Monografias.com > Sin categoría
Descargar Imprimir Comentar Ver trabajos relacionados

Epistemologia didáctica de la química (página 8)




Enviado por JAIRO GUERRA



Partes: 1, 2, 3, 4, 5, 6, 7, 8

 

SUBJECT NUMBER

SUBJECT NAME

UNITS

TERM OFFERED

PRE-REQUISITES

5.UR

Undergraduate Research

TBD, [P/D/F]

F, S

None

5.URG

Undergraduate Research

TBD

F, S

None

5.ThU

Undergraduate Thesis

TBD

F, S

Permission of instructor

5.00

Application of Technology

3-0-9

F

Permission of instructor

5.03

Principles of Inorganic Chemistry
I

4-0-8

S

5.12

5.04

Principles of Inorganic Chemistry
II

4-0-8

F

5.03

5.05

Principles of Inorganic Chemistry
III

2-0-4

S

5.03, 5.04

5.061

Principles of Organometallic
Chemistry

3-0-9

F

5.03, 5.04

5.062

Principles of Bioinorganic
Chemistry

2-0-4

F

5.03

5.068

Physical Methods in Inorganic
Chemistry

3-3-6

S

5.03, 5.04

5.069

Special Topics in Inorganic
Chemistry

2-0-4

S

5.061

5.07

Biological Chemistry I

4-0-8

F

5.12

5.08J(Same subject as
7.08J)

Biological Chemistry II

4-0-8

S

5.12, 5.07 or 7.05

5.111

Principles of Chemical
Science

5-0-7

F, S

None

5.112

Principles of Chemical
Science

5-0-7

F

None

5.12

Organic Chemistry I

5-0-7

F, S

5.111 or 5.112 or 3.091

5.13

Organic Chemistry II

5-0-7

F

5.12

5.21

Design and SynthesisNot Offered
Academic Year 2004-2005

3-0-6

S

5.04 or 5.08 or 5.43 or 5.50 or
5.62

5.22J(Same subject as 10.02J,
BE.105J)

Biotechnology and
Engineering

4-0-5

S

None

5.23(Meets with
12.807)

Atmospheric ChemistryNot Offered
Academic Year 2004-2005

3-0-9

F

5.60

5.24J(Same subject as
3.985J)

Archaeological Science

3-1-5

S

3.091 or 5.111 or 5.112 or 8.01 or
equivalent

5.301

Chemistry Laboratory
Techniques

1-4-1, [P/D/F]

IAP

5.111 or 5.112 or equivalent and
Permission of instructor

5.302

Introduction to Experimental
Techniques

0-3-0 [P/D/F]

IAP

5.111 or 5.112 or 3.091 or equivalent
and Permission of instructor

5.303

Principles of Chemical Science
Laboratory

0-3-0

S

5.111

5.310

Laboratory Chemistry

2-8-2

F, S

5.12

5.311

Introductory Chemical
Experimentation

2-8-2

F

5.12

5.32

Intermediate Chemical
Experimentation

1-12-2

S

5.311 or 5.310, 5.13,
5.60

5.33

Advanced Chemical Experimentation and
Instrumentation

2-13-6

F

5.32, 5.61

5.43

Advanced Organic Chemistry

4-0-8

S

5.13

5.44

Organometallic Chemistry

2-0-4

F

5.43

5.451

Chemistry of Biomolecules
I

2-0-4

F

5.43

5.46

NMR Spectroscopy and Organic
Structure Determination

2-0-4

S

5.43

5.47

Tutorial in Organic
Chemistry

2-0-4 [P/D/F]

F

5.43, Permission of
instructor

5.48J(Meets with 7.24, Same
sumject as 7.88J, 10.543J)

The Protein holding
Problem

4-0-8

F

5.07 or 7.05 or equivalent

5.49

Membrane and Receptor
Biochemistry

2-0-4

S

5.07 or equivalent

5.50

Enzymes: Structure and
Function

3-0-9

F

5.07, 5.12, 5.13

5.511

Synthetic Organic Chemistry
I

3-0-9

F

5.43

5.512

Synthetic Organic Chemistry
II

3-0-9

S

5.511

5.52

Advanced Biological
Chemistry

2-2-8

F

Permission of instructor

5.53

Molecular Structure and Reactivity
I

2-0-4

F

5.13, 5.60

5.55 (Same subject as
BE.485J)

Chemical Tools for Assessing
Biological Function

2-0-4

S

5.43, 5.07 or 7.05, 5.47 or
5.52

5.56

Molecular Structure and Reactivity II
Not Offered Academic Year 2004-2005

2-0-4

S

5.43

5.561

Chemistry in Industry

2-0-4 [P/D/F]

S

5.03, 5.07, 5.13

5.60

Thermodynamics and
Kinetics

5-0-7

F, S

18.02, 5.111 or 5.112 or
3.091

5.61

Physical Chemistry I

4-0-8

F

8.02, 18.02, 5.111 or 5.112 or
3.091

5.62

Physical Chemistry II

4-0-8

S

5.60, 5.61

5.63

Molecular Spectroscopy: Laser and
Magnetic Resonance TechniquesNot Offered Academic Year
2004-2005

3-0-9

S

5.61, 5.62

5.64

Biophysical Chemistry

2-0-4

S

5.13, 5.60, 5.07 or 7.05

5.65

Biophysical Chemistry and Molecular
Design

2-0-4

F

5.13, 5.60, 5.07 or 7.05

5.67J(Same subject as
BEH.344J)

Computer Modeling of Protein
Structure and Function

1-1-0

IAP

5.111 or 5.112 or
equivalent

5.68J(Same subject as
10.652J)

Kinetics of Chemical
Reactions

3-0-9

S

5.62 or 10.37 or 10.65

5.70

Introduction to Statistical
Thermodynamics

3-0-9

F

5.62

5.72

Statistical Mechanics

3-0-9

S

5.70, 5.73, 18.075

5.73

Introductory Quantum Mechanics
I

3-0-9

F

5.61, 8.03, 18.03

5.74

Introductory Quantum Mechanics
II

3-0-9

S

5.73

5.76

Modern Topics in Physical
ChemistryNot Offered Academic Year
2004-2005

3-0-9

S

5.61 or 5.73 or 8.05

5.77J(Meets with 7.35, Same
subject as 7.75J)

Topics in Metabolic
Biochemistry

4-0-8

F

5.07 or 7.05

5.78

Practical Macromolecular
Crystallography

2-0-4

S

5.52, 5.64

5.79J(Same subject as
BEH.480J)

GlycomicsNot Offered Academic
Year 2004-2005

2-0-4

S

5.12, 5.07 or 7.05

5.80

Special Topics in Chemical
Physics

3-0-9

S

5.73

5.81

Special Topics I

3-0-9

F, S

None

5.82

Special Topics II

3-0-9

F, S

None

5.83

Special Topics III

3-0-9

F, S, Su

None

5.841-5.842

Special Topics in Biological
Chemistry

2-0-4

S

Permission of instructor

5.891

Special Topics in Chemistry for
Undergraduates

TBD, [P/D/F]

F, IAP, S

None

5.95J

Teaching College-Level
Science

2-0-2

S

None

5.96

The Chemistry of Cancer

1-0-2

F, S

Permission of instructor

The Chemistry Curriculum leading to a
Bachelor of Science degree in Chemistry includes the General
Institute Requirements as well as the specific chemistry subjects
listed on this page.

The small number of required subjects
enables the student to participate in original research under the
Undergraduate Research Opportunities Program (UROP), and also
provides ample time to take graduate-level chemistry classes and
subjects in other departments.

For an S.B. Degree in
Chemistry:

Required Lecture Subjects

5.03 Principles of Inorganic Chemistry
I5.07 Biological Chemistry5.111 or 5.112 Principles of Chemical
Science or equivalent5.12 Organic Chemistry I5.13 Organic
Chemistry II5.60 Thermodynamics & Kinetics5.61 Physical
Chemistry I

Required Laboratory
Subjects

5.311 Introduction to Chemical
Experimentation5.32 Intermediate Chemical Experimentation5.33
Advanced Chemical Experimentation

Restricted Lecture
Electives

(two of four are required)5.04 Principles
of Inorganic Chemistry II5.08 Biological Chemistry II5.43
Advanced Organic Chemistry5.62 Physical Chemistry II

 

Traducción

INSTITUTO TECNOLÓGICO DE
MASACHUSETTS

REQUISITOS PARA ESPECIALIZACIONES

Programa Académico

Química

El plan de estudios de química que conduce al
título de licenciado en la ciencia de la química,
incluye los requisitos generales del instituto al igual que las
asignaturas específicas de química relacionadas a
continuación

.El número de asignaturas requeridas permite
que el estudiante participe en investigaciones bajo el programa
de oportunidades de pregrado para la investigación (UROP),
y también proporciona el tiempo suficiente de tomar clases
de química en niveles superiores de diplomado y
asignaturas en otros departamentos.

Para el título de licenciado en
Ciencias Químicas:

Asignaturas teóricas
requeridas:

5.03 Principios de química
inorgánica

5.07 química
biológica

5.111 o 5.112 Principios de Ciencia
química o equivalente

5.12 Química orgánica
I

5.13 química orgánica
II

5.60 termodinámica &
cinética

5.61 Fisicoquímica
I

Asignaturas de laboratorio
requeridas

5.311 Introducción a la
experimentación química

5.32 Experimentación
química intermedia

5.33 Experimentación
química avanzada

Asignaturas Electivas

(Se deben tomar mínimo dos
asignaturas)

5.04 Principios de química
inorgánica II

5.08 química biológica
II

5.43 química orgánica
avanzada

5.62 Fisicoquímica
II

  Academic Programs

A Minor in Chemistry can be earned by
completing six chemistry subjects.

Required Subjects

5.03 Principles of Inorganic Chemistry
I5.12 Organic Chemistry I5.310 Laboratory Chemistry5.60
Thermodynamics & Kinetics

Elective Subjects (choose
two)

5.04 Principles of Inorganic Chemistry
II5.07 Biological Chemistry5.08 Biological Chemistry II 5.13
Organic Chemistry II5.32 Intermediate Chemistry
Experimentation5.43 Advanced Organic Chemistry5.61 Physical
Chemistry I5.62 Physical Chemistry II

  Traducción

Un grado secundario en química puede ser
adquirido completando seis asignaturas

Asignaturas requeridas

5.03 Principios de química
inorgánica I5.12 Química orgánica I5.310
Laboratorio de química5.60 Termodinámica &
Cinética

Asignaturas electivas (Escoger
dos)

5.04 Principios de Química
Inorgánica II5.07 Bioquímica5.08 Bioquímica
II 5.13 Química Orgánica II5.32
Experimentación Química Intermedia5.43
Química Orgánica Avanzada5.61 Físico –
química I5.62 Físico – química II

  Academic
Programs

Regular registered MIT students can apply
to receive credit for chemistry courses taken at another
college or university by following the procedures outlined
below. Transfer credit will be awarded only when the course
taken elsewhere substantially resembles an MIT chemistry
subject and when the student receives a grade of at least B (or
the equivalent). When an application is approved, the student
receives credit for the equivalent MIT subject with a grade of
"S".

Summary of Application Procedure

  • Print a copy of the form "Request for Additional
    Credit Based on Subject Completed at Outside Institution"
    or pick up a copy from 2-204.

  • Complete the form and bring it to the Chemistry
    Education Office (2-204) with the supporting documents (see
    below).

  • Your application will be reviewed by the Chemistry
    Transfer Credit Examiner, Professor Sylvia Ceyer, with the
    assistance of other faculty. You will be notified of the
    status of your application by the Chemistry Education
    Office within one week of the submission of your complete
    application and any additional material requested by the
    Transfer Credit Examiner.

  • If your application is approved, the "Request for
    Additional Credit" form (signed by Professor Ceyer) will be
    returned to you. Note that MIT requires that you submit
    this form to the Registrar's Office (5-119) no later than
    the eleventh week (Drop Date) of your first term after the
    subject was taken or you will be charged a $40 late
    fee.

Inquiries Concerning Transfer
Credit
MIT Chemistry does not "pre-approve" courses for
transfer credit (eg, for classes taken over the summer). If,
however, you would like to have the Transfer Credit Examiner
give you a non-binding opinion as to whether the course you
want to take has a chance to transfer, then follow these three
steps:

  • Obtain a detailed syllabus and catalogue course
    description for the course you wish to take – be sure to
    include lecture hours, textbook information, and lecture
    topics

  • Fill out the "Request for Additional Credit…"
    form

  • Bring these materials to the Chemistry Education
    Office (2-204) with your name, email address, and the
    course you want this class to count for (ie, if you hope to
    take a general chemistry course somewhere else and have it
    count for 5.111, please write that down)

The Transfer Credit Examiner will look over the
materials you provide and conjecture as to the possibility of
the credit transferring. Please note that responses to such
inquiries are non-binding advisory opinions only. Transfer
credit will not be approved until after you have taken the
course and an application form, transcript, and all of the
supporting material described below is submitted for
evaluation.

Application Procedure: What to
Submit

  • A copy of the official transcript from the outside
    institution showing the final grade (B or higher) for the
    subject you completed. You must arrange to have the
    transcript sent directly to the MIT Registrar's Office, and
    you should then obtain a copy from the Registrar to submit
    to the Chemistry Department with your application for
    transfer credit.

  • A completed copy of the form "Request
    for Additional Credit Based on Subject Completed at Outside
    Institution." This form requires you to provide information
    on the course taken at the outside institution including
    the subject name and number, the principal textbook(s)
    used, the chapters covered, and the number of hours per
    week of lectures, recitations, etc.

  • A copy of the catalog description for
    the course taken at the outside institution as well as a
    detailed syllabus for the subject.

  • Applications for 5.111 transfer
    credit must be accompanied by copies of all of your problem
    sets and exams from the course taken at another college or
    university. For other subjects, the Transfer Credit
    Examiner may require you to provide copies of your exams
    and problem sets after you submit your application.
    However, for other courses it is not necessary to submit
    this material unless it is specifically requested by the
    Transfer Credit Examiner.

Guidelines for Specific Chemistry
Subjects

Principles of Chemical Science
(Chemistry 5.111/5.112)
Upperclass students (and
second-semester freshmen) who have taken a college-level
chemistry course at another college or university can apply for
transfer credit (awarded as a grade of S in 5.111) by following
the application procedure described above. Completion of two
semesters of general chemistry covering the topics outlined
below usually is necessary to receive credit; however, one
semester of an accelerated general chemistry course that covers
this material may also be acceptable. The Transfer Credit
Examiner will review the syllabus, problem sets, and exams that
you must provide with your application to determine whether the
course you took is acceptable with regard to the scope of
topics studied and depth of coverage. A grade of B (not B-) or
better must be received in each course to qualify for credit.
All of the following topics must be covered in the courses
being considered for credit:

  • Atomic theory, wave-particle duality,
    photoelectric effect, diffraction

  • Introduction to quantum mechanical concepts: wave
    equation, wavefunction

  • Hydrogen atom orbitals, shell structure, trends in
    periodic table

  • Photoelectron spectroscopy

  • Covalent and ionic bonds, Lewis structures,
    VSPER

  • Molecular kinetic theory, Maxwell-Boltzmann
    distribution function

  • Intermolecular forces and liquids

  • Internal molecular motions and
    spectroscopy

  • Heat, work, energy, heat capacity

  • Enthalpy, entropy, free energy

  • Chemical equilibrium

  • Acid-base calculations, buffers and
    titrations

  • Electrochemistry, oxidation-reduction

  • Hybridization, valence bond theory, molecular
    orbital theory

  • Transition metals and coordination chemistry,
    ligand field theory, magnetism

  • Kinetics, rate laws, catalysis

  • Structure and bonding in solids, electronic and
    polymeric materials

  • Introduction to biochemical concepts

  • Introduction to organic chemistry, nomenclature,
    stereoisomerism

Incoming freshmen who have taken a college-level
chemistry course at another college or university (rather than
in their high school) have the option of either (a) taking the
MIT Chemistry Advanced Placement Exam (see below), or (b)
applying for transfer credit. If you are interested in pursuing
this option please contact the Academic Resource Center by
visting their website or by sending an email to
mailto:ap@mit.edu. Complete applications for transfer credit
must include a transcript, a copy of the syllabus (with full
information on textbook used, chapters covered, etc.), and
copies of your problem sets and exams (for 5.111, in
particular).

Advanced Placement and Advanced
Standing Exams for 5.111/5.112
Incoming freshmen who wish
to receive credit for 5.111 based on chemistry courses they
have taken in high school are not eligible for transfer credit
and must take the MIT Chemistry Advanced Placement Exam (see
Advanced Placement Exam website for instructions). Students who
pass this exam receive credit for 5.111 with a grade of P; no
record is kept of non-passing grades.

Upperclass students who have not taken
Chemistry 5.11, 5.111, or 5.112 at MIT may take the Advanced
Standing Exam (see Advanced Standing Exam website for
instructions). If you pass this exam you will receive credit
for 5.111 and a letter grade (A through F, which is not counted
in your grade point average).

Organic Chemistry (Chemistry 5.12 and
5.13)
The 5.12/5.13 organic chemistry sequence at MIT covers
more material and involves a more sophisticated treatment of
many topics as compared to typical one-year organic chemistry
courses offered at other institutions. In general, students who
have taken a standard one-year course at another university and
received a grade of B or higher can apply for transfer credit
for 5.12 by following the application procedure detailed above.
Credit for 5.13 will not be awarded based on a "standard"
one-year organic chemistry course taken elsewhere. However,
students who have taken one year of an "honors" or
"accelerated" version of organic chemisty at another
institution may be eligible for 5.13 transfer credit. If you
wish to apply for 5.13 transfer credit, follow the application
procedure described above and provide supporting material
indicating that the course you took was an "honors-level"
course which covered all of the following topics:

  • Structure and bonding in organic
    compounds

  • Substitution and elimination
    reactions: mechanism and synthetic applications

  • Carbonyl chemistry including
    reactions of carbohydrates

  • Chemistry of benzene
    derivatives

  • Structure determination, including
    application of IR, MS, and proton and carbon NMR

  • Stereochemical principles including
    conformational analysis

  • Mechanism and synthetic applications
    of stereoselective reactions

  • Chemistry of alkenes and
    alkynes

  • Molecular orbital theory, pericyclic
    reactions

  • Chemistry of heterocyclic
    compounds

  • Chemistry of carbocations, including
    rearrangements

  • Chemistry of carbenes and free
    radicals

  • Retrosynthetic analysis, applications
    of C-C bond-forming reactions in synthesis

Physical Chemistry 5.60
("Thermodynamics and Kinetics")
Chemistry 5.60 discusses
the principles of both thermodynamics and chemical kinetics at
a level much more sophisticated than that presented in
5.111/5.112. This subject covers topics typically taught in
upper-level physical chemistry courses at other institutions.
Multivariable calculus is employed to describe the principles
of thermodynamics and 5.60 also includes a comprehensive
discussion of reaction kinetics based on the application of
differential equations. Students can apply for transfer credit
for 5.60 by following the application procedure described
above.

ANEXO VII

MALLA CURRICULAR DEL PREGRADO EN
QUÍMICA DE LA UNIVERSIDAD NACIONAL DE
COLOMBIA

Bibliografia general

  • 1. ACHISTEIN,P. Concepts of science. A
    philosophical analysis.
    The Johns Hopkings Press.
    1968.

  • 2. ADÚRIZ-BRAVO, A. Aportes de la
    Epistemología e historia de la ciencia a la
    didáctica especial de las ciencias naturales.

    FOMEC-CEFIEC. Buenos Aires. 1997

  • 3. ADÚRIZ-BRAVO, A. e IZQUIERDO, M.
    La didáctica de las ciencias experimentales como
    disciplina tecnocientífica autónoma.

    Grupo Editorial Universitario. Granada. 2001.

  • 4. ADÚRIZ-BRAVO, A. El
    método de problemas en la didáctica de las
    ciencias naturales.
    Universidad de Buenos Aires.
    1993.

  • 5. ADÚRIZ-BRAVO, A. Materiales
    para la enseñanza de la epistemología a
    profesores de ciencias.
    Universidad Autónoma de
    Barcelona. 1999.

  • 6. ALBERTY R, SILBEY R J, Physical Chemistry,
    2 ed. John Wiley and son inc. N.Y. 1977

  • 7. ANDER, P.; SONNESSA, A.
    Principios de química; Limusa:
    México, 1996.

  • 8. ARTIGAS, M. Filosofía de la
    ciencia experimental.
    EUNSA. Pamplona.
    1989.

  • 9. ATKINS P.W., "Physical Chemistry", 6th
    Edition, Oxford University Press, Oxford, 1998.

  • 10. AYER, A. El positivismo
    lógico.
    FCE. México. 1965.

  • 11. BAZDRESCH PARAD, M. Las competencias
    en la formación de docentes.
    Educar.
    México. 1998.

  • 12. BLOOM, B. Taxonomía de
    objetivos. Dominio Cognitivo.
    Buenos Aires. Ateneo.
    1970.

  • 13. BOLIVAR, A. Conocimiento de la
    Enseñanza. Epistemología de la
    investigación Currícular.
    FORCE.
    Universidad de Granada. Granada. 1995.

  • 14. BRICEÑO, C. O.;
    RODRÍGUEZ, L. Química, 2ª ed.;
    Educativa: Bogotá, 2000.

  • 15. BRICEÑO, CARLOS OMAR Y LILIA
    RODRIGUEZ, Química, Editorial Educativa,
    Santa fe de Bogotá, 1994.

  • 16. BROW LEMAY, BURSTEN, La
    Ciencia Central
    , 7a edición. Prentice
    Hall  México,  1998.

  • 17. BUNGE, M. Epistemología.
    Ariel. Barcelona. 1980.

  • 18. CHANG R., Química McGraw
    Hill, México, 1994

  • 19. CHANG, R; COLLEGE W.,
    Química, 7a edición; McGraw -Hill,
    Mexico, 2002. 

  • 20. CHANG,  R. 
    Química, 7ª ed.; Mc.Graw Hill:
    México, 2002.

  • 21. CRC Handbook of Chemistry and Physics, 67
    ed. CRC Press, 1986

  • 22. DÍAZ BARRIGA, A.
    Didáctica y Currículo. Paidós
    Ecuador. México. 1997.

  • 23. DIMITRIADIS, P., PAPATSIMPA, L. y
    KALKANIS, G. Educating of primary teachers in history,
    philosophy and methodology of sciencie with a
    constructivist approach,
    Science education research in
    the knowledge based society, 356-358. Aristotle University
    of Thessaloniki. Salónica. 2001.

  • 24. EBBING D:D:, General Chemistry, 6 ed. ,Mc
    Graw Hill. 1999

  • 25. FALS BORDA, O. El problema de como
    investigar la realidad para transformarla por la
    praxis.
    Tercer Mundo Editores. Colombia.
    1990.

  • 26. FEYERABEN, P. Against method.
    Verso. Londres. 1975.

  • 27. FOUCAULT, M. La arqueología
    del saber.
    Ed. Siglo XXI. México.
    1990.

  • 28. GARDNER, H. La educación de la
    mente y el conocimiento de las disciplinas.

    Paidós. Barcelona. 2000

  • 29. GILLIES,D. Philosophy of science in
    the twentieth century. Four central themes.
    Blackwell.
    Oxford. 1993

  • 30. GÓMEZ, G.R. Ciencias
    físico – químicas y su didáctica.

    Humanitas. Buenos Aires. 1980

  • 31. HANNAWAY, O. The chemists and the
    World: The didactic origins of chemistry.
    Johns
    Hopkins University Press. Baltimore. 1975

  • 32. http://antoine.frostburg.edu/chem/senese/101

  • 33. http://highered.mcgraw-hill.com/sites/0073656011

  • 34. http://www.tannerm.com/

  • 35. IZQUIERDO, M. Bases
    epistemológicas de la didáctica de las
    ciencias.
    Universidad Autónoma de Barcelona.
    Bellaterra. 1998.

  • 36. KATZ, L. A matrix for research on
    teacher education.
    World yearbook of education.
    1980.

  • 37. KAUZMANN W., "Thermodynamics and
    Statistics: with applications to gases", W.A. Benjamin, New
    York, 1967

  • 38. KONDEPUDI D. AND PRIGOGINE I., "Modern
    Thermodynamics: from heat engines to dissipative
    structures", Wiley, Chichester, 1.998.

  • 39. KOTZ, J. C.; TREICHEL, P. M.
    Química y reactividad química,
    5ª ed.; Thomson: México, 2003.

  • 40. KUHN,T.Historical structure of
    scientific discoveries,
    Science, 136(6), 760 –
    764.

  • 41. KUNH, T. Revolución de la
    estructura científica.
    FCE. México.
    1975.

  • 42. LAIDLER K.J., AND MEISER J.H.,
    "Fisicoquímica", 1ª Edición en
    español, CECSA, México, 1997.
    (Capítulos 1-5).

  • 43. LAKATOS, I. La metodología de
    los programas de investigación
    científica.
    Alianza. Madrid. 1983.

  • 44. LAKATOS, L. Historia de la
    ciencia.
    Tecno. Madrid. 1982.

  • 45. LOGAN S.R., "Fundamentos de
    Cinética Química", Addison Wesley, Madrid,
    2.000. Firth D.C., "Elementary Chemical Thermodynamics",
    Oxford University Press, London, 1969.

  • 46. MASTERTON, WILLIAM L;
    SLOWINSKI, EMIL J.; STANISKI., CONRAD L.;
    Quìmica General Superior, sexta
    ediciòn, Bogotà, Mac-Graw Hill
    198.

  • 47. MESSINA, G. Cómo se forman los
    maestros en América – Latina.
    Boletín
    del P.P.E. UNESCO. Nº 43. Santiago de Chile.
    1999.

  • 48. MORIN, E. Introducción al
    pensamiento complejo.
    Gedisa. Barcelona
    1997

  • 49. MORTIMER CH., "Química", Grupo
    Editorial Iberoamericano", México, 1983.

  • 50. PERAFÁN, G. A. Diversidad
    epistemológica del profesor y enseñanza de
    las ciencias.
    Enseñanza de las ciencias.
    Número VI (extra). 2001

  • 51. PETRUCCI R. H.; HARDWOOD, W.
    S.; HERRING, F. G. Química general, 8ª
    ed.; Pearson: España, 2002.

  • 52. Petrucci R.A. and Harwood W.S., "General
    Chemistry: Principles and Modern applications", 7th
    edition, Prentice Hall, Upper Saddle River,
    1.997.

  • 53. PETRUCCI, RALPH H.; "Química
    General
    "; 7ª edición, Prentice Hall,
    España 1999.

  • 54. PIAGET, J. Naturaleza y
    métodos de la epistemología.
    Proteo.
    Buenos Aires. 1970.

  • 55. PINZÓN J.A., "DIRECCIONALIDAD Y
    EQUILIBRIO", Departamento de Química, Universidad
    Nacional de Colombia, Bogotá, 1991.

  • 56. POPPER, K. The logia of scientific
    discovery.
    Basic Books. Nueva York. 1959

  • 57. PRICE G., "Thermodynamics of Chemical
    Processes", Oxford University Press, Oxford,
    1.998.

  • 58. ROJAS SORIANO, R.
    Investigación – acción en el aula.
    Plaza Valdéz. México 1995.

  • 59. RUSSEL, J.B.; LARENA, A.,
    Química , McGraw -Hill, Madrid,
    1987 

  • 60. SANMAMED, M. Aprender a
    enseñar. Mitos y Realidades.
    Servicio de
    publicaións. Universidad de Coruña.
    1995.

  • 61. SEGAL B.G., "Chemistry; Experiment and
    Theory", 2nd edition, Wiley, New York, 1989.

  • 62. SILBERBERG, M.S., "CHEMISTRY: The
    molecular Nature of Matter and Change", Mc Graw Hill. 2 ed.
    2000

  • 63. SORIA, O. Docencia de la
    investigación en la Universidad
    Latinoamericana.
    Docencia Nº3. pp. 30-42.
    1985.

  • 64. STOIBER, K.C. The effect of technical
    and reflective Pre-service instruction on pedagogical
    reasoning and problem solving.
    Journal Of Teacher
    Education. Nº 42 (2). Pp. 131 – 139. 1991.

  • 65. STUFFLENBEAM, D. Y SHINKFIELD, A.
    "Evaluación Sistemática". Barcelona.
    Paidós. MEC. 1997

  • 66. UMLAND, J.B.; BELLAMA, J.M.,
    "Química General", tercera edición;
    Thomson Learning, 1999.  

  • 67. VON WRIGHT, G. Explicación y
    comprensión.
    Alianza. Madrid. 1979.

  • 68. VYGOTSKY, L. Estudio de los conceptos
    científicos en la edad infantil.
    Obras
    Escogidas. Aprendizaje Visor. Madrid. 1993

  • 69. WHITTEN K, GAYLEY K., DAVIS R E, .General
    Chemistry. 6 ed. Saunders College Chemistry,
    2000

  • 70. WHITTEN K.W., GAILEY K.G. AND DAVIS R.E.,
    "General Chemistry with qualitative analysis", 4th Edition,
    Saunders HBJl, 1.992.

  • 71. ZEMANSKY M.W. Y DITTMAN R.H., "Calor y
    Termodinámica", 6ª Edición, McGraw-Hill,
    Madrid, 1984.

  • 72. ZUMDAHL, S. S.; ZUMDAHL,
    Chemistry, 5th ed.; Houghton Mifflin: Estados
    Unidos, 2000.

Bogotá – Colombia
septiembre de 2006

A nuestros
hijos,

a nuestros
estudiantes

y a los investigadores
científicos

y docentes
investigadores

que nos han precedido en la
esperanza

de una Gran
Colombia

 

 

Autor:

Jairo Guerra

Universidad La Gran Colombia

Facultad de Postgrados y Formación
Continuada

Programa de Especialización en
Pedagogía y Docencia Universitaria

LA ESCUELA INVESTIGATIVA

FORMACIÓN DE DOCENTES
INVESTIGADORES

Bogotá – Colombia

Septiembre de 2006

[1] Alfonso X “El sabio”. Siete
partidas. Edición de A. G. Solalinde

[2] Ortega y Gasset. J. Reflexiones de
Centenario. FCE. 1972.

[3] Ospina, W. Colombia: El proyecto
nacional y la franja amarilla – Lo que está en
juego en Colombia.Revista Número. Nº 9 –
1996 Ospina, W. Visión Futurista del país y el
continente- Latinoamérica on-line. Cronopios. 2004

[4] Adúriz-Bravo, A. Hacia la
enseñanza de un “método
Científico” en las ciencias naturales.
Universidad de Buienos Aires. 1995.

[5] Baumé, Chymie experimentale et
raisonnde, t. I. p. VII (Relacionado por Gasto de Bachelard
en Epistemología)

[6] Agustín Adúriz-Bravo,
Integración de la epistemología a la
formación del profesorado de ciencias, Universidad
Autónoma de Barcelona, 2001.

[7] Jairo Guerra, La Escuela Investigativa,
Diseño Pedagógico y didáctico para el
abordaje de la ciencia y la tecnología en la
educación básica, Uniminuto, 2005

[8] Ministerio de Educación Nacional
– MEN, Estándares Básicos de
Competencias, Espantapájaros Taller, Colombia
2004.

[9] Sánchez Carrascal, J. Programa
de universitología, Universidad la Gran Colombia,
206

[10] Silvio, J. Un nuevo rol para la
universidad latinoamericana como gestora del conocimiento,
CRESALC-UNESCO.

[11] Gutiérrez Saenz, R.
Introducción a la filosofía; Editorial
Esfinge.

[12] Hessen, Teoría del
conocimiento; Editorial Esfinge.

[13] Aguilera García, L.O. Tesis
para una iniciación epistemológica. En:
www.monografías.com 2000.

[14] Álvarez de Zayas, C.
Pedagogía como ciencia. La Habana, 1998.

[15] Gonzáles Rey, F.
Epistemología cualitativa. La Habana, 1998.

[16] Foucault, M. La Arqueología del
saber. Edit. Siglo XXI, México, 1972.

[17] Sánchez V., I. Contextos
epistemológicos en el cambio del milenio.
Implicaciones en epistemología pedagógica. En:
Revista Complutense de Educación. Vol. 9, Nro. 1,
1998.

[18] MacLuhan, H., P.B. Powers. La aldea
global. Barcelona, 1990.

[19] Mercier, P.A., F. Passard, V.
Escardigli. La sociedad digital. Barcelona. Ariel, 1985.

[20] Tedesco, J.C. Educación y
sociedad del conocimiento y de la información. Revista
Colombiana de Educación. Nro. 36-37, 1998.

[21] Husserl, E., La crisis de las ciencias
europeas y la fenomenología trascendental, 1936.
……. "La filosofía en la crisis de la humanidad
europea", Conferencia pronunciada en la Asociación de
Cultura de Viena.

[22] Popper, K. R., Conjeturas y
refutaciones. El desarrollo del conocimiento
científico, Buenos Aires, Editorial Paidós,1969
Popper, K. R. La lógica de la investigación
científica, Madrid, Editorial Tecnos, 1973 Popper, K.
R. Búsqueda sin término, Madrid, Editorial
Tecnos, 1977.

[23] Gardner. H. Teoría de las
Inteligencias Múltiples. ITM. 2001

[24] Vasco M. E., Los valores
implícitos en los libros de texto, Colegio Cafam,
Bogotá, 1994.

[25] Palacios, Marco- Hacia la
Innovación Institucional en la Universidad Nacional.
UN. 2003

[26] Guerra, J, La Escuela Investigativa,
Diseño Pedagogico Y Didactico Para El Abordaje De La
Ciencia Y Tecnología En La Educación
Básica. Corporación Universitaria Minuto de
Dios FACULTAD DE EDUCACIÓN, 2005

[27] Noell, S. I, Didáctica de las
Ciencias naturales, (Monografía) U. Barcelona
(2003)

[28] Bunge, M. La Investigación
Científica, Editorial Ariel, Barcelona 1972

[29] Bringuier, J. C. Conversaciones con
Piaget. Barcelona: Gedisa. (1985)

[30] Kant, I. Crítica de la
razón pura(1781),

[31] Driver, R., Asoko, H., Leach, J.,
Mortimer, E., Scot, P. (1994): Constructing Scientific
Knowledge in the Classroom en Educational Researcher, vol. 23
(7) 5-12.

[32] Giral, F. Enseñanza de la
química experimental, OEA-Deparatamento de Asuntos
Científicos, Unión Panamerican 1969

[33] Osorio Osma, R. Historia de la
Química en Colombia, Instituto Colombiano de Cultura
Hispánica, 1985

[34] FEDERECI CASA, CARLO. Elementos de
lógica y metodología”. Rev. Esquemas
Pedagógicos – Universidad de Cundinamarca
Nº6-2005 pp. 6-18

[35] Kuhn, Th. S. (1922- ):
"Historiador y filósofo de la ciencia estadounidense,
conocido por su contribución al cambio de
orientación de la filosofía y la
sociología científica en la década de
1960. En MICROSOFT CORPORATION. Enciclopedia Microsoft
Encarta 2000, 1993-1999, s/p.

[36] ECHEVERRÍA J.,
Introducción a la metodología de la ciencia,
Cátedra, Madrid 1999, p. 114. (El destacado en cursiva
es del autor).

[37] KUHN T., La estructura de las
revoluciones científicas, Fondo de Cultura
Económica, Santa Fe de Bogotá 19923, p. 33
– 55.

[38] KUHN T., o.c., p. 33.

[39] ECHEVERRÍA J., o.c., p.
119.

[40] KUHN T., o.c., pp. 20 – 32.

[41] ECHEVERRÍA J., o.c., p.
118.

[42] Cf. KUHN T., o.c., p. 34.

[43] Ibídem.

[44] KUHN T, o.c., p. 34.

[45] Ibídem, p. 51.

[46] QUINTANILLA M., Diccionario de
Filosofía Contemporánea, Ediciones
Sígueme, Salamanca 19792, p. 237.

[47] Kuhn tiende a usar con frecuencia el
término esotérico, se debe entender esta
acepción en el sentido de que es algo extraño,
oculto, distinto a lo normal y no en términos
peyorativos. "En un sentido general, el término
'esotérico' ha venido a tener casi enteramente la
significación de 'secreto', 'oculto', 'apto solamente
para iniciados'. Se ha formado a base de ello el vocablo
'esoterismo', que significa no solamente una cierta clase o
forma de saber, sino una cierta actitud frente al propio
saber, pues supone la distinción entre un saber
vulgar, popular, superficial y poco adentrado en la
naturaleza de lo real, y un saber auténtico,
único, que se reserva para el elegido el sabio, el
adivino, el profeta". En: FERRATER J., Diccionario de
Filosofía, e-j, Editorial Ariel, Barcelona 1994, p.
1079.

[48] KUHN T., o.c., p. 35.

[49] KUHN T., o.c., p. 41.

[50] Cayo Plinio Segundo (c. 23 d.C.-79):
"Escritor y enciclopedista romano, máxima autoridad
científica de la Europa antigua. La gran enciclopedia
de Plinio, Historia Natural, consta de 37 volúmenes y
es la única de sus obras que se conserva en la
actualidad. MICROSOFT CORPORATION. Enciclopedia Microsoft
Encarta 2000., 1993-1999. S/p.

[51] Bacon, Roger (c. 1214-1294):
"Filósofo y científico inglés, uno de
los maestros más influyentes del siglo XIII.
Realizó numerosos estudios teóricos y
experimentales, sobre todo en los campos de la alquimia, la
óptica y la astronomía. Fue una figura
fundamental para el saber de su época y, a finales de
la década de 1260, por petición del papa
Clemente IV, escribió Opus Maius. En esta obra trataba
la necesidad de reformar las ciencias por medio del estudio
de las lenguas y de la naturaleza, con la ayuda de diferentes
métodos. capaz de causar explosiones (en la actualidad
se sabe que la pólvora había sido antes
utilizada por los árabes). Bacon consideró que
las matemáticas y la experimentación eran los
únicos medios de llegar al conocimiento de la
naturaleza". En: MICROSOFT CORPORATION. Enciclopedia
Microsoft Encarta 2000., 1993-1999. S/p

[52] KUHN T., o.c., p. 43.

[53] KUHN T. o.c., p. 44.

[54] Cf. REALE G. y ANTISERI D., Historia
del pensamiento filosófico y científico, Tomo
III, Editorial Herder, Barcelona 1995, p. 911.

[55] KUHN T., o.c., p. 46.

[56] KUHN T. o.c., p. 49.

[57] Ibídem, p. 50.

[58] GUERRA, J.E. El Maravilloso mundo de
la química, Curso elemental, inédito 2002

[59] GUERRA,J. Análisis critico
estructural. U. Gran Colombia, módulo de
acreditación, 2006

[60] QUAGLIANO AND VALLARINO. Chemistry.
Prentice-Hall, Inc. Universidad de Florida, 1969

[61] GUERRA. J. La Escuela Investigativa.
Propuesta de modelo Educativo, 2006

[62] PALACIOS, MARCO. Hacia la
Innovación Institucional de la Universidad Nacional.
Universidad Nacional de Colombia, 2003

[63] ENRIQUEZ, PEDRO. Evaluación de
programas y elementos para la mejora del diseño y
desarrollo de la formación inicial de los docentes en
metodología de la investigación. Tesis
Doctoral, Universidad Autónoma de Barcelona, Facultad
de Ciencias de la Educación. 2002

[64] BOLÍVAR, A. Conocimiento de la
Enseñanza. Epistemología de la
Investigación Currícular. FORCE. Universidad de
Granada. (1990)

[65] DE LANDSHEERE, G. La Formación
de los enseñantes del mañana. NARCEA. Madrid.
1977

[66] HOPKINGS, D. La investigación
en el aula. Guía del profesor. PPU. Barcelona,
1989

[67] ROJAS SORIANO, R. Investigación
– acción en el aula. Plaza Valdéz,
México, 1997

[68] McCOMAS,W.(ed)(1998). The nature of
science in science education. Rationales and strategies.
Dordrecht: Kuwer.

[69] DUSCHL, R, DEÁK, G, ELLENBOGEN,
K Y HOLTON, D. (199). Developmnetal and educational
perspectivas on theory change: To have and hold, or to have
and hone?.Science & Education, 8, 525-541

70. WHITTEN K.W., GAILEY K.G. AND DAVIS R.E., "General
Chemistry with qualitative analysis", 4th Edition, Saunders HBJl,
1.992.
71. ZEMANSKY M.W. Y DITTMAN R.H., "Calor y Termodinámica",
6ª Edición, McGraw-Hill, Madrid, 1984.
72. ZUMDAHL, S. S.; ZUMDAHL, Chemistry, 5th ed.; Houghton
Mifflin: Estados Unidos, 2000.

 

Bogotá – Colombia septiembre de 2006

A nuestros hijos,
a nuestros estudiantes
y a los investigadores científicos
y docentes investigadores
que nos han precedido en la esperanza
de una Gran Colombia

Autor:
Jairo Guerra

Universidad La Gran Colombia
Facultad de Postgrados y Formación Continuada
Programa de Especialización en Pedagogía y Docencia
Universitaria

LA ESCUELA INVESTIGATIVA
FORMACIÓN DE DOCENTES INVESTIGADORES
Bogotá – Colombia
Septiembre de 2006

Partes: 1, 2, 3, 4, 5, 6, 7, 8
 Página anterior Volver al principio del trabajoPágina siguiente 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Categorias
Newsletter