
    r

    Monografias.com

    1?v ?7?
    mc ? h? c
    r
    v
    c
    ?
    ?
    ?E? ??
    ? mc ?
    ? 1?v ?
    ?
    ?
    ? c ?
    ??mc? ?
    ?
    ?
    ?GMm? ?1? kq q ? ? ?
    ?
    ? ?
    ?
    GMm?c
    ?
    ?
    ?
    ?
    rc 1?v
    ?
    ?
    ? ?
    c
    ?mc? ??pc? ??mc? ?? ?hc ? ? ? ?11?
    mc
    ?
    ?
    ?
    c 1?v ? ? ?
    ?h?
    ? ??h?? ?9?
    ? mc ?
    ??h?
    r
    c ? ?
    ? ? ?
    2
    4
    ?
    v
    ? 1?
    v ?
    r
    ?
    ?
    ? c ?
    ?
    ?
    ?GMm? ?1? kq q ? ? ?
    ?
    GMm? ?c? ?? hc? ?12?
    2
    ?
    ? ?? ? ??
    ?
    ?
    ?
    rc 1?v
    ?
    ?
    ? ?
    c
    ?
    ?
    ? mc ?
    ? 1?v ?
    ?
    ?
    ? c ?
    ?mc? ??h? ? ??h?? ?10?
    ?1? kq1q2?
    ?
    GMm ?
    ? c ? hc ?13?
    ?
    1?v
    rc
    c
    La masa en reposo y la energía total del fotón.
    Heber Gabriel Pico Jiménez MD: La masa en reposo y la energía total del fotón.
    3
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    frecuencia de la onda asociada a la cantidad de movimiento de la partícula
    observada y c es la velocidad de la luz en el vacío.

    Este anterior valor de la masa en reposo de la partícula
    observada la multiplicamos por c2 y nos da el valor de la
    energía en reposo:
    2 4
    2
    a 2 4
    r
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    frecuencia de la onda asociada a la cantidad de movimiento de la partícula
    observada y c es la velocidad de la luz en el vacío.
    2

    2
    r
    4
    r
    4
    ? h??8?
    ? h?ac
    v
    2

    1?v
    c
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    frecuenciadelaonda electromagnética asociadaalacantidaddemovimiento
    de la partícula observada, ? es la frecuencia electromagnética de la energía
    total del fotón y c es la velocidad de la luz en el vacío.

    2
    ? ? 2
    2 2 4
    2 2
    a a
    4
    r
    4

    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    frecuenciadelaondaelectromagnéticaasociadaalacantidaddemovimiento
    de la partícula observada, ? es la frecuencia electromagnética de la energía
    total del fotón y c es la velocidad de la luz en el vacío.
    2
    2 2 2
    2
    2
    a
    r
    4
    ?
    ? ?

    ? 4 ?
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    frecuenciadelaondaelectromagnéticaasociadaalacantidaddemovimiento
    de la partícula observada, ? es la frecuencia electromagnética de la energía
    total del fotón y c es la velocidad de la luz en el vacío.

    MASA Y ENERGÍA EN REPOSO Y TOTAL DEL FOTÓN
    EN LA RELATIVIDAD GENERAL

    A partir de la relación energía momento de nuestro trabajo
    anterior, podemos decir que la masa en reposo unifica a la
    relatividad general con la relatividad especial.
    2
    2 2
    2 2 2
    1 2
    2
    2
    2
    2
    2
    2

    4 ?
    ? ?
    ?
    ?
    ? a?
    4
    r
    4
    r
    4
    Donde Ees la energía total de la partícula observada en movimiento, m es la
    masa en reposo de la partícula observada, vr es la velocidad resultante de la
    partícula observada, G es la constante de gravitacional, M es la masa del
    observador, k es la constante de Coulomb, q1es la carga eléctrica de la masa
    observada, q2es la carga eléctrica del observador, r es la distancia entre la
    partícula observada y el observador, p es la cantidad de movimiento de la
    partícula observada, h es la constante de Planck, ?a es la longitud de onda
    asociada a la cantidad de movimiento de la partícula observada y c es la
    velocidad de la luz en el vacío.

    De la anterior ecuación podemos tomar una parte de la
    relación y deducir lo siguiente:

    2

    1 2
    ?
    4
    a
    r
    4

    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, G es la constante de gravitacional, M es
    la masa del observador, k es la constante deCoulomb, q1es la carga eléctrica
    de la masa observada, q2es la carga eléctricadel observador, r es la distancia
    entre la partícula observada y el observador, h es la constante de Planck, ?a
    es la longitud de onda asociada a la cantidad de movimiento de la partícula
    observada y c es la velocidad de la luz en el vacío.
    ? ?
    GMm
    ?
    4
    a
    r
    4

    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, G es la constante de gravitacional, M es
    la masa del observador, k es la constante deCoulomb, q1es la carga eléctrica
    de la masa observada, q2es la carga eléctricadel observador, r es la distancia
    entre la partícula observada y el observador, h es la constante de Planck, ?a

    Monografias.com

    ?1? kq1q2 ?
    ?
    GMm ?
    ? ? h
    ? ?14?
    4
    ?
    kq q ?
    G M ?1? ?
    1
    2
    ? GMm? ?18?
    c
    mc ? h?a
    1?
    ? ?
    ?1? kq1q2?
    r c
    kq q ? ?
    GMm?1?
    ?
    GMm ?
    ?
    kq q ?
    G M ?1? ?
    1
    2
    r c
    mc
    c
    ? h?a ? h??19?
    ?1? kq1q2?
    ? ?
    ?
    kq q ?
    G M ?1?
    ? ? GMm ?
    1
    2
    ?
    ?
    ?
    GMm?
    2?
    kq1q2 ?
    kq q ? ?
    G M ?1?
    ?
    GMm?1?
    ?
    GMm ?
    ? GMm? ?16?
    ? ? h
    ?a 1?
    r
    r c
    ?
    ?
    ?
    ?
    ? kq q ?
    ?
    ?
    ?
    ?
    G M ?1? ?
    ?
    ?
    ?
    ?
    1?
    ?
    ?
    ?
    ?
    ?h? ? ??h?? ?20?
    mc
    ?
    ?
    ??h?
    ?
    r c
    ?
    ? ? ? GM ? kq q ? ?
    ? kq q ?
    ?1?
    ?
    ? ? ? ?
    G M ?1?
    ?
    r ?
    GMm?
    ? 1?
    ?
    ?
    ?
    ?
    ? 2 4 ? ? ?
    r ?
    kq q ? ?
    1?
    GMm ?
    ?
    kq q ?
    G M ?1? ?
    1
    2
    r c
    ?
    ? 1?
    ?
    mc
    G M ?1?
    ?
    r c
    ?
    ?
    ?mc ? ??h? ? ??h?? ?21?
    La masa en reposo y la energía total del fotón.
    Heber Gabriel Pico Jiménez MD: La masa en reposo y la energía total del fotón.
    4
    r
    es la longitud de onda asociada a la cantidad de movimiento de la partícula
    observada y c es la velocidad de la luz en el vacío.

    ? ?
    GMm
    ?
    a
    r 1?v4
    c
    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, G es la constante de gravitacional, M es
    la masa del observador, k es la constante deCoulomb, q1es la carga eléctrica
    de la masa observada, q2es la carga eléctricadel observador, r es la distancia
    entre la partícula observada y el observador, h es la constante de Planck, ?a
    es la frecuencia de la onda asociada a la cantidad de movimiento de la
    partícula observada y c es la velocidad de la luz en el vacío.
    2
    2 2
    1 2

    2 4
    r
    ? h?a?15?
    1?
    ?

    ? ?
    ? GMm?
    Donde m es la masa en reposo de la partícula observada, G es la constante
    degravitacional, M es la masadel observador, k es la constantedeCoulomb,
    q1 es la carga eléctrica de la masa observada, q2 es la carga eléctrica del
    observador, r es la distancia entre la partícula observada y el observador, h
    es la constantedePlanck, ?aes la frecuenciadelaondaasociadaalacantidad
    de movimiento de la partícula observada y c es la velocidad de la luz en el
    vacío.

    2
    ? 2
    1 2
    ?
    2 4

    Donde m es la masa en reposo de la partícula observada, G es la constante
    degravitacional, M es la masadel observador, k es la constantedeCoulomb,
    q1 es la carga eléctrica de la masa observada, q2 es la carga eléctrica del
    observador, r es la distancia entre la partícula observada y el observador, h
    es la constantedePlanck, ?aes la frecuenciadelaondaasociadaalacantidad
    de movimiento de la partícula observada y c es la velocidad de la luz en el
    vacío.
    2 4
    2
    2 2
    1 2
    ? GMm? ?17?
    1?
    ?
    ?
    GM ?
    ?
    m ?
    h?a
    Donde m es la masa en reposo de la partícula observada, h es la constante
    de Planck, ?a es la frecuencia de la onda asociada a la cantidad de
    movimiento de la partícula observada, G es la constante de gravitacional, M
    es la masa del observador, k es la constante de Coulomb, q1 es la carga
    eléctrica de la masa observada, q2es la carga eléctrica del observador, r es la
    distancia entre la partícula observada y el observador y c es la velocidad de
    la luz en el vacío.

    2
    2 2
    2
    2
    2 4
    GM
    r ? GMm ?
    ? ?
    Donde m es la masa en reposo de la partícula observada, h es la constante
    de Planck, ?a es la frecuencia de la onda asociada a la cantidad de
    movimiento de la partícula observada, G es la constante de gravitacional, M
    es la masa del observador, k es la constante de Coulomb, q1 es la carga
    eléctrica de la masa observada, q2es la carga eléctrica del observador, r es la
    distancia entre la partícula observada y el observador y c es la velocidad de
    la luz en el vacío.

    2 2

    2
    GM
    2 2
    r
    1? 2 4
    r c
    Donde m es la masa en reposo de la partícula observada, h es la constante
    de Planck, ?a es la frecuencia de la onda asociada a la cantidad de
    movimiento de la partícula observada, G es la constante de gravitacional, M
    es la masa del observador, k es la constante de Coulomb, q1 es la carga
    eléctrica de la masa observada, q2es la carga eléctrica del observador, r es la
    distancia entre la partícula observada y el observador, ? es la frecuencia de
    la onda electromagnética de la energía total del fotón y c es la velocidad de
    la luz en el vacío.

    2 2
    2
    2 2 1 2
    2 ? GMm?
    c
    2 2 4
    2 2
    a a
    2
    1 2
    2 2 1 2
    ? GMm? ? ? ?
    r c
    Donde m es la masa en reposo de la partícula observada, h es la constante
    de Planck, ?a es la frecuencia de la onda asociada a la cantidad de
    movimiento de la partícula observada, G es la constante de gravitacional, M
    es la masa del observador, k es la constante de Coulomb, q1 es la carga
    eléctrica de la masa observada, q2es la carga eléctrica del observador, r es la
    distancia entre la partícula observada y el observador, ? es la frecuencia de
    la onda electromagnética de la energía total del fotón y c es la velocidad de
    la luz en el vacío.
    2
    2
    2 2 2
    2 4
    2
    a
    ?
    2
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    ?
    2 2? kq1q2 ?
    ? GMm ?

    Monografias.com

    mc
    ? h? c
    v
    1?v
    r
    c
    ? ??ac2 ?
    mc
    v
    h 1?vr 4
    5
    La masa en reposo y la energía total del fotón.
    Heber Gabriel Pico Jiménez MD: La masa en reposo y la energía total del fotón.
    Donde m es la masa en reposo de la partícula observada, h es la constante
    de Planck, ?a es la frecuencia de la onda asociada a la cantidad de
    movimiento de la partícula observada, G es la constante de gravitacional, M
    es la masa del observador, k es la constante de Coulomb, q1 es la carga
    eléctrica de la masa observada, q2es la carga eléctrica del observador, r es la
    distancia entre la partícula observada y el observador, ? es la frecuencia de
    la onda electromagnética de la energía total del fotón y c es la velocidad de
    la luz en el vacío.

    3. Conclusiones.

    a)-LAÚNICAGRAN CONCLUSIÓN de este trabajoes que
    la longitud de onda de Louis-Víctor de Broglie asociada a la
    partícula, es una longitud de onda asociada solamente a la
    cantidad de movimiento de la determinada partícula, debido
    a que otra es la longitud de onda asociada en el fotón a la
    energía total de dicha misma partícula:

    2 2
    a 2 ? h??8?
    4
    r
    4

    Donde m es la masa en reposo de la partícula observada, vr es la velocidad
    resultante de la partícula observada, h es la constante de Planck, ?a es la
    frecuenciadelaondaelectromagnéticaasociadaalacantidaddemovimiento
    de la partícula observada, ? es la frecuencia electromagnética de la energía
    total del fotón y c es la velocidad de la luz en el vacío.

    2 2
    ?22?
    4
    r

    c
    Donde ? es la frecuencia electromagnética de la energía total del fotón, ?aes
    la frecuencia de la onda electromagnética asociada a la cantidad de
    movimiento de la partícula observada, vr es la velocidad resultante de la
    partícula observada, m es la masa en reposo de la partícula observada, h es
    la constante de Planck y c es la velocidad de la luz en el vacío.

    4- Referencias

    REFERENCIAS DEL ARTÍCULO.
    [44] Cuadrivelocidad, cuadriaceleración y cuadrimomento en la
    relatividad general.
    [43] Anti-Gravedad
    [42] Anti-Gravedad.
    [41] Aceleración de la Gravedad Cuántica.
    [40] Sistema de referencia inercial ligado a onda electromagnética
    en caída libre.
    [39] El espacio-tiempo se curva entorno a la masa neutra o cargada
    eléctricamente.
    [38] El ángulo de la Gravedad.
    [37] La velocidad de escape tiene dos valores, dos direcciones y dos
    observadores distintos.
    [36] La velocidad de escape es la velocidad del observador.
    [35] Velocidad de escape de una partícula con carga eléctrica no
    neutra.
    [34] Velocidad de escape de una partícula con carga eléctrica no
    neutra.
    [33] El espacio tiempo se curva entorno al observador
    [32] El espacio-tiempo se curva entorno al observador
    [31] Números cuánticos en la gravedad cuántica.
    [30] Números cuánticos en la gravedad cuántica.
    [29] Radio del protón es el de un Leptón.
    [28] Configuración electrónica de la gravedad cuántica.
    [27] Configuración electrónica de la gravedad cuántica.
    [26] Agujero Negro de Kerr-Newman-Pico.
    [25] Agujero Negro de Kerr-Newman-Pico.
    [24] Energía Cinética
    [23] Energía del Vacío
    [22] Energía del Vacío
    [21] Agujero Negro de Schwarzschild.
    [20] Agujero Negro de Schwarzschild.
    [19] Velocidad de escape de una singularidad gravitatoria.
    [18] Velocidad de escape de una singularidad gravitacional.
    [17] Velocidad Orbital del Electrón.
    [16] Velocidad Orbital del Electrón
    [15] Espacio tiempo curvo de la gravedad cuántica
    [14] Dilatación unificada del tiempo
    [13] Gravedad Cuántica
    [12] Efecto Doppler Relativista.
    [11] Energía en Reposo
    [10] Onda Gravitacional
    [09] Ondas de materia
    [08] Ondas gravitacionales de vacío cuántico.
    [07] Ondas gravitacionales de vacío cuántico.
    [06] Tercer número cuántico
    [05] Electron como cuasipartícula
    [04] Hibridación del Carbono
    [03] tercer número cuántico
    [02] Hibridación del carbono.
    [01] Electrón Cuasipartícula.
    [1] Nueva tabla periódica.
    [2] Nueva tabla periódica.
    [3] Ciclo del Ozono
    [4] Ciclo del Ozono
    [5] Barrera Interna de Potencial
    [6] Barrera Interna de Potencial
    [7] Ácido Fluoroantimónico.

    Monografias.com

    6
    La masa en reposo y la energía total del fotón.

    [8] Ácido Fluoroantimónico.
    [9] Dióxido de cloro
    [10]Dióxido de cloro
    [11]Pentafluoruro de Antimonio
    [12]Pentafluoruro de Antimonio
    [13]Tetróxido de Osmio
    [14]Enlaces Hipervalentes
    [15]Enlaces en moléculas Hipervalentes
    [16]Nueva regla del octeto
    [17]Estado fundamental del átomo
    Heber Gabriel Pico Jiménez MD: La masa en reposo y la energía total del fotón.

    memoria, el aprendizaje y otros ent2re ellos la enfermedad
    de Alzheimer.

    Estos trabajos, que lo más probable es que estén desfasados por la
    poderosa magia secreta que tiene la ignorancia y la ingenuidad, sin
    embargo, como cualquier representante de la comunidad académica
    que soy, también han sido debidamente presentados sobretodo este
    se presentó en Julio 03 del 2016 en la “Academia Colombiana de
    Ciencias Exactas, Físicas y Naturales” ACCEFYN.
    [18]Estado fundamental del átomo
    [19]Barrera rotacional del etano.
    [20]Enlaces de uno y tres electrones.
    [21]Enlaces de uno y tres electrones.
    [22]Origen de la barrera rotacional del etano
    [23]Monóxido de Carbono
    [24]Nueva regla fisicoquímica del octeto
    [25]Células fotoeléctricas Monografías.
    [26]Células Fotoeléctricas textoscientificos.
    [27]Semiconductores Monografías.
    [28]Semiconductores textoscientificos.
    [29]Superconductividad.
    [30]Superconductividad.
    [31]Alotropía.
    [32]Alotropía del Carbono.
    [33]Alotropía del Oxígeno.
    [34]Ozono.
    [35]Diborano
    [36]Semiconductores y temperatura.

    REFERENCIAS DE LA TEORÍA

    [1] Número cuántico magnético.
    [2] Ángulo cuántico
    [3] Paul Dirac y Nosotros
    [4] Numero cuántico Azimutal monografías
    [5] Numero cuántico Azimutal textoscientificos
    [6] Inflación Cuántica textos científicos.
    [7] Números cuánticos textoscientíficos.com.
    [8] Inflación Cuántica Monografías
    [9] Orbital Atómico
    [10] Números Cuánticos.
    [11] Átomo de Bohr.
    [12] Líneas de Balmer.
    [13] Constante Rydberg.
    [14] Dilatación gravitacional del tiempo.
    [15] Número Cuántico magnético.
    [16] Numero Cuántico Azimutal.

    Copyright © Derechos Reservados1.

    Heber Gabriel Pico Jiménez MD1. Médico Cirujano 1985 de
    la Universidad de Cartagena Rep. De Colombia. Investigador
    independiente de problemas biofísicos médicos propios de la

    Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

    Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

    Categorias
    Newsletter