Monografias.com > Sin categoría
Descargar Imprimir Comentar Ver trabajos relacionados

Bioquímica: Estudio del equilibrio gaseoso y ácido-base del organismo (página 2)



Partes: 1, 2

  1. Transporte gaseoso en el
    organismo

Cuando una persona
está en reposo, por minuto 250 ml de oxígeno
se transportan desde los pulmones a los tejidos y
aproximadamente la misma cantidad de dióxido de carbono desde
los tejidos hacia los pulmones para ser
eliminado.

  • De todo el oxígeno
    presente en la sangre, el
    96% se transporta unido a la Hb, el 4% restante queda
    disuelto en el plasma.
  • La mayor parte de
    dióxido de carbono es transportado en forma de HCO3-,
    una segunda parte se combina con la Hb para su transporte
    y la tercera parte se transporta disuelta en el
    plasma
  1. Unión del
    oxígeno a la Hb

Una sola molécula de Hb
puede unirse en forma reversible a un máximo de 4
moléculas de O2

Esta unión es de tipo
cooperativo: la unión de la primera molécula de
oxígeno provoca un cambio
estructural en la molécula y esto hace que se produzca
mayor afinidad.

Esta mayor afinidad favorece la
unión de la segunda molécula de oxígeno y
así sucesivamente hasta que se completa la unión de
la cuarta molécula de oxigeno,
alcanzando el 100% de afinidad, esta depende de la presión
parcial de oxígeno.

  1. Para una presión parcial
    de oxígeno de 20 mm Hg, la afinidad de unión a la
    Hb es del 25%. Hay unión de 1 molécula de
    oxigeno.
  2. Cuando la presión
    parcial de oxígeno asciende a 40 mm Hg, la afinidad es
    del 75%. Hay unión de 3 moléculas de
    oxígeno.
  3. Cuando en el alvéolo
    pulmonar, la presión parcial de oxígeno alcanza
    los 100 mm Hg, la afinidad es del 100%. Hay unión de 4
    moléculas de oxígeno.
  1. Transporte de
    oxígeno.

Cuando el oxígeno presente
en el alvéolo pulmonar difunde hacia la sangre del capilar
alveolar:

  • La presión parcial de
    oxígeno es de 100 mm Hg
  • La afinidad de unión a
    la Hb es del 100%
  • La Hb se encuentra unida a 4
    moléculas de oxígeno

La sangre llega a los capilares
tisulares. En las células de
los tejidos, debido sobre todo al continuo consumo de
este gas para llevar a
cabo los distintos procesos
metabólicos, la presión parcial de oxígeno
es muy baja, alrededor de los 40 mm Hg.

Este gradiente de presiones
permite la difusión pasiva del oxígeno que desde
los capilares tisulares atraviesa el espacio intersticial
llegando fácilmente a las células. Como
consecuencia de esta difusión es cuando la presión
parcial de oxígeno disminuye paulatinamente a los 40 mm
Hg.

Con esta presión la Hb cede
el oxígeno unido al plasma debido que a esta
presión la afinidad es muy baja.

Del plasma pasa a los tejidos
donde se consume en las distintas reacciones
metabólicas.

Cuando la sangre llega a los
pulmones ya cedió el oxígeno a los tejidos, su
presión parcial es de 40 mm Hg. En los capilares
pulmonares tiene lugar el proceso
inverso. En los tejidos la presión parcial de
oxígeno es de 100 mm Hg por lo tanto el oxígeno se
difunde desde los alvéolos hacia los capilares alveolares
hasta que la presión parcial de oxígeno en le
capilar alveolar alcance los 100 mm Hg.

  1. A nivel tisular, el
    dióxido de carbono, se origina de forma continua
    como consecuencia del mm Hg y por lo tanto se favorece la
    difusión del dióxido de carbono desde los
    tejidos hacia los capilares llegando hasta el interior de
    los eritrocitos.

    En estos, por acción de la anhidrasa
    carbónica, el dióxido de carbono presente se
    transforma en ácido carbónico, el cual se
    ioniza rápidamente originando bicarbonato e hidrógeno:

    Como consecuencia de un
    aumento de protones el pH de la
    sangre disminuye. Esta disminución no es excesiva ya
    que la Hb en su función de tampón
    fisiológico se une a los protones
    neutralizándolos.

    La Hb reducida tras unirse a
    los protones posee una menor afinidad por el oxígeno
    y este es cedido más fácilmente a los
    tejidos, según:

    En el plasma (donde no hay
    anhidrasa carbónica) la concentración de
    bicarbonato es muy reducida. La diferencia de
    concentración entre el interior del eritrocito y el
    plasma hace que el bicarbonato salga del glóbulo
    rojo.

    Cuando la sangre llega a los
    pulmones el dióxido de carbono abandona por
    difusión los capilares pulmonares, llega a los
    alvéolos y se difunde hasta los capilares alveolares
    , allí las reacciones anteriores se llevan a cabo en
    sentido inverso:

    La eliminación del
    dióxido de carbono y su oxigenación
    convierten la sangre venosa en arterial, fin último
    del proceso respiratorio.

  2. Transporte de
    dióxido de carbono
  3. Monóxido de
    carbono

El monóxido de carbono se
forma por combustión incompleta de materiales que
contienen carbono. En términos de masa total el
monóxido de carbono es le más abundante de todos
los gases
contaminantes, el nivel en el aire no
contaminado es bajo, probablemente 0,05 ppm. La cantidad total
estimada de la atmósfera es
alrededor de 5,2×10 14.

Es una molécula
relativamente poco reactiva y en consecuencia no plantea una
amenaza directa, sin embargo afecta a seres humanos ya que tiene
la capacidad "poco usual" de unirse a la Hb. Cada una de las
cuatro cadenas que componen la Hb tiene un grupo hemo, el
monóxido de carbono se une con fuerza al
hierro
formando un complejo que recibe el nombre de carboxilhemoglobina
(COHb)

La afinidad de la Hb por el
monóxido de carbono es aproximadamente 200 veces mayor que
por el oxígeno, en consecuencia, una concentración
relativamente pequeña puede inactivar una fracción
considerable de la Hb de la sangre para transportar el
oxígeno.

P. ej: una persona que respira
aire que contiene sólo monóxido de carbono,
incorpora gas suficiente para convertir hasta el 60% de Hb en
COHb, reduciéndose por lo tanto a este porcentaje la
capacidad de unión al oxígeno.

En condiciones normales una
persona no fumadora que respira aire no contaminado tiene
alrededor del 0,3 al 0,5% de COHb en el torrente
sanguíneo.

Esta cantidad se debe
principalmente a la producción de pequeñas cantidades de
monóxido de carbono en el curso de la química normal del
cuerpo y a la pequeña cantidad de monóxido de
carbono presente en el aire limpio. La exposición
a concentraciones más altas es causa de un aumento del
nivel de COHb, esto provoca que queden menos sitios en la Hb para
la unión con el oxígeno.

Si el nivel de COHb es muy
elevado, el transporte de oxígeno se interrumpe y se
produce la muerte.
Puesto que el monóxido de carbono es incoloro e inodoro,
el envenenamiento ocurre con muy pocas señales
de advertencia.

  1. Equilibrio
    ácido-base

El equilibrio
ácido-base se define como "aquella situación de
equilibrio establecido en el balance entre sustancias de carácter ácido y básico de la
sangre como consecuencia de la interacción entre los sistemas
respiratorios y metabólicos"

Los valores
normales son:

Sangre arterial = 7.35 /
7.45

Sangre venosa = 7.31 /
7.41

Las alteraciones encontradas en el
equilibrio ácido-base pueden ser de dos
tipos:

  • Respiratorias: aquellas en los
    que la concentración de dióxido de carbono o
    ácido carbónico constituye el cambio primario del
    pH.
  • Metabólicas: por una
    alteración en la concentración de
    bicarbonato
  1. Debido a los constantes
    procesos fisiológicos del organismo se generan
    diariamente una gran cantidad de sustancias de
    carácter ácidos y básicos susceptibles
    de alterar el equilibrio.

    Dicha alteración se
    traduce en cambios de pH del organismo. Evitar estas
    variaciones es tarea de los tampones (sistemas
    amortiguadores) presentes en el organismo y son capaces de
    captar o ceder protones como respuesta a los cambios de
    acidez de los líquidos
    orgánicos.

    La labor de estos tampones
    se desarrolla en los pulmones y riñones. En
    condiciones normales, el dióxido de carbono suele
    excretarse a través de los
    pulmones.

    Por su parte, los
    riñones eliminan mediante la excreción
    tubular los protones originados como consecuencia de las
    principales fuentes
    metabólicas (no respiratorias) y que son
    fundamentalmente la oxidación incompleta de grasas e
    hidratos de carbono y la oxidación del azufre y de
    los metabolitos que contienen
    fósforo.

  2. Regulación del
    equilibrio ácido-base
  3. Alteraciones del
    equilibrio ácido-base

La mayor parte de los métodos
que se utilizan actualmente para determinar la existencia de un
desequilibrio ácido-base en el organismo, están
basados en la aplicación de la ecuación de
Henderson-Hosselbach.

Para un ácido débil
(HA)

[ HA ] → [ H+ ] + [ A¬
]

[ H+ ] = [ HA
]

[ A¬ ]

por lo tanto:

pH = pKa + log [ A¬
]

[ HA ]

donde pKa = log
1

Ka

Esta expresión es
considerada la ecuación "estándar" de
Henderson-Hasselbach y puede ser aplicada en el caso particular
para determinar las variaciones sufridas por el equilibrio
ácido-base del organismo.

Concretamente, en el caso del
ácido carbónico de la sangre, la reacción
que tiene lugar en el plasma es:

Aplicando la
ecuación:

Los protones que como consecuencia
de un deteriorado proceso orgánico puedan ser liberados,
son temporalmente tamponados por los distintos sistemas
amortiguadores existentes en le organismo.

Cuando la cantidad de protones a
neutralizar es excesiva pueden generarse alteraciones del
equilibrio de distinta gravedad que, en ocasiones, llegan a ser
incluso incompatibles con la vida. Estos desequilibrios pueden
ser excesos o defectos y generan en el organismo dos estados
denominados "acidosis y alcalosis"

  • Acidosis: es un exceso de
    protones en la sangre por encima de 44
    nmol/l
  • Alcalosis: es un déficit
    de protones en la sangre por debajo de 35
    nmol/l
  1. Valoración
    clínica de las alteraciones del equilibrio
    ácido-base

Para poner de manifiesto la
existencia en el organismo de una situación de acidosis o
alcalosis no es suficiente con determinar el ácido
carbónico presente en el plasma ya que:

  1. un valor bajo
    de ácido carbónico plasmático puede ser
    debido tanto a una acidosis no primaria, como en una alcalosis
    primaria.
  2. un valor alto de ácido
    carbónico en el plasma puede tener su origen en una
    alcalosis no primaria como en una acidosis
    primaria.
  1. BIBLIOGRAFÍA

Ma. del Carmen D’Ocon Navaza
y otros. "Fundamentos y técnicas
de análisis bioquímicos". Ed.
Paraninfo. Madrid.
1999.

Luber Stryer. "Bioquímica". Ed. Reverte. Barcelona.
1999.

Brown-LeMay-Bursten.
"Química. La Ciencia
central". Ed. Prentice hall. México.1998.

Helena Curtis. "Biología". Ed.
Panamericana. Colombia.
1993.

 

Germán Luis
Puigdomenech

Técnico Superior en
Microbiología y
Biotecnología

FEBRERO/ 2007→

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Categorias
Newsletter